文档库 最新最全的文档下载
当前位置:文档库 › 2014年北京高考(文科)数学试题及答案(完美版)

2014年北京高考(文科)数学试题及答案(完美版)

2014年北京高考(文科)数学试题及答案(完美版)
2014年北京高考(文科)数学试题及答案(完美版)

2014年普通高等学校招生全国统一考试

数 学(文)(北京卷)

第一部分(选择题 共40分)

一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。 (1)若集合{}0,1,2,4A =,{}1,2,3B =,则A

B =( )

(A ){}0,1,2,3,4 (B ){}0,4 (C ){}1,2 (D ){}3 (2)下列函数中,定义域是R 且为增函数的是( )

(A )x

y e -= (B )y x = (C )ln y x = (D )y x = (3)已知向量()2,4a =,()1,1b =-,则2a b -=( )

(A )()5,7 (B )()5,9 (C )()3,7 (D )()3,9 (4)执行如图所示的程序框图,输出的S 值为( )

(A )1 (B )3 (C )7 (D )15

(5)设a 、b 是实数,则“a b >”是“22a b >”的( )

(A) 充分而不必要条件 (B) 必要而不必要条件 (C) 充分必要条件 (D) 既不充分不必要条件 (6)已知函数()26

log f x x x

=

-,在下列区间中,包含()f x 零点的区间是( )

(A)()0,1 (B)()1,2 (C)()2,4 (D)()4,+∞

(7)已知圆()()2

2

:341C x y -+-=和两点(),0A m -,

()(),00B m m >,

若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( ) (A )7 (B )6 (C )5 (D )4 (8)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),如图记录了三次实验的数据.根

据上述函数模型和实验数据,可以得到最佳加工时间为( ) (A )3.50分钟 (B )3.75分钟

(C )4.00分钟 (D )4.25分钟

第二部分(非选择题 共110分)

二、填空题共6小题,每小题5分,共30分。 (9)若()()12x i i i x R +=-+∈,则x = . (10)设双曲线C

的两个焦点为()

)

,一个顶点式()1,0,则C 的方程为 .

(11)某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为 .

(12)在ABC ?中,1a =,2b =,1

cos 4

C =

,则c = ;sin A = .

(13)若x 、y 满足11010y x y x y ≤??

--≤??+-≥?

,则z y =+的最小值

为 .

(14)顾客请一位工艺师把A 、B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,

每件颜料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:

则最短交货期为 工作日.

三、解答题共6小题,共80分。解答应写出必要的文字说明,演算步骤。 (15)(本小题13分)

已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =, 且{}n n b a -为 等比数列.

(Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n b 的前n 项和.

侧(左)视图

正(主)视图

(16)(本小题13分)

函数()3sin 26f x x π?

?=+ ??

?的部分图象如图所示.

(Ⅰ)写出()f x 的最小正周期及图中0x 、0y 的值; (Ⅱ)求()f x 在区间,212π

π??-

-????

上的最大值和最小值.

如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,

AB BC

⊥,12AA AC ==, E 、F 分别为11A C 、BC 的中点.

(Ⅰ)求证:平面ABE ⊥平面11B BCC ; (Ⅱ)求证:1//C F 平面ABE ; (Ⅲ)求三棱锥E ABC -的体积.

C 1

B 1

A 1

F

E C

B

A

从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:

(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (Ⅱ)求频率分布直方图中的a ,b 的值;

(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读

时间的平均数在第几组(只需写出结论)

(19)(本小题14分)

阅读时间

频数

已知椭圆C :22

24x y +=. (Ⅰ)求椭圆C 的离心率;

(Ⅱ)设O 为原点,若点A 在直线2y =,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值.

(20)(本小题13分)已知函数3

()23f x x x =-. (Ⅰ)求()f x 在区间[2,1]-上的最大值;

(Ⅱ)若过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值范围;

(Ⅲ)问过点(1,2),(2,10),(0,2)A B C -分别存在几条直线与曲线()y f x =相切?(只需写出结论)

2014年普通高等学校招生全国统一考试

数 学(文)(北京卷)答案及解析

第一部分(选择题 共40分)

一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。 (1)若集合{}0,1,2,4A =,{}1,2,3B =,则A

B =( )

(A ){}0,1,2,3,4 (B ){}0,4 (C ){}1,2 (D ){}3 【答案】C

【解析】因为}2,1{=B A ,所以选C.

【考点】本小题主要考查集合的基本运算,属容易题,熟练集合的基础知识是解答集合题目的关键. (2)下列函数中,定义域是R 且为增函数的是( )

(A )x

y e -= (B )y x = (C )ln y x = (D )y x = 【答案】B

【解析】对于选项A ,在R 上是减函数;选项C 的定义域为),0(+∞;选项D ,在)0,(-∞上是减函数,故选B.

【考点】本小题主要考查函数的单调性,属基础题,难度不大. (3)已知向量()2,4a =,()1,1b =-,则2a b -=( )

(A )()5,7 (B )()5,9 (C )()3,7 (D )()3,9 【答案】A

【解析】因为)8,4(2=a

,所以)7,5()1,1()8,4(2=--=-b a ,故选A.

【考点】本小题主要考查平面向量的基本运算,属容易题

(4)执行如图所示的程序框图,输出的S 值为( )

(A )1 (B )3 (C )7 (D )15 【答案】C

【解析】当k=0时,1=S ;当k=1时,321=+=S ; 当k=2时,743=+=S ;当k=3时,输出7=S ,故选C.

