文档库 最新最全的文档下载
当前位置:文档库 › 2017全国高考1卷文科数学试题及答案解析

2017全国高考1卷文科数学试题及答案解析

2017全国高考1卷文科数学试题及答案解析
2017全国高考1卷文科数学试题及答案解析

2016年全国高考新课标1卷文科数学试题

第Ⅰ卷

考生注意:

1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。

3.考试结束后,监考员将试题卷和答题卡一并交回。

一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选

项中,只有一项是符合题目要求的.

1.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=( )

A.{1,3} B.{3,5} C.{5,7} D.{1,7}

2.设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=( ) A.-3 B.-2 C.2 D. 3

3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )

A.1

3

B.

1

2

C.

2

3

D.

5

6

4.ΔABC的内角A,B,C的对边分别为a,b,c.已知

2

2,cos

3

a c A

===,

则b=( )

A. C.2 D.3

5.直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的

1

4

,则该椭圆的离心率为( )

A .13

B .12

C .23

D .34

6.若将函数y =2sin (2x +6π)的图像向右平移14

个周期后,所得图像对应的函数为

( )

A .y =2sin(2x +4π)

B .y =2sin(2x +3π)

C .y =2sin(2x –4

π) D .y =2sin(2x –3

π) 7.如图,某几何体的三视图是三个半径相等的圆及每个

圆中两条相互垂直的半径.若该几何体的体积是283

π, 则它的表面积是( )

A .17π

B .18π

C .20π

D .28π

8.若a >b >0,0

A .log a c

B .log c a

C .a c

D .c a >c b

9.函数y =2x 2–e |x |在[–2,2]的图像大致为( )

10

A .y =2x

B .y =3x

C .y =4x

D .y =5x

11.平面α过正方体ABCD -A 1B 1C 1D 1的顶点 α//平面CB 1D 1,α∩平面ABCD=m ,α∩平面ABB 1A 1=n ,则m ,n A .2 B .2 C .312.若函数1()sin 2sin 3

f x x -x a x =+在(-∞,+∞)单调递增,则a 的取值范围是( ) A .[-1,1] B .[-1,13] C .[-13,13] D .[-1,-13

]

第Ⅱ卷

本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答.

二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.

13.设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = .

14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4

)= . 15.设直线y=x +2a

与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=

则圆C 的面积为 .

16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A

需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.

三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.

17.(本题满分12分)

已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=3

1,a n b n +1+b n +1=nb n . (Ⅰ)求{a n }的通项公式; (Ⅱ)求{b n }的前n 项和.

18.(本题满分12分)

如图,已知正三棱锥P -ABC 的侧面是直角三角形,PA 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,

连接PE 并延长交AB 于点G .

(Ⅰ)证明G 是AB 的中点; (Ⅱ)在答题卡第(18)题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF

19.(本小题满分12分)

某公司计划购买1台机器,该种机器使用三年后即被淘汰. 机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元. 在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.

(Ⅰ)若n=19,求y与x的函数解析式;

(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;

(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?

20.(本小题满分12分)

在直角坐标系xoy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.

(Ⅰ)求OH

ON

; (Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.

21.(本小题满分12分)

已知函数f(x)=(x -2)e x+a(x -1)2.

(Ⅰ)讨论f(x)的单调性; (Ⅱ)若有两个零点,求a的取值范围.

请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号

22.(本小题满分10分)选修4-1:几何证明选讲

如图,ΔOAB是等腰三角形,∠AOB=120°. 以O为圆心,1

2

OA为半径作圆.

(Ⅰ)证明:直线AB与⊙O相切;

(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.

23.(本小题满分10分)选修4—4:坐标系与参数方程

在直线坐标系xoy中,曲线C1的参数方程为

cos

1sin

x a t

y a t

=

?

?

=+

?

(t为参数,a>0).

在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.

(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;

(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.

24.(本小题满分10分),选修4—5:不等式选讲

已知函数f (x )=| x +1| -|2x -3|.

(Ⅰ)在答题卡第24题图中画出y =f (x )的图像;

(Ⅱ)求不等式| f (x )|>1的解集.

2016年全国高考新课标1卷文科数学试题参考答案

一、选择题,

B A

C

D B D A B D C A C

二、填空题:

13.23- 14.43

- 15.4π 16.216000 三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.

