文档库 最新最全的文档下载
当前位置:文档库 › 板坯电渣炉工艺和设备介绍

板坯电渣炉工艺和设备介绍

板坯电渣炉工艺和设备介绍
板坯电渣炉工艺和设备介绍

板坯电渣炉工艺及设备介绍

2.1概述

武汉钢铁集团鄂城钢铁有限责任公司电炉车间现有70吨 Consteel 电炉1座、70tLF钢包炉1座、70tVD真空脱气装置1座、四机四流合金钢方坯连铸机1台,年产方坯50万吨,最大生产能力可达60万t/a。

根据武钢集团鄂钢公司“十一五”发展规划:鄂钢宽厚板二期工程拟考虑建设年产20万t特厚板坯生产线。特厚板坯料考虑由电炉炼钢厂采用电渣重熔和模铸两种方式供坯。为此鄂城钢铁有限责任公司决定在电炉炼钢车间新建20t电渣炉两座(预留40t两座),1.6吨化渣炉一座,年产电渣锭10000t。

2.2 电渣炉型式的选择及设备主要技术特点

2.2.1电渣炉设备的选择

目前国内外板坯电渣炉大致有下列四种型式;

(1)单相、单电极板坯电渣炉(美国的CONSARC公司、德国ALD公司制造,国内目前宝钢特殊钢分公司6-8吨正在调试中),主要适用于小断面,否则结晶质量不易保证;

(2)单相、双电极串联板坯电渣炉(乌克兰Paton电焊研究所设计:俄罗斯70t板坯电渣炉,乌克兰亚速钢厂20吨板坯,日本40吨板坯),取得成功,效果良好;

(3)三相三电极板坯电渣炉:美国、前苏联均进行了试验,但不成功;

(4)低频、双电极串联电渣炉(东北大学设计制造:舞阳钢铁公司40吨板坯)取得成功,效果很好;

根据目前国内外板坯电渣炉使用情况及国内钢厂实际操作经验决

--

定采用低频、双极串联、抽锭式电渣炉。

与传统电渣炉相比,它具有以下技术特点;

(1)低频电源控制

按最大毛坯尺寸480×2400×4100mm计算,根据初步计算需要变压器容量为5200kVA。考虑到三相平衡的供电要求,用2台2600kVA三相整流变压器将10kV降至100V左右。通过晶闸管交-直-交变频,将三相交流逆变成1-5Hz的单相低频交流电,保证了三相平衡的供电要求。在国内特大吨位电渣炉设备中首次实现了低频电源控制。可显著节省电能。

(2)双极串联重熔

采用2支电极串联的重熔方式,可以实现减小短网感抗,提高功率因数;减少短网有功消耗,因此大幅度减低电耗;保证相同金属熔池深度的条件下,可提高熔化率。

(3)结晶器固定、底水箱移动抽锭

本电渣炉采用结晶器固定、底水箱移动的抽锭方式。抽锭系统由2个立柱和1套驱动系统构成,驱动系统由滚珠丝杠、差动减速机、交流伺服电机和交流电机组成。抽锭速度的调节由1台交流伺服电机实现,速度调节范围为2~8mm/min。快速移动采用交流电机,速度为1000mm/min。