【考点】本小题主要考查程序框图的基础知识,难度不大,程序框图是高考新增内容,是高考的重点知识,熟练本部分的基础知识是解答的关键. (5)设a 、b 是实数,则“a b >”是“2

2

a b >”的( )

(A) 充分而不必要条件 (B) 必要而不必要条件 (C) 充分必要条件 (D) 既不充分不必要条件

【答案】D

【解析】若2,0-==b a ,则2

2

b a <,故不充分;

若0,2=-=b a ,则22a b >,而b a <,故不必要,故选D.

【考点】本小题主要考查不等式的性质,熟练不等式的性质是解答好本类题目的关键. (6)已知函数()26

l o g f

x x x

=

-,在下列区间中,包含()f x 零点的区间是( ) (A)()0,1 (B)()1,2 (C)()2,4 (D)()4,+∞ 【答案】C

【解析】因为022

3

)4(,014)2(<-=

>-=f f ,所以由根的存在性定理可知,选C. 【考点】本小题主要考查函数的零点知识,正确理解零点定义及根的存在性定理是解答好本类题目的关键.

(7)已知圆()()2

2

:341C x y -+-=和两点(),0A m -,()(),00B m m >,

若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( ) (A )7 (B )6 (C )5 (D )4 【答案】B

【解析】由题意知,点P 在以原点(0,0)为圆心,以m 为半径的圆上,又因为点P 在已知圆上,所以只要两个圆有交点即可,所以51=-m ,故选B.

【考点】本小题主要考查两圆的位置关系,考查数形结合思想,考查分析问题与解决问题的能力. (8)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率p 与加工

时间t (单位:分钟)满足的函数关系2

p at bt c =++(a 、b 、c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) (A )3.50分钟 (B )3.75分钟 (C )4.00分钟 (D )4.25分钟 【答案】B

【解析】由图形可知,三点)5.0,5(),8.0,4(),7.0,3(都在函数c bt at p ++=2

的图象上,

所以??

?

??=++=++=++5.05258.04167.039c b a c b a c b a ,解得2,5.1,2.0-==-=c b a .

所以16

13)415(2.025.12.022

+-

-=-+-=t t t p ,当415

=t =75.3时,p 取最大值,故选B.

【考点】本小题以实际应用为背景,主要考查二次函数的解析式的求解、二次函数的最值等基础知识,考查同学们分析问题与解决问题的能力.

第二部分(非选择题 共110分)

二、填空题共6小题,每小题5分,共30分。 (9)若()()12x i i i x R +=-+∈,则x = . 【答案】2

【解析】由题意知:i xi 211+-=-,所以由复数相等的定义知2=x

【考点】本小题主要考查复数相等的定义、复数的运算,难度不大,复数是高考的重点,年年必考,熟练复数的基础知识是解答好本类题目的关键. (10)设双曲线C

的两个焦点为()

,)

,一个顶点式()1,0,则C 的方程为 .

【答案】12

2=-y x 【解析】由题意知:1,2==a c ,所以1222=-=a c b ,又因为双曲线的焦点在x 轴上,所以C 的

方程为12

2=-y x .

【考点】本小题驻澳考查双曲线方程的求解、c b a ,,的关系式,考查分析问题与解决问题的能力. (11)某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为 . 【答案】22

【解析】由三视图可知:该几何体为一条侧棱垂直底面的三棱锥,底面为边长为2的等边三角形,棱锥

的高为2,所以最长的棱长为22222

2=+.

【考点】本小题主要考查立体几何的三视图,考查同学们的空间想象能力,考查分析问题与解决问题的能力. (12)在ABC ?中,1a =,2b =,1

cos 4

C =

,则c = ;sin A = .

【答案】2,

8

15 【解析】由余弦定理得:44

1

225cos 22

2

2

=?

?-=-+=C ab b a c ,故2=c ;因为8

7

222144cos =??-+=

A ,所以815sin =A .

【考点】本小题主要考查解三角形的知识,考查正弦定理,三角函数的基本关系式等基础止水,属中低档题目

.

侧(左)视图

正(主)视图

(13)若x 、y 满足11010y x y x y ≤??

--≤??+-≥?

,则z y =+的最小值为 .

【答案】1

【解析】画出不等式组表示的平面区域,可知区域为三角形,平移直线y x z +=3可得,当直线经过

两条直线1=y 与01=-+y x 的交点(0,1)时,z 取得最小值1.

【考点】本小题主要考查在约束条件下的简单的目标函数的最值问题,正确画图与平移直线是解答这类问题的关键.

(14)顾客请一位工艺师把A 、B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,

每件颜料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:

则最短交货期为 工作日. 【答案】42

【解析】因为第一件进行粗加工时,工艺师什么都不能做,所以最短交货期为4221156=++天. 【考点】本小题以实际问题为背景,主要考查逻辑思维能力,考查分析问题与解决问题的能力. 三、解答题共6小题,共80分。解答应写出必要的文字说明,演算步骤。 (15)(本小题13分)

已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =, 且{}n n b a -为 等比数列.

(Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n b 的前n 项和. (15)(共13分)

解:(Ⅰ) 设等差数列{}n a 的公差为d ,由题意得41123

333

a a d --=

== 所以()()11312n a a n d n n =+-==,,.