17.解:(Ⅰ)依题a 1b 2+b 2=b 1,b 1=1,b 2=3

1,解得a 1=2 …2分 通项公式为 a n =2+3(n -1)=3n -1 …6分

(Ⅱ)由(Ⅰ)知3nb n +1=nb n ,b n +1=31b n ,所以{b n }是公比为1的等比数列.…9分 所以{b n }的前n 项和S n =111()313122313n

n --=-?- …18.(Ⅰ)证明:PD ⊥平面ABC ,∴PD ⊥AB . 又DE ⊥平面PAB ,∴DE ⊥AB .∴AB ⊥平面PDE . …3又PG ?平面PDE ,∴AB ⊥PG .依题PA=PB ,∴G 是(Ⅱ)解:在平面PAB 内作EF ⊥PA (或EF // PB )垂足为F ,

则F 是点E 在平面PAC 内的正投影. …7分

理由如下:∵PC ⊥PA ,PC ⊥PB ,∴ PC ⊥平面PAB . ∴EF ⊥PC

作EF ⊥PA ,∴EF ⊥平面PAC .即F 是点E 在平面PAC 内的正投影.…9分 连接CG ,依题D 是正ΔABC

的重心,∴D 在中线CG 上,且

CD =2DG .

易知DE // PC ,PC=PB=PA = 6,∴DE =2,PE =2233

PG =?=. 则在等腰直角ΔPEF 中,PF=EF=2,∴ΔPEF 的面积S=2.

所以四面体PDEF 的体积1433

V S DE =?=. …12分 19.解:(Ⅰ)当x ≤19时,y =3800;当x >19时,y =3800+500(x -19)=500x -5700.

所以y 与x 的函数解析式为3800,19(*)5005700,19x y x N x x ≤?=∈?->?

…3分 (Ⅱ)由柱状图知,需更换的易损零件数不大于18为0.46,不大于19为0.7,所以n 的最小值为19. …6分

(Ⅲ)若每台机器都购买19个易损零件,则有70台的费用为3800,20台的费用为4300,10台的费用为4800,所以100台机器购买易损零件费用的 平均数为1100

(3800×70+4300×20+4800×10)=4000. …9分 若每台机器都购买20个易损零件,则有90台的费用为4000,10台的费用为4500,所以100台机器购买易损零件费用的 平均数为1100

(4000×90+4500×10)=4050. …11分 比较两个平均数可知,购买1台机器的同时应购买19个易损零件.…12分

20.解:(Ⅰ)依题M (0, t ),P (22t p , t ). 所以N (2t p , t ),ON 的方程为p y x t

=. 联立y 2=2px ,消去x 整理得y 2=2ty . 解得y 1=0,y 2=2t . …4分

所以H (2

2t p ,2t ). 所以N 是OH 的中点,所以OH ON

=2. …6分 (Ⅱ)直线MH 的方程为2p y t x t

-=,联立y 2=2px ,消去x 整理得y 2-4ty +4t 2=0. 解得y 1=y 2=2t . 即直线MH 与C 只有一个交点H .

所以除H 以外,直线MH 与C 没有其它公共点. …12分

21.解:(Ⅰ) f '(x )=(x -1)e x +a (2x -2)=(x -1)(e x +2a ). x ∈R …2分

(1)当a ≥0时,在(-∞,1)上,f '(x )<0,f (x )单调递减;

在(1,+∞)上,f '(x )>0,f (x )单调递增. …3分

(2)当a <0时,令f '(x )=0,解得x =1或x =ln(-2a ).

①若a =2

e -,ln(-2a ) =1,

f '(x )≥0恒成立,所以f (x )在(-∞,+ ∞)上单调递增.

②若a >2

e -,ln(-2a )<1,在(ln(-2a ),1)上,

f '(x )<0,f (x )单调递减; 在(-∞, ln(-2a ))与(1,+∞)上,f '(x )>0,f (x )单调递增.

③若a <2

e -,ln(-2a )>1,在(1,ln(-2a ))上,f '(x )<0,f (x )单调递减; 在(-∞,1)与(ln(-2a ),+∞)上,f '(x )>0,f (x )单调递增 (7)

(Ⅱ) (1)当a =0时,f (x )=(x -2)e x 只有一个零点,不合要求. …8分

(2)当a >0时,由(Ⅰ)知f (x )在(-∞,1)上单调递减;在(1,+∞)上单调递增.

最小值f (1)=-e <0,又f (2)= a >0,若取b <0且b

a . 从而f (

b )>223(2)(1)()022

a b a b a b b -+-=->,所以f (x )有两个零点. …10分

(3)当a <0时,在(-∞,1]上,f (x )<0恒成立;若a ≥2

e -,由(Ⅰ)知

f (x )在(1,+∞)上单调递增,不存在两个零点.若a <2

e -,

f (x )在(1,ln(-2a ))上单调递减;在(ln(-2a ),+∞)上单调递增,也不存在两个零点.