(4)二次冷却

通过实施冷风的二次冷却,提高了铸坯的凝固质量。

(5)钢锭在线保温

在重熔某些钢种时,为防止抽出的钢锭长时间冷却温度偏低,造成上下

--

温差很大,导致钢锭开裂。当抽锭长度在结晶器外1米时,采用保温措施,实现了钢锭在线保温。

2.3生产规模及产品方案

2.3.1 生产规模

根据4300mm特厚板生产的要求;炼钢供应电渣锭为10000t/a。电渣炉用连铸坯电极棒10575t/a 。

2.3.2产品方案

⑴主要钢种:海洋工程用钢、电站用钢、锅炉用钢、军工钢等。

⑵电渣锭规格

电渣锭重:最大锭重23.7t。

自耗电极:采用电炉厂自产240x240mm连铸坯做假电极棒,240×(240×(7~9))×3000,2支。

电渣锭规格:320×(1400~2300)×(3700~4100)mm。

电渣锭和相应的电极尺寸规格见表2-1。自耗电极尺寸可根据需要拼焊成表中的自耗电极规格尺寸。

锭型、及所需电极规格表2-1

锭重/t 电渣锭/mm 结晶器/mm 自耗电极/mm

23.7 320×2300×4100 T型720/328×236

0×800

240×(240×9)×3000,2支

18.1320×1850×3900 T型720/328×1890×8

00

240×(240×7)×3000,

2支

13.0 320×1400×3700 T型720/328×1436×8

00 240×(240×5)×3000,2

--

2.4 生产工艺路线及金属平衡

2.4.1生产工艺路线

1.0万吨电渣钢锭的工艺路线如下:

电炉→LF/ VD炉→连铸→缓冷→精整→假电极焊接→渣料称量→烘烤→化渣炉化渣→电渣重熔→电渣锭缓冷和退火→精整→检验→送轧钢厂

2.4.2 金属平衡

金属平衡图见图2-1 单位:万t/年

--

--

0.025 0.83 0.35

0.020 1.12

?

0.005 1.12

1.12

1.06

0.05

1.0

图2-1 金属平衡图

废钢

铁水 铁合金 70tx1电炉

钢包 LF/VD 炉 70tx1 废钢 电极棒连铸 电渣炉 电渣锭

?2.5 炼钢车间原材料、能源介质消耗及质量要求见表2-2炼钢车间原材料、能源介质消耗及质量要求表表2-2 序号名称单位年消耗量质量要求备注

一、主要原材料消耗

1 钢水t 11250 由电炉炼钢车间供应

2 电极棒t 1058

3 按国家标准供应

3 石灰、、t300按国家标准供应

4萤石t15 按国家标准供应

5 工业氧化铝t 15 按国家标准供应

6 石墨电极t 3.3 按国家标准供应

7 结晶器铜板t0.3 外购

8 耐火材料t 12 按国家标准供应

二、主要动力介质消耗

1 电渣炉冶炼电耗X106Kwh13.035KV,380V,220V

2 其他电耗X106Kwh0.15 35KV,380V,220V

4 氧气X106Nm3 0.60 1.2MPa,纯度99.6%

5混合煤气X106Nm3 55.75

6压缩空气X106Nm3 1.86 0.4-0.6MPa

8 补充新水X106m3 0.05 0.6MPa

2.6电渣炉车间主要冶炼设备的技术性能

2.6.1 20t电渣炉主要技术性能见表2-3

20t电渣炉主要技术性能表表2-3

序号名称单位技术参数

1电渣炉公称容量t×座数20×2(预留2座40t)

2 电渣炉炉型低频、双电极串联

3 单锭生产周期h 32(重熔23.7吨钢锭时)

4 最大熔化率kg/h 1500

5 月产量t500(考虑多种规格)

--

序号名称单位技术参数

6 年产量t/a 5000(考虑多种规格)

7 炉用电源

真空开关型号XGN3型, 35kV

电渣炉变压器kVA 2500×2

一次电压kV 35

二次电压V103

二次电流kA14.01×2

频率Hz50

8整流逆变装置

频率Hz 1-5

容量kVA 3250

低频电压V40-110

低频电流kA 32

9 电极升降系统

传动方式滚珠丝杠

600

快速Mm/mi

慢速Mm/min 1-30

升降主体数量套1 (采用旋转框架式结构)

电极行程mm3500

10 短网

硬短网电流密度A/mm22.0

软电缆电流密度A/mm25

11 自耗电极

制造方式连铸制造

布置方式双极串联

尺寸mm 240×2160×3000(一次2支,共2

支)