设等比数列{}

n n b a -的公比为q ,

由题意得344112012

843

b a q b a --=

==--,解得2q =. 所以()11112n n n n b a b a q ---=-=. 从而()13212n n b n n -=+=,,

(Ⅱ)由⑴知()13212n n b n n -=+=,,

数列{}3n 的前n 项和为()312

n n +,数列{}

1

2n -的前n 项和为1212112n n -=--×.

所以,数列{}n b 的前n 项和为()3

1212

n n n ++-.

(16)(本小题13分)

函数()3sin 26f x x π?

?=+ ??

?的部分图象如图所示.

(Ⅰ)写出()f x 的最小正周期及图中0x 、0y 的值; (Ⅱ)求()f x 在区间,212π

π??--????

上的最大值和最小值. (16)(共13分)

解:(Ⅰ) ()f x 的最小正周期为π

07π

6

x =

. 03y =

(Ⅱ) 因为ππ212x ??∈--????,,所以π5π2066x ??

+∈-????

,.

于是当π206x +=,即π

12

x =-时,()f x 取得最大值0; 当ππ

262

x +

=-,即π3x =-时,()f x 取得最小值3-.

(17)(本小题14分)

如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,

AB BC ⊥,12AA AC ==,

E 、

F 分别为11A C 、BC 的中点.

(Ⅰ)求证:平面ABE ⊥平面11B BCC ; (Ⅱ)求证:1//C F 平面ABE ;

C 1

B 1

A 1

F

E C B

A

(Ⅲ)求三棱锥E ABC -的体积. (17)(共14分)

解:(Ⅰ)在三棱柱111ABC A B C -中,1BB ⊥底面ABC .

所以1BB AB ⊥. 又因为AB BC ⊥. 所以AB ⊥平面11B BCC . 所以平面ABE ⊥平面11B BCC . (Ⅱ)取AB 中点G ,连结EG ,FG .

因为E ,F 分别是11A C ,BC 的中点, 所以FG AC ∥,且1

2

FG AC =.

因为11AC AC ∥,且11AC AC =, 所以1FG EC ∥,且1FG EC =. 所以四边形1FGEC 为平行四边形. 所以1C F EG ∥.

又因为EG ?平面ABE ,1C F ?平面ABE , 所以1C F ∥平面ABE .

(Ⅲ)因为12AA AC ==,1BC =,AB BC ⊥,

所以AB =. 所以三棱锥E ABC -的体积

111112332ABC V S AA =?=??=

△. (18)(本小题14分)

从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:

G

C 1

B 1

A 1

F

E C

B

A

(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (Ⅱ)求频率分布直方图中的a ,b 的值;

(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读

时间的平均数在第几组(只需写出结论) (18)(共13分)

解:(Ⅰ)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有62210++=名,所以样本中的学生课外阅读时间少于12小时的频率是

10

10.9100

-

=. 从该校随机选取一名学生,估计其课外阅读时间少于12小时的概率为0.9. (Ⅱ)课外阅读时间落在组[46),的有17人,频率为0.17,所以

0.17

0.0852

a =

==频率组距. 课外阅读时间落在组[810),的有25人,频率为0.25, 所以0.25

0.1252

b =

==频率组距. (Ⅲ)样本中的100名学生课外阅读时间的平均数在第4组. (19)(本小题14分)

已知椭圆C :2

2

24x y +=. (Ⅰ)求椭圆C 的离心率;

(Ⅱ)设O 为原点,若点A 在直线2y =,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值. (19)(共14分)

阅读时间

频数

解:(Ⅰ)由题意,椭圆C 的标准方程为22

142

x y +=.

所以24a =,22b =,从而222

2c a b =-=.

因此2a =

,c =C

的离心率c e a =

. (Ⅱ)设点A ,B 的坐标分别为()2t ,,()00x y ,,其中00x ≠.

因为OA OB ⊥, 所以0OA OB ?=, 即0020tx y +=,解得0

2y t x =-

. 又22

024x y +=,所以 ()()22

2002AB x t y =-+-

()2

2000022y x y x ??=++- ??

?

2

220

20

44y x y x =+++

()2

202

002

24442x x x x --=+++ ()2

20020

84042x x x =++<≤. 因为()22

00

20

84042x x x +<≥≤,且当204x =时等号成立,所以28AB ≥. 故线段AB

长度的最小值为

(20)(本小题13分)已知函数3

()23f x x x =-. (Ⅰ)求()f x 在区间[2,1]-上的最大值;

(Ⅱ)若过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值范围;

(Ⅲ)问过点(1,2),(2,10),(0,2)A B C -分别存在几条直线与曲线()y f x =相切?(只需写出结论) (20)(共13分)

解:(Ⅰ) 由()323f x x x =-得()263f x x '=-.

令()0f x '=

,得x =

或x =因为()210f -=-

,f ?= ??

()11f f ==-??

所以()f x 在区间[]21-,上的最大值为f ?= ??

(Ⅱ) 设过点()1P t ,的直线与曲线()y f x =相切于点()00x y ,,

则300

023y x x =-,且切线斜率为2

063k x =-, 所以切线方程为()2

0063y y x -=-()0

x x -,

因此()

()2000631t y x x -=-- . 整理得32

04630x x t -++=. 设()32463g x x x t =-++,

则“过点()1P t ,存在3条直线与曲线()y f x =相切”等价于“()g x 有3个不同零点”. ()()21212121g x x x x x '=-=-.