综上a 的取值范围是(0,1). …12分

2017年高考全国卷一文科数学试题及答案

2017年普通高等学校招生全国统一考试全国卷一文科数学 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A I B =3|2x x ? ?

(完整版)2017年全国高考理科数学试题及答案-全国卷1

绝密★启用前 2017年普通高等学校招生全国统一考试 理科数学 本试卷5页,23小题,满分150分。考试用时120分钟。 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。 用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。 2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一 项是符合题目要求的。 1.已知集合{}|1{|31}x A x x B x =<=<,,则 A .{|0}A B x x =U D .A B =?I 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A . 1 4 B . 8π C .12 D . 4 π 3.设有下面四个命题 1p :若复数z 满足1 z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R . 其中的真命题为 A .13,p p B .14,p p C .23,p p D .24,p p

2017年全国高考文科全国3卷数学试题及答案-

2017年普通高等学校招生全国统一考试 文科数学 卷3 注意事项: 1.答题前,考生务必将自己的、号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需 改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.已知集合A={1,2,3,4},B={2,4,6,8},则A B 中元素的个数为 A .1 B .2 C .3 D .4 2.复平面表示复数(2)z i i =-+的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至 2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是 A .月接待游客逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月 D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 4.已知4 sin cos 3 αα-= ,则sin 2α=

A .79 - B .29 - C . 29 D . 79 5.设,x y 满足约束条件326000x y x y +-≤?? ≥??≥? ,则z x y =-的取值围是 A .[-3,0] B .[-3,2] C .[0,2] D .[0,3] 6.函数1()sin()cos()536 f x x x ππ = ++-的最大值为 A .65 B .1 C .35 D . 15 7.函数2sin 1x y x x =++的部分图像大致为 A . B . C . D . 8.执行右面的程序框图,为使输出S 的值小于91,则输入的正 整数N 的最小值为 A .5 B .4 C .3 D .2 9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个 球的球面上,则该圆柱的体积为 A .π B . 34π C . 2 π D .4 π

2017全国卷1理科数学试题和答案

2017年普通高等学校招生全国统一考试(全国I 卷) 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上, 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、 选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 已知集合{}{} 131x A x x B x =<=<, ,则() A .{}0=U A B x x D .A B =?I 【答案】A 2. 如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白 色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是() A .14 B .π8 C . 12 D . π4 【答案】B 3. 设有下面四个命题() 1p :若复数z 满足1 z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12z z ,满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R . A .13p p , B .14p p , C .23p p , D .24p p , 【答案】B 【解析】

4. 记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为() A .1 B .2 C .4 D .8 【答案】C 5. 函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的 x 的取值范围是() A .[]22-, B .[]11-, C .[]04, D .[]13, 【答案】D 6. ()62111x x ? ?++ ?? ?展开式中2x 的系数为 A .15 B .20 C .30 D .35 【答案】C. 7. 某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成, 正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为 A .10 B .12 C .14 D .16 【答案】B 8. 右面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在 和两 个空白框中,可以分别填入 A .1000A >和1n n =+ B .1000A >和2n n =+ C .1000A ≤和1n n =+ D .1000A ≤和2n n =+ 【答案】D

2017年高考新课标全国3卷文科数学

2017年普通高等学校招生全国统一考试(新课标Ⅲ) 文科数学 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只 有一项是符合题目要求的。 1.已知集合A={1,2,3,4},B={2,4,6,8},则A?B中元素的个数为 A.1 B.2 C.3 D.4 2.复平面内表示复数z=i(–2+i)的点位于 A.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至 2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图 . 根据该折线图,下列结论错误的是 A.月接待游客逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8月 D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 4.已知 4 sin cos 3 αα -=,则sin2α= A. 7 9 -B. 2 9 -C. 2 9 D. 7 9 5.设x,y满足约束条件 3260 x y x y +-≤ ? ? ≥ ? ?≥ ? ,则z=x-y的取值范围是 A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]

6.函数f (x )=15sin(x +3π)+cos(x ?6π )的最大值为 A .6 5 B .1 C .35 D .15 7.函数y =1+x +2sin x x 的部分图像大致为 A . B . C . D . 8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 A .5 B .4 C .3 D .2 9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π B . 3π4 C . π2 D . π4

2017高考文科数学全国2卷试题与答案解析[]