12 结晶器

mm 23.7吨,组合式

T型720/328×236

0×800

T型720/32

mm 18.1吨,组合式

8×1890×800

mm 13.0吨,组合式

T型720/328×1436×8

00

13抽锭机构

慢速Mm/mi

1-8

--

序号名称单位技术参数

快速Mm/min 600

行程mm 5000(满足4100mm锭高重熔)

14 运锭车

载重量t 40

行走速度mm/min 250-1000(VVVF)

15 液位检测装置

检测液面方法射线法(Cs137)

检测精度mm ±5

16控制系统

自耗电极称重采用HBM系列称重模块,能实时连续

测量自耗电极的重量

计算机系统采用两级计算机(PLC+工控机)自动化

控制系统,可实现恒电流、递减功率

控制、熔速曲线控制。

17 电渣炉冷却水流量m3/h 470

18烟气量m3/h 4500(初始烟气含尘量为3g/m3)

19 除尘方式炉顶吸尘罩直排方式

2.6.2 1.6t化渣炉主要技术参数见表2-4

1.6t化渣炉主要技术参数表表2-4

序号名称单位技术参数

1化渣炉公称容量T×座数1.6×1

2 化渣炉型式采用渣包移动方式,电极升降采用齿轮齿

条传动、炉盖提升采用链条方式。

3化渣量t 平均1.6,最大2.0

4 化渣时间min 90-120

5 主要成分萤石、工业氧化铝和石灰等

6 渣料入炉温度℃200-300

7 液渣出炉温度℃1550-1600

8 炉用电源

化渣炉变压器kVA 1600×1

一次电压kV 35

二次电压V 90-138V,17级,电动无载调压

二次电流kA 6600

--

序号名称单位技术参数频率Hz 50

9 电极升降系统

横臂导电横臂

升降驱动方式机械(齿轮齿条)

电极提升降速度m/min0-3.0(可调)

电极行程mm1500

10 短网

水冷大截面电缆mm2/相≥1500

二次侧铜排截面积mm2/相>4600

11 电极

电极分布圆直径mm 460

电极直径mm 200(高功率石墨电极)

电极长度mm 1600

12 渣包

公称容量t 1.6

熔池直径mm 1100

熔池高度mm 630(1.6t)

渣包外壳直径mm 1800

渣包高度mm1820

包衬耐材碳砖

13炉盖及其升降系统

提升方式电机、减速机提升

升降速度mm/s 30

行程mm300

14 渣包车

载重量t 5

1~3 (VVVF)

行走速度mm/mi

轨距mm 1400

仃车精度mm ±10

15 加料装置

加料方式振动给料器

16 电渣炉冷却水流量m3/h 20

17 烟气量m3/h 6000(初始烟气含尘量为3g/m3)

18 除尘方式炉顶吸尘罩直排方式

2.7.电渣炉生产能力计算

--

2.7.1计算前提条件

⑴电渣炉公称容量: 20t×2座

⑵平均重熔钢锭: 23.7t

⑶平均冶炼电耗: 1200~1400 kwh/t

⑷平均冶炼周期: 32h/炉

⑸电渣炉有效作业天数: 320天

2.7.2电渣炉年生产能力

24/32×23.7×320x2=11376t/a

可见,两台电渣炉能够完成10000t/a钢水的产量要求。考虑到将来发展需要,预留2台40t电渣炉。

2.8车间厂房及车间工艺布置

2.8.1车间厂房及吊车配置

根据总图要求,结合现场情况,电渣炉由一跨组成即由电渣炉跨(即原连铸跨延长86m)组成。厂房尺寸及吊车配置见表2-5

主厂房尺寸及吊车配置表表2-5

序号跨间名称

跨度

(m)

延长

部分

长度

(m)

面积

(m2)

轨面

标高

(m)

起重机配置备注

1 连铸跨延

长30 26

780

24.5

75/20t桥吊×1

(新增)