()g x 与()g x '的情况如下:

)

所以,g 当(0)30g t =+≤,即3t -≤时,此时()g x 在区间(]1-∞,和(1)+∞,上分别至多有1个零点,所以()g x 至多有2个零点.

当(1)10g t =+≥,即1t -≥时,此时()g x 在区间(0)-∞,和[)0+∞,上分别至多有1个零点,所以()g x 至多有2个零点.

当()00g >且()10g <,即31t -<<-时,因为()()1702110g t g t -=-<=+>,,所以()g x 分

别在区间[)10-,,[)01,

和[)12,上恰有1个零点.由于()g x 在区间()0-∞,和()1+∞,上单调,所以()g x 分别在区间()0-∞,和[)1-∞,上恰有1个零点.

综上可知,当过点()1P t ,存在3条直线与曲线()y f x =相切时,t 的取值范围是()31--, .

(Ⅲ) 过点()12A -, 存在3条直线与曲线()y f x =相切;

过点()210B ,

存在2条直线与曲线()y f x =相切; 过点()02C , 存在1条直线与曲线()y f x =相切.:

2013年高考文科数学真题及答案全国卷1

2013年高考文科数学真题及答案全国卷1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2 ,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A 【考点】本题主要考查集合的基本知识。 【解析】∵B ={x |x =n 2 ,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}. 2.(2013课标全国Ⅰ,文2) 2 12i 1i +(-)=( ). A. B .11+ i 2 - C . D . 【答案】B 【考点】本题主要考查复数的基本运算。 【解析】 2 12i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=1 1+i 2 -. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16 【答案】B 【考点】本题主要考查列举法解古典概型问题的基本能力。 【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为 13 . 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0) C 的渐近线方程 为( ). A . B . C .1 2 y x =± D . 【答案】C 【考点】本题主要考查双曲线的离心率、渐近线方程。 【解析】∵2e = 2c a =,即2254 c a =.

2016年高考文科数学全国卷2(含详细答案)

数学试卷 第1页(共18页) 数学试卷 第2页(共18页) 数学试卷 第3页(共18页) 绝密★启用前 2016年普通高等学校招生全国统一考试(全国新课标卷2) 文科数学 使用地区:海南、宁夏、黑龙江、吉林、辽宁、新疆、内蒙古、青海、甘肃、重庆、陕西、西藏 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分,共6 页.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1. 答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内. 2. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚. 3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效. 4. 作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑. 5. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀. 第Ⅰ卷 一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合 题目要求的. 1. 已知集合{}123A =,,,{} 2|9B x x =<,则A B = ( ) A. {2,1,0,1,2,3}-- B. {2,1,0,1,2}-- C. {1,2,3} D. {1,2} 2. 设复数z 满足3z i i +=-,则=z ( ) A. 12i -+ B. 12i - C. 32i + D. 32i - 3. 函数()sin y A x ω?=+的部分图像如图所示,则 A. 2sin(2)6 y x π =- B. 2sin(2)3 y x π =- C. 2sin()6 y x π =+ D. 2sin()3 y x π =+ 4. 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 ( ) A. 12π B. 32 3π C. 8π D. 4π 5. 设F 为抛物线C :24y x =的焦点,曲线0k y k x =>()与C 交于点P ,PF x ⊥轴,则= k ( ) A. 1 2 B. 1 C. 32 D. 2 6. 圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则=a ( ) A. 43 - B. 3 4 - C. D. 2 7. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积( ) A. 20π B. 24π C. 28π D. 32π 8. 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 ( ) A. 710 B. 58 C. 3 8 D. 310 9. 中国古代有计算多项式值得秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的s = ( ) A. 7 B. 12 C. 17 D. 34 10. 下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是 ( ) A. y x = B. lg y x = C. 2x y = D. 1y x = 11. 函数() = cos26cos()2 f x x x π +-的最大值为 ( ) A. 4 B. 5 C. 6 D. 7 12. 已知函数()()f x x ∈R 满足()(2)f x f x =-,若函数223y x x =--与()y f x =图象的 交点为11x y (,),22x y (,),…,m m x y (,),则1 m i i x =∑= A. 0 B. m C. 2m D. 4 m 姓名________________ 准考证号_____________ --------在 --------------------此-------------------- 卷--------------------上-------------------- 答-------------------- 题-------------------- 无-------------------- 效----------------

2015年全国新课标2卷高考文科数学试题及答案

2015普通高等学校招生全国统一考试Ⅱ卷文科数学 第一卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的。 (1)已知集合A={}{} =<<=<<-B A x x B x x 则,30,21 A.(-1,3) B.(-1,0 ) C.(0,2) D.(2,3) (2)若a 实数,且 =+=++a i i ai 则,312 A.-4 B. -3 C. 3 D. 4 (3)根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下 结论中不正确的是 2700 260025002400210020001900 ) A.逐年比较,2008年减少二氧化碳排放量的效果最显著; B.2007年我国治理二氧化碳排放显现成效; C.2006年以来我国二氧化碳排放量呈减少趋势; D.2006年以来我国二氧化碳年排放量与年份正相关。 (4)已知向量=?+-=-=则(2),2,1(),1,0( A. -1 B. 0 C. 1 D. 2 (5)设{}项和, 的前是等差数列n a S n n 若==++5531,3S a a a 则 A. 5 B. 7 C. 9 D. 11 (6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为 A. 81 B.71 C. 6 1 D. 51 (7)已知三点)32()30(),01(,,,,C B A ,则ABC ?外接圆的 圆心到原点的距离为