2016年普通高等学校招生全国统一考试文科数学 注意事项: 一、 选择题:本大题共12小题。每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。 (1)已知集合{123}A =, ,,2{|9}B x x =<,则A B =I (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12}, (2)设复数z 满足i 3i z +=-,则z = (A )12i -+(B )12i -(C )32i +(D )32i - (3) 函数=sin()y A x ω?+的部分图像如图所示,则 (A )2sin(2)6y x π=- (B )2sin(2)3y x π =- (C )2sin(2+)6y x π= (D )2sin(2+)3 y x π = (4) 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A )12π(B ) 32 3 π(C )8π(D )4π (5) 设F 为抛物线C :y 2 =4x 的焦点,曲线y =k x (k >0)与C 交于点P ,PF ⊥x 轴,则k = (A ) 12(B )1 (C )3 2 (D )2 (6) 圆x 2 +y 2 ?2x ?8y +13=0的圆心到直线ax +y ?1=0的距离为1,则a = (A )? 43(B )?3 4 (C )3(D )2 (7) 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π (8) 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一 名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 (A ) 710(B )58(C )38(D )310 (9)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 (D )34 (10) 下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是

2017年高考理科数学真题及答案全国卷1

绝密★启用前 2017年全国卷1理科数学真题及答案 本试卷5页,23小题,满分150分。考试用时120分钟。 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B 铅笔将 试卷类型(B )填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。 2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =U D .A B =?I 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14 B .π8 C . 12 D . π4 3.设有下面四个命题 1p :若复数z 满足1 z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R . 其中的真命题为

(完整word)2017年高考全国一卷文科数学试卷

2017年普通高等学校招生全国统一考试(I 卷) 文科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符 合题目要求的。 1. 已知集合}023|{}2|{>-=<=x x B x x A ,,则 A. }23 |{<=x x B A I B. ?=B A I C. }2 3 |{<=x x B A Y D. R =B A Y 2. 为评估一种农作物的种植效果,选了n 块地作试验田。这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n , 下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A. x 1,x 2,…,x n 的平均数 B. x 1,x 2,…,x n 的标准差 C. x 1,x 2,…,x n 的最大值 D. x 1,x 2,…,x n 的中位数 3. 下列各式的运算结果为纯虚数的是 A. i(1 + i)2 B. i 2(1 - i) C. (1 + i)2 D. i(1 + i) 4. 如图,正方形ABCD 内的图形来自中国古代的太极图。正方形内切圆中的黑色部分 和白色部分关于正方形的中心成中心对称。在正方形内随机取一点,则此点取自黑 色部分的概率是 A. 41 B. 8π C. 2 1 D. 4 π 5. 已知F 是双曲线C :13 2 2 =-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为 A. 3 1 B. 2 1 C. 3 2 D. 2 3 6. 如图,在下列四个正方体中,A 、B 为正方体的两个顶点,M 、N 、Q 为所在棱的中点,则在这四个正方体中, 直线AB 与平面MNQ 不平行的是 A. B. C. D. 2017.6

(完整word)2017年高考全国二卷文科数学试卷

2017年普通高等学校招生全国统一考试(II 卷) 文科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符 合题目要求的。 1. 设集合A = {1,2,3},B = {2,3,4},则A ∪B = A. {1,2,3,4} B. {1,2,3} C. {2,3,4} D. {1,3,4} 2. (1 + i)(2 + i) = A. 1 - i B. 1 + 3i C. 3 + i D. 3 + 3i 3. 函数)3 2sin()(π + =x x f 的最小正周期为 A. π4 B. π2 C. π D. 2 π 4. 设非零向量a 、b 满足| a + b | = | a - b |,则 A. a ⊥b B. | a | = | b | C. a // b D. | a | > | b | 5. 若a > 1,则双曲线12 22=-y a x 的离心率的取值范围是 A. ),2(+∞ B. )2,2( C. )2,1( D. )2,1( 6. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体 由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A. π90 B. π63 C. π42 D. π36 7. 设x 、y 满足约束条件?? ? ??≥+≥+-≤-+,03,0332, 0332y y x y x 则z = 2x + y 的最小值是 A. -15 B. -9 C. 1 D. 9 8. 函数f (x ) = ln(x 2 - 2x - 8)的单调递增区间是 A. (-∞,-2) B. (-∞,1) C. (1,+∞) D. (4,+∞) 9. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩。老师说:你们四人中 有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲 的成绩。看后甲对大家说:我还是不知道我的成绩。根据以上信息,则 A. 乙可以知道四人的成绩 B. 丁可以知道四人的成绩 C. 乙、丁可以知道对方的成绩 D. 乙、丁可以知道自己的成绩 10. 执行右面的程序框图,如果输入的a = -1,则输出的S = A. 2 B. 3 C. 4 D. 5 11. 从分别写有1、2、3、4、5的5张卡片中随机抽取1张,放回后再随机抽取一张,则 抽得的第一张卡片上的数大于第二张卡片上的数的概率为 A. 101 B. 51 C. 10 3 D. 5 2 2017.6