跨间一端头

新增1台10

t检修电葫

芦,葫芦底轨

面~32.5m。

2 电渣炉跨

(一期)30 36

1080

3电渣炉跨

(二期) 30 24

720

合计2580

--

水处理设备选型方案说明

水处理设备选型方案说明 针对农村饮水安全的特点,选择水处理设备时应遵循以下几个原则: (1)着重于饮水“安全性”第一的原则,不论采用何种技术,处理后水质必须达到GB5749—2001生活饮用水卫生标准》的要求,这是前提和首要原则。 (2)技术安全可靠:目前水处理技术方面的理论和设备很多,必须保证选择的技术从理论和设备上都很成熟。 (3)运行费用低:农村相对落后的经济现状,要求设备运行费用低,这是项目方案选择的重要依据;否则,工程建成的结果就是闲置,农村饮水安全工程的建设就失去了其真正的意义。 (4)管理简单:面对农村技术人员相对短缺的情况,要求设备管理和维护相对简单。如果技术过于复杂或繁琐,则影响水处理设备的正常运行和管理。 (5)投资省:在满足上述原则的前提下,投资尽量省。 综合目前各种水处理技术,尤其是砷、氟等的处理技术,主要有以下几种方法和理论为主导。

其中设备及工艺技术比较成熟的除砷方案目前主要有3种技术:膜(反渗透)技术、离子交换技术、电渗析技术。从目前实际运行的工程情况来看,膜技术普遍存在运行成本高的问题,不适用于农村饮水安全项目;电渗析技术从理论上讲运行费用不高,但实际工程中不同的设备其运行费用也相差很大;离子交换技术在实际工程中由于介质的更换比较频繁,管理较为复杂,运行费用视介质的来源和更换频率而不一。 同时,出现了两种新的技术,它们分别是复合多介质过滤技术和电絮凝技术。复合多介质过滤水处理法从设备技术上克服了其他离子交换技术的一些缺陷,经济上可行;电絮凝技术作为一种新兴技术,它集中了电化学技术的优点,同时具有运行费用低、管理简单等优势。因此,这两种技术应是农村饮水安全项目水处理工艺技术的上佳选择。为了探索一种适合于农村饮水安全工程的水处理设备,本文对这两种技术进行比较。 化工水处理设备技术在行业中的应用 化工水处理设备技术中化工行业用水有:化工反应冷却、化学药剂、化肥及精细化工、化妆品制造过程用水系统。 主要用途:纺织印染、造纸用水,化工试剂生产用纯水。护肤品生产用纯水,洗发水生产用纯水,染发剂生产用纯水。化学实验室、物理实验室、生物实验室。

冷轧带钢生产及工艺

贵州师范大学 本专科生作业(论文)专用封面 作业(论文)题目:冷轧带钢生产及工艺 课程名称:轧制过程自动化 学生姓名: 学号: 年级: 专业: 学院(部、所): 任课教师评分: 评阅意见: 任课教师签名:

冷轧带钢生产及工艺 摘要:本文阐述了冷轧板带钢生产应用及新技术、新工艺,还有冷轧板带钢的生产工艺特点。简要介绍了冷轧薄板带钢的生产工艺流程,根据市场需求和当今板带钢轧制最新设备。 关键词:冷轧带钢;轧制工艺;发展 在相关学科和技术发展的基础上,冷轧技术发展迅速,面貌日新月异,逐渐形成了现代冷轧工艺。经过几十年的发展,我国的冷轧事业不断地成长壮大,从只能生产建筑用材的产品发展成为能够生产高级汽车外板、高级家电板、高级包装材料和电工钢产品,无论产量,还是产品的规格品种多样化和质量,都有大幅提高。 一、冷轧带钢技术的特点 当今现代冷轧工艺技术的特点和发展趋势基本可以归纳为如下几个方面: 1.大力开发高精度轧制技术。 提高冷轧产品的精度,是用户的需要,也是冷轧技术发展的永恒目标。产品的精度主要指产品的外形尺寸精度,它是社会主义市场经济发展的需要,也是作为产品的最基本条件。 2.以过程冶金理论为基础,以低合金钢为重点,提高产品的冶金质量,扩大品种。 轧制过程是赋予金属一定的尺寸和形状的过程,同时也是赋予金属材料一定组织和性能的过程。轧材的最终组织性能取决于钢的化学

