【19份】2017-2019三年高考真题文科数学试题分类汇编
专题1-专题19 目录2019.07
专题01 集合与常用逻辑用语
1
.
【
2019
年
高
考
全
国
Ⅰ卷
文
数
】
已
知
集
合
{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =e
A .{}1,6
B .{}1,7
C .{}6,7
D .{}1,6,7
【答案】C
由已知得{
}1,6,7U A =e, 所以U B
A =e{6,7}.
故选C .
【名师点睛】本题主要考查交集、补集的运算,根据交集、补集的定义即可求解.
2.【2019年高考全国Ⅱ卷文数】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2)
C .(-1,2)
D .?
【答案】C
由题知,(1,2)A B =-. 故选C .
【名师点睛】本题主要考查交集运算,是容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.
3.【2019年高考全国Ⅲ卷文数】已知集合2
{1,0,1,2},{|1}A B x x =-=≤,则A B =
A .{}1,0,1-
B .{}0,1
C .{}1,1-
D .{}0,1,2
【答案】A
∵2
1,x ≤∴11x -≤≤,∴{}
11B x x =-≤≤,
又{1,0,1,2}A =-,∴{}1,0,1A B =-.
故选A .
【名师点睛】本题考查了集合交集的求法,是基础题.
4.【2019年高考北京文数】已知集合A ={x |–1
D .(1,+∞)
【答案】C
∵{|12},{|1}A x x B x =-<<=>, ∴(1,)A
B =-+∞.
故选C.
【名师点睛】本题考查并集的求法,属于基础题.
5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,
则()U A B e=
A .{}1-
B .{}0,1
C .{}1,2,3-
D .{}1,0,1,3-
【答案】A
∵{1,3}U A =-e,∴()
{1}U A B =-e.
故选A.
【名师点睛】注意理解补集、交集的运算.
6.【2019年高考天津文数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤ C B = A .{}2 B .{}2,3 C .{}1,2,3- D .{}1,2,3,4 【答案】D 因为{1,2}A C =,所以(){1,2,3,4}A C B =. 故选D . 【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算. 7.【2019年高考天津文数】设x ∈R ,则“05x <<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】B 由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<, 故05x <<是02x <<的必要而不充分条件, 即“05x <<”是“|1|1x -<”的必要而不充分条件. 故选B. 【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 8.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A 当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立; 当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A. 【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果. 9.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 【答案】B 由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件; 由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件. 故α∥β的充要条件是α内有两条相交直线与β平行. 故选B . 【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断. 10.【2019年高考北京文数】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x ) 为偶函数”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】C 当0b =时,()cos sin cos f x x b x x =+=,()f x 为偶函数; 当()f x 为偶函数时,()()f x f x -=对任意的x 恒成立, 由()cos()sin()cos sin f x x b x x b x -=-+-=-,得c o s s i n c o s s i n x b x x b x +=-, 则sin 0b x =对任意的x 恒成立, 从而0b =. 故“0b =”是“()f x 为偶函数”的充分必要条件. 故选C. 【名师点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查. 11.【2018年高考浙江】已知全集U ={1,2,3,4,5},A ={1,3},则=U A e A .? B .{1,3} C .{2,4,5} D .{1,2,3,4,5} 【答案】C 因为全集 , , 所以根据补集的定义得 . 故选C . 【名师点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解. 12.【2018年高考全国Ⅰ卷文数】已知集合{}02A =,,{}21012B =--,,, ,,则A B = A .{}02, B .{}12, C .{}0 D .{}21012--,, ,,