2017年全国高考文科数学试题及答案-全国卷3

2017 年普通高等学校招生全国统一考试 文科数学 一、选择题:本大题共12 小题,每小题 5 分,共60 分。在每小题给出的四个选项中,只有一项是 符合题目要求的。 1.已知集合A={1,2,3,4} ,B={2,4,6,8} ,则 A B中元素的个数为 A.1 B.2 C.3 D.4 2.复平面内表示复数z=i( –2+i) 的点位于 A.第一象限B.第二象限C.第三象限D.第四象限 3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年 1 月至2016 年 12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是 A.月接待游客逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8 月 D.各年 1 月至6 月的月接待游客量相对于7 月至12 月,波动性更小,变化比较平稳 4.已知sin cos 4 3 ,则sin 2 = A.7 9 B . 2 9 C. 2 9 D. 7 9 3x 2y 6 0 5.设x,y 满足约束条件x 0 ,则z=x- y 的取值范围是 y 0 A.–3,0] B.–3,2] C.0,2] D.0,3] 6.函数 f ( x)= sin( x+ )+cos( x- ) 的最大值为 3 6 A.6 5 B.1 C.D. - 1 -

7.函数y=1+x+ s in x 2 x 的部分图像大致为 A.B. C.D. 8.执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为 A.5 B.4 C.3 D.2 9.已知圆柱的高为1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的体积为 A.πB.3π 4 C. π 2 D. π 4 10.在正方体A BCD ABC D 中,E为棱CD的中点, 则 1 1 1 1 A.A1E⊥DC1 B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC 11.已知椭圆C: 2 2 x y 2 2 1 ,(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2 为直径的圆与a b 直线bx ay 2ab 0相切,则C的离心率为 A. 6 3 B. 3 3 C. 2 3 D. 1 3 12.已知函数 2 x 1 x 1 f (x) x 2x a(e e ) 有唯一零点,则a= A.1 2 B. 1 3 C. 1 2 D.1 二、填空题:本题共 4 小题,每小题 5 分,共20 分。13.已知向量 a ( 2,3), b (3, m) ,且a⊥b,则m = . 14.双曲线 2 2 x y 2 1 a 9 (a>0)的一条渐近线方程为 3 y x,则a= . 5

(完整word版)2017全国高考1卷文科数学试题及答案解析,推荐文档

2016年全国高考新课标1卷文科数学试题 第Ⅰ卷 考生注意: 1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,监考员将试题卷和答题卡一并交回。 一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选 项中,只有一项是符合题目要求的. 1.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=( ) A.{1,3} B.{3,5} C.{5,7} D.{1,7} 2.设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=( ) A.-3 B.-2 C.2 D. 3 3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.1 3 B. 1 2 C. 2 3 D. 5 6 4.ΔABC的内角A,B,C的对边分别为a,b,c.已知 2 2,cos 3 a c A ===, 则b=( ) A. C.2 D.3 5.直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的 1 4 ,则该椭圆的离心率为( )

A .13 B .12 C .23 D .34 6.若将函数y =2sin (2x +6π)的图像向右平移14 个周期后,所得图像对应的函数为 ( ) A .y =2sin(2x +4π) B .y =2sin(2x +3π) C .y =2sin(2x –4 π) D .y =2sin(2x –3 π) 7.如图,某几何体的三视图是三个半径相等的圆及每个 圆中两条相互垂直的半径.若该几何体的体积是283 π, 则它的表面积是( ) A .17π B .18π C .20π D .28π 8.若a >b >0,0c b 9.函数y =2x 2–e |x |在[–2,2]的图像大致为( ) 10 A .y =2x B .y =3x C .y =4x D .y =5x 11.平面α过正方体ABCD -A 1B 1C 1D 1的顶点 α//平面CB 1D 1,α∩平面ABCD=m ,α∩平面ABB 1A 1=n ,则m ,n A .2 B .2 C .312.若函数1()sin 2sin 3 f x x -x a x =+在(-∞,+∞)单调递增,则a 的取值范围是( ) A .[-1,1] B .[-1,13] C .[-13,13] D .[-1,-13 ] 第Ⅱ卷

2017年全国高考文科数学试题及答案-全国卷1

2017年普通高等学校招生全国统一考试(全国卷1) 数学(文史类) 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ??的最小偶数n ,那么在和两个空白框 中,可以分别填入 A .A >1000和n =n +1 B .A >1000和n =n +2