A. 35 B. 321 C. 3 5 2 D. 34 (8)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。执 行该程序框图,若输入的a,b 分别为14,18,则输出的a 为 A. 0 B. 2 C. 4 D.14 (9)已知等比数列{}=-== 24531),1(4,41 a a a a a a n 则满足 C A. 2 B. 1 C. 2 1 D. 81 (10)已知A,B 是球O 的球面上两点,为该球面上动点,C AOB ,90?=∠若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为 A. 36π B. 64π C. 144π D.256π (11)如图,长方形的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC,CD,与DA 运动,记 的图像大致为则数两点距离之和表示为函到将动点)(),(,,x f x f B A P x BOP =∠ x P O D C B A

2019年高考全国1卷理科数学试题

6,2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 第I 卷(选择题) 一、单选题 1.已知集合{} }2 42{60M x x N x x x =-<<=--<,,则M N ?= A .}{43x x -<< B .}{42x x -<<- C .}{22x x -<< D .}{23x x << 2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y += B .22 (1)1x y -+= C .22(1)1x y +-= D .2 2(+1)1y x += 3.已知0.20.3 2log 0.2,2,0.2a b c ===,则 A .a b c << B .a c b << C .c a b << D .b c a << 4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 512 -( 51 2 -≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 51 2 -.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是 A .165 cm B .175 cm C .185 cm D .190cm 5.函数f (x )= 2 sin cos x x x x ++在[—π,π]的图像大致为 A . B .

C . D . 6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是 A. 5 16 B. 11 32 C. 21 32 D. 11 16 7.已知非零向量a,b满足a=2b,且(a–b)⊥b,则a与b的夹角为 A. π 6 B. π 3 C. 2π 3 D. 5π 6 8.如图是求 1 1 2 1 2 2 + + 的程序框图,图中空白框中应填入 A.A= 1 2A + B.A= 1 2 A +C.A= 1 12A + D.A= 1 1 2A + 9.记n S为等差数列{}n a的前n项和.已知45 05 S a == ,,则 A.25 n a n =-B.310 n a n =-C.2 28 n S n n =-D.2 1 2 2 n S n n =-10.已知椭圆C的焦点为12 1,01,0 F F - (),(),过F 2 的直线与C交于A,B两点.若

2019年全国I卷高考文科数学真题及答案

2019年全国I 卷高考文科数学真题及答案 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.设3i 12i z -=+,则z = A .2 B .3 C .2 D .1 2.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则 A .{}1,6 B .{}1,7 C .{}6,7 D .{}1,6,7 3.已知0.20.3 2log 0.2,2,0.2a b c ===,则 A .a b c << B .a c b << C .c a b << D .b c a << 4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 51-( 51 2 -≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 51 2 -.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是

A .165 cm B .175 cm C .185 cm D .190cm 5.函数f (x )= 2 sin cos x x x x ++在[-π,π]的图像大致为 A . B . C . D . 6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生 D .815号学生 7.tan255°= A .-2-3 B .-2+3 C .2-3 D .2+3 8.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为 A . π6 B . π3 C . 2π3 D . 5π6 9.如图是求 112122 + +的程序框图,图中空白框中应填入 A .A = 12A + B .A =12A + C .A = 1 12A + D .A =112A +

2016年高考全国二卷文科数学试卷

2016年普通高等学校招生全国统一考试(II 卷) 文科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符 合题目要求的。 1. 已知集合A = {1,2,3},B = {x | x 2 < 9}则A ∩B = A. {-2,-1,0,1,2,3} B. {-2,-1,0,1,2} C. {1,2,3} D. {1,2} 2. 设复数z 满足z + i = 3 - i ,则=z A. -1 + 2i B. 1 - 2i C. 3 + 2i D. 3 - 2i 3. 函数)sin(?ω+=x A y 的部分图象如图所示,则 A. )6 2sin(2π -=x y B. )3 2sin(2π -=x y C. )6 sin(2π +=x y D. )3 sin(2π + =x y 4. 体积为8的正方体的顶点都在同一球面上,则该球的表面积为 A. π12 B. π3 32 C. π8 D. π4 5. 设F 为抛物线C :y 2 = 4x 的焦点,曲线)0(>= k x k y 与C 交于点P ,PF ⊥x 轴,则k = A. 2 1 B. 1 C. 2 3 D. 2 6. 圆x 2 + y 2 - 2x - 8y + 13 = 0的圆心到直线ax + y - 1 = 0的距离为1,则a = A. 3 4- B. 4 3- C. 3 D. 2 7. 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 A. π20 B. π24 C. π28 D. π32 8. 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒,若 一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 A. 107 B. 85 C. 8 3 D. 10 3 9. 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图。执行该程序框图, 若输入的x = 2,n = 2,依次输入的a 为2、2、5,则输出的s = A. 7 B. 12 C. 17 D. 34 2016.6