成分、洁净度和均匀度,以及加工过程的热履历。以物理冶金理论为基础,通过材料化学成分的优化和工艺制度的改进,已经大幅度提高了现有钢种的质量,并通过Nb、V、Ti微合金化开发出大批优良的新钢种。 3.提高连铸比,大力推广连铸连轧工艺及短流程技术。 采用连铸技术可以大幅度降低能耗,提高成材率,提高轧制产品的质量。近年我国的连铸比大幅度提高,促进了相关轧制技术的发展,特别是连铸和轧制衔接技术的发展。短流程是钢铁工业的发展方向,是目前国外竞相开发的热点。尽管目前还存在各种各样的问题,短流程这个大趋势是绝对不会逆转的。此外,半凝固态压力加工和薄带连续铸轧在将来一定会获得大的发展。 4.轧制过程连续化的新进展——无头轧制技术。 轧制过程的连续化是轧制技术发展的重要方向。无头轧制是连续轧制的新发展。冷轧机组通过轧前焊接、轧后切断以及轧制中的动态改变规格,最早实现了无头轧制技术。20世纪80年代又将冷连轧与酸洗机组连接起来,20世纪90年代,又开发成功常规板坯连续化的热轧无头轧制技术和与薄板坯连铸连轧相对应的无头轧制技术。 二、冷轧的主要产品种类 1、汽车板 国内冷轧汽车钢板研发迅速。宝钢、鞍钢等单位对4个关键工艺技术,即超低碳、氮、氧的冶炼控制、钢板的性能稳定化控制、板形控制和表面无缺陷控制进行长期研究,开发出IF钢、高强IF钢

空分设备的工艺流程和各部件工作原理

空分设备的工艺流程及各部件工作原理 空分设备部分部机及单元设备 1.空冷塔 作用:把出空压机的高温气体(≤100℃)冷却到~18℃,以改善分子筛的工作情况 结构:立式圆筒型塔,分上下部分,上下段均为填料塔,塔顶设有分配器,不锈钢丝捕雾器使用:出空压机的空气从下部进入空冷塔,水通过布水器均匀地分布到填料上,顺填料空隙流下,空气则逆水而上与水进行热质交换,经不锈钢丝网捕雾器出塔,进入分子筛吸附系统。 2.水冷却塔 作用:用空分塔来的污氮气和纯氮气冷却外界供水,后由水泵送入空冷塔的上段 结构:填料塔,顶设捕雾器和布水器,填料分两层装入塔内,在两填料中间设再分配器,保证让水始终均匀分布,提高水冷塔的效率 使用:被冷却的水自上而下流经填料,与空分出来的~33.6℃的污氮气和纯氮气进行热质交换,使水冷却下来,在塔底被水泵抽走,污氮气从塔顶排除 3.分子筛吸附器 作用:吸附空气中的水份、CO2、乙炔等碳氢化合物,使进入空气纯净 结构:卧式圆筒体、内设支承栅架、以承托分子筛吸附剂 使用:空气经过分子筛床层时,将水份、CO2、乙炔等碳氢化合物吸附,净化后的空气CO2 含量<1ppm;在再生周期中,先被高温干燥气体反向再生后,再被常温干燥气体冷却到常温,两分子筛成队交替使用。 4.主热交换器 作用:进行多股流之间的热交换 结构:为多层板翅式,相邻通道间物流通过翅片进行良好的换热 使用:对经分子筛吸附除去水和CO2的压缩空气进行冷却,各返流气(液)在此被加热至常温 5.液空液氮过冷器 作用:对低温液体进行过冷 结构:为多层板翅式,相邻通道间物流通过翅片进行良好的换热 使用:液空、液氮和污氮气在经过过冷器时被氮气和污氮气进一步冷却,使之低于饱和温度,这样,液体在节流后可以减少气化,改善上塔的精馏工况。 6.冷凝蒸发器