2017年全国高考理科数学试题及答案-全国卷1

绝密★启用前 A . 10 B . 12 C. 14 D . 16 8 .右面程序框图是为了求出满足 3n -2n >1000的最小偶数n ,那么在 和—两个空白框中,可以分别填入 2017年普通高等学校招生全国统一考试 理科数学 23小题,满分150分。考试用时120分钟。 本题共12小题,每小题5分,共60分。 A ={x |x <1} , B={x | 3x :::1},则 B . 本试卷5页, 一、选择题: 已知集 合 A. A"B 二{x|x ::: 0} B . AUB 二 R 如图,正方形 ABCD 内的图形来自中国古代的太极图 心成中心在每小题给出的四个选项中, 只有一项是符合题目要求的。 C. AUB 二{x|x .1} .正方形内切圆中的黑色部分和白色部分关于正方形的中 则此点取自黑色部分的概率是 A A.- 4 设有下面四个命题 B . n 8 C.- 2 D. 1 Pi :若复数z 满足—? R ,则z R ; z P 3 :若复数 Z 1, Z 2 满足 Z 1Z 2 ? R ,贝y Z 1 = Z2 ; 其中的真命题为 B. P i , P 4 C. P 2 : P 4 : P 2, P 3 若复数 若复数 z 满足z 2 R ,则z R ; D P 2, P 4 4 .记S n 为等差数列{a n }的前n 项和.若a 4 a^ 24 ,足=48,则{务}的公差为 A . 1 B. 2 C. 4 D. 8 5.函数f(x)在(」:,?::)单调递减,且为奇函数.若 f(1) - -1,则满足-仁f(x-2)^1的x 的取值范围是 A. [-2,2] B. [-1,1] C. [0,4] D. [1,3] 6. (1 ,—)(1 x)6展开式中x 2的系数为 x A . 15 B. 20 C. 30 D. 35 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为 俯视图为等腰直角三角形?该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 2 ,

2017全国1卷理科数学(含答案)

2017年普通高等学校招生全国统一考试 理科数学 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A ={x |x <1},B ={x |31x <},则( ) A .{|0}A B x x =< B .A B =R C .{|1}A B x x => D .A B =? 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( ) A . 14 B . π8 C . 12 D . π4 3.设有下面四个命题 1p :若复数z 满足1 z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R . 其中的真命题为( ) A .13,p p B .14,p p C .23,p p D .24 ,p p 4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( ) A .1 B .2 C .4 D .8 5.函数()f x 在(,)-∞+∞递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是( ) A .[2,2]- B .[1,1]- C .[0,4] D .[1,3] 6.621 (1)(1)x x + +展开式中2x 的系数为( ) A .15 B .20 C .30 D .35 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成, 正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形, 这些梯形的面积之和为( )

2017年高考文科数学全国1卷(附答案)

12B-SX-0000010 2 5.已知F是双曲线C: x2 -上=1的右焦点,P是C上一点,且PF与x轴垂直, 3 点A的坐标是(1,3).则△APF的面积为() (全卷共12页) (适用地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建 注意事项: -3?下列各式的运算结果为纯虚数的是 A. i(1+i)2 B . i2(1-i) C . (1+i)2 D . i(1+i) 4.如图,正方形ABCD内的图形来自中国古代的太极图 x 3y 3, 7.设x,y满足约束条件x y 1,则z=x+y的最大值为 y 0, A . 0 B . 1 C . 2 & .函数y sin2x的部分图像大致为() 1 cosx 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2 .回答选择题时,选岀每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改 动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上, 写在本试卷上无效。 3.考试结束后,将本试卷和答案卡一并交回。 、选择题:本题共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的。 名 姓-1.已知集合A= x|x 2,B= x|3 2x 0,则 A. A I B= x|x B. A I B C. A U B x| x D . A U B=R _ -2?为评估一种农作物的种植效果,选了n块地作试验田?这n块地的亩产量(单二- 位:kg)分别为X1,X2,…,x n,下面给出的指标中可以用来评估这种农作物年- 亩产量稳定程度的是 A . X1,X2,…,x n的平均数C . X1,x2,…,x n的最大值 B . X1,X2,…,X n的标准差 D . X1,X2,…,X n的中位数 的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是 绝密★启用前 2017年普通高等学校招生全国统一考试 文科数学全国I卷 6.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱 ?正方形内切圆中的黑色 .在正方形内随机取一点,则此 点取自黑色部分的概率是 1 n A .- B . — 4 8 1 n C . 一 D . — 2 4 部分和白色部分关于正方形的中心成中心对称