2019年高考全国2卷文科数学及答案

绝密★启用前 2019年普通高等学校招生全国统一考试 文科数学 本试卷共23题,共150分,共4页。考试结束后,将本试卷和答题卡一并交回。 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞) B .(–∞,2) C .(–1,2) D .? 2.设z =i(2+i ),则z = A .1+2i B .–1+2i C .1–2i D .–1–2i 3.已知向量a =(2,3),b =(3,2),则|a –b |= A B .2 C .2 D .50 4.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A . 23 B . 35 C . 25 D . 15 5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高. 成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲 D .甲、丙、乙 6.设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x -- B .e 1x -+ C .e 1x --- D .e 1x --+ 7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 8.若x 1= 4π,x 2=4 3π 是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32 C .1 D .1 2 9.若抛物线y 2 =2px (p >0)的焦点是椭圆 22 13x y p p +=的一个焦点,则p = A .2 B .3 C .4 D .8 10.曲线y =2sin x +cos x 在点(π,–1)处的切线方程为

高考文科数学真题 全国卷

2018年普通高等学校招生全国统一考试(全国卷3) 文科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 C.{1,2} ( ) 5.若某群里中的成员只用现金支付的概率为0.45,既用现金支付又用非现金支付的概率为0.15,则不用现金支付的概率为() A.0.3 B.0.4 C.0.6 D.0.7 A.π 4B.π 2 C.π D.2π 8.直线x+y+2=0分别于x轴,y轴交于A,B两点,则?ABP的面积的取值范围是()A.[2,6] B.[4,8] C.[√2,3√2] D.[2√2,3√2] A.π 2B.π 3 C.π 4 D.π 6 A.12√3 B.18√3 C.24√3 D.54√3 14.某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是。

19.如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是弧CD 上异于C,D 的点。 (1)证明:平面AMD ⊥平面BMC ; (2)在线段上是否存在点P ,使得MC ∥平面PBD ?说明理由。 20. 已知斜率为k 的直线l 与椭圆C :22143x y +=交于,A B 两点,线段AB 的中点()1,(0)M m m >. (1)证明:1;2 k <- (2)设F 为C 右焦点,P 为C 上一点,且0FP FA FB ++=u u u r u u u r u u u r ,证明:2.FP FA FB =+u u u r u u u r u u u r (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,按所做的第一题计分。 23.[选修4-5:不等式选讲](10分)

2016年高考文科数学全国卷2

徐老师 第 1 页 2016年普通高等学校招生全国统一考试(全国新课标卷2) 文科数学 使用地区:海南、宁夏、黑龙江、吉林、辽宁、新疆、内蒙古、青海、甘肃、重庆、陕西、西藏 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分,共6页.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1. 答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内. 2. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚. 3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效. 4. 作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑. 5. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀. 第Ⅰ卷 一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项 是符合题目要求的. 1. 已知集合{}123A =, ,,{}2|9B x x =<,则A B =I ( ) A. {2,1,0,1,2,3}-- B. {2,1,0,1,2}-- C. {1,2,3} D. {1,2} 2. 设复数z 满足3z i i +=-,则=z ( ) A. 12i -+ B. 12i - C. 32i + D. 32i - 3. 函数()sin y A x ω?=+的部分图像如图所示,则

第 2 页 A. 2sin(2)6 y x π =- B. 2sin(2)3 y x π =- C. 2sin()6 y x π =+ D. 2sin()3 y x π =+ 4. 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 ( ) A. 12π B. 323 π C. 8π D. 4π 5. 设F 为抛物线C :24y x =的焦点,曲线0k y k x =>()与C 交于点P ,PF x ⊥轴,则 =k ( ) A. 1 2 B. 1 C. 32 D. 2 6. 圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则=a ( ) A. 43 - B. 34 - C. D. 2 7. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积( )

2015年高考文科数学试卷全国卷1(解析版)

2015年高考文科数学试卷全国卷1(解析版) 1.已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个 数为( ) (A ) 5 (B )4 (C )3 (D )2 2.已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( ) (A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4) 3.已知复数z 满足(1)1z i i -=+,则z =( ) (A ) 2i -- (B )2i -+ (C )2i - (D )2i + 4.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) (A ) 310 (B )15 (C )110 (D )120 5.已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = ( ) (A ) 3 (B )6 (C )9 (D )12 6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛 7.已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和, 若844S S =,则10a =( ) (A ) 172 (B )192 (C )10 (D )12 8.函数()cos()f x x ω?=+的部分图像如图所示,则()f x 的单调递减区间为( )

2016年全国高考文科数学试题及答案-全国卷2

2016年普通高等学校招生全国统一考试文科数学 一、 选择题:本大题共12小题。每小题5分. (1)已知集合{1 23}A =,,,2{|9}B x x =<,则A B = (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12}, (2)设复数z 满足i 3i z +=-,则z = (A )12i -+ (B )12i - (C )32i + (D )32i - (3) 函数=sin()y A x ω?+的部分图像如图所示,则 (A )2sin(2)6y x π=- (B )2sin(2)3y x π =- (C )2sin(2+)6y x π= (D )2sin(2+)3 y x π = (4) 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A )12π (B ) 32 3π (C )8π (D )4π (5) 设F 为抛物线C :y 2=4x 的焦点,曲线y =k x (k >0)与C 交于点P ,PF ⊥x 轴,则k = (A ) 12 (B )1 (C )3 2 (D )2 (6) 圆x 2+y 2?2x ?8y +13=0的圆心到直线ax +y ?1=0的距离为1,则a = (A )? 43 (B )?3 4 (C (D )2 (7) 如图是由圆柱与圆锥组合而成的几何体的三视图, 则该几何体的表面积为 (A )20π (B )24π (C )28π (D )32π (8) 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒, 若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 (A ) 710 (B )58 (C )38 (D )3 10 (9)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图. 执行该程序框图,若x =2,n =2,输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 (D )34