电化学 循环水处理工艺介绍

项目概述 ***********厂内现有部分循环水排污水。 为了节约用水,减少排放,实现水资源再利用,公司拟对厂内的上述各系统循环水排污水进行处理后回用于厂内循环水系统作为补水,代替新鲜水的使用。设计处理水量为200m3/h。 一.设计基础 1.水质情况 1.1水质指标 注:混合污水水质即为经计算后原水水质指标。 1.2水质分析 由以上数据表可以看出,将几股循环水排污水及浓水混合后,其水质的主要问题是电导率、总硬度、总碱度较高,需要进行降低去除处理。

而对于水中含盐量的降低去除则必然涉及到膜法除盐技术,而膜脱盐设备对于进水水质有一定的要求标准,从上述水质表分析,其水质总硬度、总碱度等指标较高,均超过膜脱盐设备的进水要求,原水的结垢性较强,易在膜过滤过程中形成垢类物质沉积在膜表面,影响膜的正常运行。所以必需对原水进行预处理,降低水质的总硬度、总碱度等指标,使处理出水达到膜脱盐设备的进水要求,才能进入脱盐设备进行脱盐处理。 本方案设计工艺分为两部分,一部分是预处理,一部分是脱盐处理。预处理主要用于降低水中的总硬度、总碱度等,脱盐处理主要用于降低水中的含盐量。2.设计水量 设计处理水量为:200m3/h。 二.技术工艺说明 1.技术工艺确定 1.1 技术工艺确定 根据污水水质分析,处理工艺确定为“预处理+脱盐”。其中预处理工艺需要降低水中总硬度、总碱度等,使出水水质满足膜脱盐设备的进水要求。对于水中的上述指标,均可通过“三法净水”处理技术进行有效降低去除,同时还可以进一步去除污水中的浊度、悬浮物等颗粒杂质。 由于处理出水作为循环水系统的补水,对于水质的含盐量要求并不高(新鲜水补水电导450-500uS/cm),而且随着回用设备的投运,循环水系统的含盐量逐渐降低,水质将逐渐改善,所以选择适度脱盐设备进行脱盐处理,即JR-EDR 电渗析脱盐设备。同时,JR-EDR电渗析脱盐设备具有运行成本低、膜抗污染性较强的特点,更适宜应用于污水回用处理。 设计技术工艺为:“三法净水”一体化设备+JR-EDR电渗析脱盐设备。1.2工艺流程框图 加酸、杀菌剂

主要水处理设备介绍

一、多介质过滤器 二、活性炭过滤器 三、超滤 四、保安过滤器 五、反渗透 六、脱气塔 七、混床 八、EDI 主要水处理设备介绍 一、多介质过滤器 1、原理: 2、作用:除去水中的悬浮物、颗粒和胶体,降低进水的浊度和SDI值; 3、技术参数: ⑴、进水浊度:<10NTU ⑵、出水浊度:<1NTU ⑶、工作压力:<0.6Mpa ⑷、运行流速:6~8m/h(RO前) ⑸、水反洗强度:30m/h ⑹、气擦洗强度:15L/m2〃s ⑺、填料高度:0.8~2.0 200mm 石英砂 0.4~0.6 600mm 石英砂 0.8~1.2 400mm 无烟煤 4、结构形式: 设备由本体、布水装置、集水装置、外配管及仪表取样等组成。 5、操作步骤: ⑴、正洗:滤速同运行10min ⑵、制水: ⑶、反洗:流量或压差一般1天反洗一次 a、松滤料3min b、排水 c、空气擦洗3min d、反洗10min e、静置3min f、正洗20min 二、活性炭过滤器1、原理:利用活性炭很大的比表面积,具有强烈的吸附作用;