2017年高考全国三卷文科数学试卷

2017 年普通高等学校招生全国统一考试(III 卷) 文科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符 合题目要求的。 1. 已知集合}8,6,4,2{}4,3,2,1{==B A ,,则A ∩B 中元素的个数为 A. 1 B. 2 C. 3 D. 4 2. 复平面内表示复数z = i(-2 + i)的点位于 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待 游客量(单位:万人)的数据,绘制了下面的折线图。 根据该折线图,下列结论错误的是 A. 月接待游客量逐月增加 B. 年接待游客量逐年增加 C. 各年的月接待游客量高峰期大致在7、8月 D. 各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 4. 已知== -ααα2sin 3 4 cos sin ,则 A. 9 7- B. 9 2 - C. 9 2 D. 9 7 5. 设x 、y 满足约束条件?? ? ??≥≥≤-+,0,0,0623y x y x 则z = x - y 的取值范围是 A. [-3,0] B. [-3,2] C. [0,2] D. [0,3] 6. 函数)6 cos()3sin(51)(π π-++= x x x f 的最大值为 A. 56 B. 1 C. 5 3 D. 5 1 2017.6

7. 函数2sin 1x x x y + +=的部分图象大致为 A. B. C. D. 8. 执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 A. 5 B. 4 C. 3 D. 2 9. 已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则 该圆柱的体积为 A. π B. 43π C. 2 π D. 4 π 10. 在正方体ABCD -A 1B 1C 1D 1中,E 为棱CD 的中点,则 A. A 1E ⊥DC 1 B. A 1E ⊥BD C. A 1E ⊥BC 1 D. A 1E ⊥AC 11. 已知椭圆C :)0(122 22>>=+b a b y a x 的左、右顶点分别为A 1、A 2,且以线段A 1A 2为直径的圆与直线 02=+-ab ay bx 相切,则C 的离心率为 A. 3 6 B. 3 3 C. 3 2 D. 3 1 12. 已知函数)e e (2)(11 2 +--++-=x x a x x x f 有唯一零点,则a = A. 21- B. 31 C. 2 1 D. 1 二、填空题:本题共4小题,每小题5分,共20分。 13. 已知向量a = (-2,3),b = (3,m ),且a ⊥b ,则m =__________。 14. 双曲线)0(19222>=- a y a x 的一条渐近线方程为x y 5 3 =,则a =___________。 15. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知C = 60°,b =3,c = 3,则A =__________。 16. 设函数?? ?>≤+=, 0,2, 0,1)(x x x x f x 则满足1)2 1()(>-+x f x f 的x 的取值范围是_______________。 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试 题考生都必须作答。第22、23题为选考题,考生根据要求作答。 (一)必考题:共60分。

2017新课标全国卷1理科数学试题及答案

2017新课标全国卷1理科数学试题及答案

2017年普通高等学校招生全国统一考试 理科数学 本试卷5页,23小题,满分150分。考试用时120分钟。 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题 卡上。用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。将条形码 横贴在答题卡右上角“条形码粘贴处”。 2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对 应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后, 再选涂其他答案。答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答 题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答 案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求 作答无效。 4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中, 只有一项是符合题目要求的。 1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x => D .A B =? 2.如图,正方形ABCD 内的图形来自中国古代

5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3] 6.621(1)(1)x x ++展开式中2x 的系数为 A .15 B .20 C .30 D .35 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 A .10 B .12 C .14 D .16 8.右面程序框图是为了求出满足3n ?2n >1000的最小偶数n ,那么在 和两个空白框中,可以分别填入

2017全国一卷理科数学高考真题及答案

2017全国一卷理科数学高考真题及答案

2017年普通高等学校招生全国统一考试 理科数学 一、选择题:本题共12小题,每小题5分,共60分。 在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A={x|x<1},B={x|31 x<},则 A.{|0} A B x x = D.A B=? 2.如图,正方形ABCD内的图形来自中国古代的太极图. 正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A.1 4B.π 8 C.1 2 D.π 4 3.设有下面四个命题 1 p:若复数z满足1z∈R,则z∈R;2p:若复数z

A.10 B.12 C.14 D.16 8.右面程序框图是为了求出满足3n?2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入 A.A>1 000和n=n+1 B.A>1 000和n=n+2 C.A≤1 000和n=n+1 D.A≤1 000和n=n+2 ),则下面9.已知曲线C1:y=cos x,C2:y=sin (2x+2π 3 结论正确的是 A.把C1上各点的横坐标伸长到原来的2倍,纵坐标 个单位长度,得不变,再把得到的曲线向右平移π 6 到曲线C2