高考文科数学真题全国卷

高考文科数学真题全国 卷 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

2014年普通高等学校招生全国统一考试数学(文科)(课标I ) 一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)已知集合M={x|-1<x <3},N={x|-2<x <1}则M ∩N=( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(- (2)若0tan >α,则 A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α (3)设i i z ++=11,则=||z A. 2 1 B. 2 2 C. 2 3 D. 2 (4)已知双曲线)0(13 2 22>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 2 5 D. 1 (5)设函数)(),(x g x f 的定义域都为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 (6)设F E D ,,分别为ABC ?的三边AB CA BC ,,的中点,则 =+FC EB A. AD B. AD 21 C. BC D. BC 2 1 (7)在函数①|2|cos x y =,②|cos |x y = , ③)62cos(π+=x y ,④)4 2tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ (8)如图,网格纸的各小格都是正方形,粗实线画出的事 一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱

2016年全国高考文科数学试题及解析全国卷I

绝密★ 启封并使用完毕前 试题类型:A 2016年普通高等学校招生全国统一考试 文科数学 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. AB?5}?|{x2?xA?{1,3,5,7}B?(,则,1. 设集合) {1,3}{3,5}{5,7}{1,7} D. C. B. A. aa?)?i)(ai(1?2(为实数,则)2. 设的实部与虚部相等,其中 33?2?2 D. C. B. A. 3. 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是() 1512 B. A. C. D. 36232 5a?cosAc,,b,AB,Ca bc?2?ABC?(的内角,,已知,)的对边分别为4. ,则33232 D. A. B. C. 1ll,的距离为其短轴长的经过椭圆的一个顶点和一个焦点,若椭圆中心到则该椭圆的离心率为5. 直线4)( 1123 B. A. C. D. 32341

?1)??2sin(2xy的图像向右平移个周期后,所得图像对应的函数为(将函数6. )46??)??2sin(2xy?2sin(2x?)y B. A. 34??)??2sin(2x2sin(2y?x?)y D. C. 347. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是?28,则它的表面积是()3????28172018 C. B. D. A. 1?ba??00?c 8. 若),则(, bacc b?loglogalogc?logcc?a?bc A. C. B. D. cabc|x|2ex?y?22,2][?9. 函数在)的图像大致为( y y

2015年高考文科数学真题全国卷1

2015年高考文科数学试卷全国1卷 1.已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B I 中的元素个数为 ( ) (A ) 5 (B )4 (C )3 (D )2 2.已知点(0,1),(3,2)A B ,向量(4,3)AC =--u u u r ,则向量BC =u u u r ( ) (A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4) 3.已知复数z 满足(1)1z i i -=+,则z =( ) (A ) 2i -- (B )2i -+ (C )2i - (D )2i + 4.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) (A ) 310 (B )15 (C )110 (D )120 5.已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = ( ) (A ) 3 (B )6 (C )9 (D )12 6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )

(A )14斛 (B )22斛 (C )36斛 (D )66斛 7.已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A ) 172 (B ) 192 (C )10 (D )12 8.函数()cos()f x x ω?=+的部分图像如图所示,则()f x 的单调递减区间为( ) (A )13(,),44 k k k Z ππ- +∈ (B )13(2,2),44 k k k Z ππ-+∈ (C )13(,),44 k k k Z -+∈ (D )13(2,2),44k k k Z -+∈ 9.执行右面的程序框图,如果输入的0.01t =,则输出的n =( ) (A ) 5 (B )6 (C )10 (D )12 10.已知函数1222,1()log (1),1 x x f x x x -?-≤=?-+>? ,且()3f a =-,则(6)f a -=( ) (A )74- (B )54- (C )34- (D )14 - 11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图

2019年高考数学理科全国三卷

2019年普通高等学校招生全国统一考试 理科数学(全国三卷) 一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。) 1.已知集合{}1,0,1,2A =-,{} 2|1B x x =≤,则A B =() A. {1,0,1}- B.{0,1} C.{1,1}- D. {0,1,2} 2.若(1)2z i i +=,则z =() A. 1i -- B. 1i -+ C. 1i - D. 1i + 3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为() A. 0.5 B. 0.6 C. 0.7 D. 0.8 4.24(12)(1)x x ++的展开式中x 3的系数为() A. 12 B. 16 C. 20 D. 24 5.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=() A. 16 B. 8 C. 4 D. 2 6.已知曲线ln x y ae x x =+在(1,)ae 处的切线方程为y =2x +b ,则() A.,1a e b ==- B.,1a e b == C.1,1a e b -== D.1,1a e b -==- 7.函数3222 x x x y -=+在[6,6]-的图像大致为()