B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π 个单位长度, 12 得到曲线C2 倍,纵坐标C.把C1上各点的横坐标缩短到原来的1 2 不变,再把得到的曲线向右平移π 个单位长度,得 6 到曲线C2 倍,纵坐标D.把C1上各点的横坐标缩短到原来的1 2 不变,再把得到的曲线向左平移π 个单位长度, 12 得到曲线C2 10.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A.16 B.14 C.12 D.10 11.设xyz为正数,且235 x y z ==,则 A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 12.几位大学生响应国家的创业号召,开发了一款应用软件。为激发大家学习数学的兴趣,他们推出了“解

2017年全国2卷高考文科数学试题及答案解析

WORD 整理版分享 2016 年普通高等学校招生全统一考试 文科数学 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24 题,共 150 分 第Ⅰ卷 一、选择题:本题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。 ( 1)已知集合A 1,2,3 , B x x 29 ,则 A B ( A)2, 1,0,1,2,3(B)1,0 ,1,2(C)1,2,3(D)1,2( 2)设复数z满足z i 3 i ,则 z ( A) 1 2i( B)1 2i(C)3 2i( D)3 2i ( 3)函数y Asin( x) 的部分图像如图所示,则 ( A)y2sin(2x)(B)y 2 sin(2 x) 63y 2 ( C)y2sin(2x)(D)y 2 sin(2x) 63 ( 4)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 32 (A)12(B)(C)8(D)4 3- πOπ x 63 -2 ( 5)设F为抛物线C:y24x 的焦点,曲线y k (k0)与C交于点 P, PF x 轴,则 k x (A)1 (B)1(C) 3 (D)2 22 (6)圆 x 2 y 22 x 8 y 13 0 的圆心到直线 ax y10 的距离为,则 a 1 (A)3( B)3 3(D)2 (C) 4 ( 7)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表 2 3 面积为 (A) 20π 4 (B) 24π 44(C) 28π (D) 32π

( 8) 某路口人行横道的信号灯为红灯和绿灯交替出现, 红灯持续时间为 40 秒.若 一名行人来到该路口遇到红灯,则至少需要等待 15 秒才出现绿灯的概率为 开始 (A ) 7 (B ) 5 (C ) 3 (D ) 3 输入 x,n 10 8 8 10 ( 9) 中国古代有计算多项式值的秦九韶算法, 右图是实现该算法的程序框图 . 执行 该程序框图, 若输入的 x 2 ,n 2 , 依次输入的 a 为 2,2,5,则输出的 s k 0, s 0 (A )7 (B )12 ( C )17 (D )34 ( 10)下列函数中, 其定义域和值域分别与函数 y 10 lg x 的定义域和值域相同的是 输入 a ( A ) ( 11)函数 y x ( B ) y lg x ( C ) y 2 x ( D ) y 1 s s x a x k k 1 f x ) cos 2 x ( x )的最大值为 6 c os 否 2 k n (A )4 (B )5 (C )6 (D ) 7 是 ( 12)已知函数 f (x) (x R) 满足 f ( x) f (2 x) ,若函数 y x 2 2x 3 与 输出 s m y f (x) 图像的交点为 (x 1 , y 1 ), (x 2 , y 2 ), ,( x m , y m ) ,则 i 1 x i 结束 (A ) 0 (B ) m ( C ) 2m ( D ) 4m 第Ⅱ卷 本卷包括必考题和选考题两部分。第 (13) ~ (21) 题为必考题,每个试题都必须作答。第 (22) ~ (24) 题为 选考题,考生根据要求作答。 二、填空题:本题共 4 小题,每小题 5 分。 ( 13)已知向量 a (m,4) , b (3, 2),且 ∥ ,则 m . a b x y 1 0, ( 14)若 x, y 满足约束条件 x y 3 0, 则 z x 2 y 的最小值为 . x 3 0, ( 15) △ ABC 的内角 A, B, C 的对边分别为 a, b,c ,若 cosA 4 , cosC 5 , a 1,则 b . 5 13 ( 16)有三张卡片,分别写有 1 和 2, 1 和 3, 2 和 3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片 后说:“我与乙的卡片上相同的数字不是 2”,乙看了丙的卡片后说: “我与丙的卡片上相同的数字不 是 1”,丙说:“我的卡片上的数字之和不是 5”,则甲的卡片上的数字是 . 三、解答题:解答应写出文字说明、证明过程或演算步骤。

相关文档 最新文档