高考全国卷1文科数学真题及答案

2019年高考文科数学真题及答案全国卷I 第Ⅰ卷 一、选择题:本大题共12小题, 每小题5分, 在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.(2019课标全国Ⅰ, 文2) 2 12i 1i +(-) =( ). A . 11i 2-- B .11+i 2- C .11+i 2 D .11i 2- 2.(2019课标全国Ⅰ, 文1)已知集合A ={1,2,3,4}, B ={x |x =n 2 , n ∈A }, 则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 3.(2019课标全国Ⅰ, 文3)从1,2,3,4中任取2个不同的数, 则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16 4.(2019课标全国Ⅰ, 文4)已知双曲线C :22 22=1x y a b -(a >0, b >0)5 则 C 的渐近线方程为( ). A .y =14x ± B .y =13x ± C .y =1 2x ± D .y =±x 5.(2019课标全国Ⅰ, 文5)已知命题p :?x ∈R,2x <3x ;命题q :?x ∈R , x 3 =1-x 2 , 则下列命题中为真命题的是( ). A .p ∧q B .?p ∧q C .p ∧?q D .?p ∧?q 6.(2019课标全国Ⅰ, 文6)设首项为1, 公比为 2 3 的等比数列{a n }的前n 项和为S n , 则( ). A .Sn =2an -1 B .Sn =3an -2 C .Sn =4-3an D .Sn =3-2an 7.(2019课标全国Ⅰ, 文7)执行下面的程序框图, 如果输入的t ∈[-1,3], 则输出的s 属于( ). A .[-3,4] B .[-5,2] C .[-4,3] D .[-2,5] 8.(2019课标全国Ⅰ, 文8)O 为坐标原点, F 为抛物线C :y 2 =2x 的焦点, P 为C 上一点, 若|PF |=42 则△POF 的面积为( ). A .2 B .22.3.4 9.(2019课标全国Ⅰ, 文9)函数f (x )=(1-cos x )sin x 在[-π, π]的图像大致为( ).

2016年高考全国三卷文科数学试卷

2016年普通高等学校招生全国统一考试(III 卷) 文科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符 合题目要求的。 1. 设集合A = {0,2,4,6,8,10},B = {4,8},则 =B A A. {4,8} B. {0,2,6} C. {0,2,6,10} D. {0,2,4,6,8,10} 2. =+=| |i 34z z z ,则 若 A. 1 B. 1- C. i 53 54+ D. i 5 354- 3. 已知向量)2 1 ,23()23, 21(==BC BA ,,则∠ABC = A. 30° B. 45° C. 60° D. 120° 4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温 和平均最低气温的雷达图。图中A 点表示十月的平均最高气温约15℃,B 点 表示四月的平均最低气温约为5℃。下面叙述不正确的是 A. 各月的平均最低气温都在0℃以上 B. 七月的平均温差比一月的平均温差大 C. 三月和十一月的平均最高气温基本相同 D. 平均最高气温高于20℃的月份有5个 5. 小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M 、I 、N 中 的一个字母,第二位是1、2、3、4、5中的一个数字,则小敏输入一次密码 能够成功开机的概率是 A. 158 B. 81 C. 151 D. 30 1 6. θθcos 3 1tan ,则若-= 2016.6

A. 54- B. 51- C. 51 D. 5 4 7. 已知3 13 23 42532===c b a ,,,则 A. b < a < c B. a < b < c C. b < c < a D. c < a < b 8. 执行右面的程序框图,如果输入的a = 4,b = 6,那么输出的n = A. 3 B. 4 C. 5 D. 6 9. 在△ABC 中,4 π = B ,B C 边上的高等于 3 1 BC ,则sin A = A. 103 B. 1010 C. 55 D. 10 10 3 10. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该 多面体的表面积为 A. 53618+ B. 51854+ C. 90 D. 81 11. 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB = 6, BC = 8,AA 1 = 3,则V 的最大值是 A. π4 B. 29π C. π6 D. 3 32π 12. 已知O 为坐标原点,F 是椭圆C :)1(122 22>>=+b a b y a x 的左焦点,A 、B 分别为C 的左、右顶点。P 为C 上 一点,且PF ⊥x 轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E 。若直线BM 经过OE 的中点,则C 的离心率为 A. 31 B. 21 C. 32 D. 4 3

2015年内蒙古高考文科数学试题与答案(word版)

2015年内蒙古高考文科数学试题与答案 (word 版) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。 (1) 已知集合A={x|-1

(A )81 (B )71 (C )61 (D )5 1 (7)过三点A (0,0),B (0, 3),C (2,3)则ABC ?外接圆的圆心到原点的距离为 (A )35 (B )321(C )3 52 (D )34 (8)右边程序抗土的算法思路源于我国古 代数学名著《九章算术》中的“更相减损术”。 执行该程序框图,若输入a,b 分别为14,18, 则输出的a= A.0 B.2 C.4 D.14 (9)已知等比数列{}n a 满足114 a =,()35441a a a =-,则2a = (A )2 (B )1 (C )21 (D )8 1 (10)已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为 A .36π B.64π C.144π D.256π (11).如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,∠BOP=x 。将动点P 到AB 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为 (12)的取值范围是成立的则使得设函数x x f x f x x x f )12()(,11)1ln()(2 ->+- += (A ))1,31( (B )),1()31,(+∞-∞ (C ))3131(,-(D ))31()31(∞+--∞,, 二、填空题 (13)=--=a x ax x f )则的图象过点(已知函数4,12)(3 (14)若x ,y 满足约束条件?????≤+-≥--≤-+01201205y x y x y x ,则y x z +=2的最大值为 ____________.

相关文档
相关文档 最新文档