2、作用:吸附水中有机物和余氯; 3、技术参数: ⑴、进水浊度:<2NTU ⑵、出水余氯:<0.PPm ⑶、工作压力:<0.6Mpa ⑷、运行流速:10~15m/h ⑸、水反洗强度:10~20m/h ⑹、填料高度:0.8~2.0 200mm 石英砂 0.8~1.2 1000mm 活性炭 4、结构形式: 设备由本体、布水装置、集水装置、外配管及仪表取样等组成。 5、操作步骤: ⑴、正洗:滤速同运行10min ⑵、制水: ⑶、反洗: a、排水滤料层上200mm b、水反洗10min c、静置 d、正洗20min 三、超滤: 1、原理:以膜两侧压差为驱动力,以机械筛分原理为基础的一种溶液分离过程; 2、作用:去除水中的细菌、热源、病毒及胶体、蛋白质、大分子有机物; 3、技术参数: ⑴、进水浊度:<50NTU ⑵、工作压力:<6bar ⑶、PH:1~10 ⑷、温度:5~40℃ ⑸、膜两侧压力差:<2.5bar(25℃) 设计条件:见设计导则 4、结构形式: 外压式中空纤维膜 5、操作说明: ⑴、运行30~60min ⑵、水反洗⑴20S ⑶、水反洗⑵20S ⑷、气水反洗:20S ⑸、气水反洗:10S ⑹、正洗:20S

8种电化学水处理方法

8种电化学水处理方法 电化学水处理- 世间万物,都是有一利就有一弊。社会的进步和人们生活水平的提高,也不可避免地对环境产生污染。废水就是其中之一。随着石化、印染、造纸、农药、医药卫生、冶金、食品等行业的迅速发展,世界各国的废水排放总量急剧增加,且由于废水中含有较多的高浓度、高毒性、高盐度、高色度的成分,使其难以降解和处理,往往会造成非常严重的水环境污染。 为了处理每天大量排出的工业废水,人们也是蛮拼的。物、化、生齐用,力、声、光、电、磁结合。今天笔者为您总结用电’ 来处理废水的电化学水处理技术。 电化学水处理技术,是指在电极或外加电场的作用下,在特定的电化学反应器内,通过一定的化学反应、电化学过程或物理过程,对废水中的污染物进行降解的过程。电化学系统设备相对简单,占地面积小,操作维护费用较低,能有效避免二次污染,而且反应可控程度高,便于实现工业自动化,被称为环境友好’ 技术。 电化学水处理的发展历程 1799 年 Valta制成Cu-Zn原电池,这是世界上第一个将化学能转化为电能的化学电源 1833 年 建立电流和化学反应关系的法拉第定律。 19世纪70年代 Helmholtz提出双电层概念。任何两个不同的物相接触都会在两相间产生电势,这是因电荷分离引起的。两相各有过剩的电荷,电量相等,正负号相反,相互吸引,形成双电层。 1887 年 Arrhenius提出电离学说。 1889 年 Nernst提出电极电位与电极反应组分浓度关系的能斯特方程。 1903 年 Morse 和Pierce 把两根电极分别置于透析袋内部和外部溶液中,发现带电杂质能迅速地从凝胶中除去。 1905年 提出Tafel 公式,揭示电流密度和氢过电位之间的关系。 1906年

浅述鲁奇炉造气工艺

酒泉职业技术学院毕业论文(设计) 2008 级石油化工生产技术专业 题目:浅述鲁奇炉造气工艺 毕业时间:2011年6月 学生姓名:田艺林 指导教师:李丽 班级:2008石化(2)班 二〇一一年四月二十日

酒泉职业技术学院2011 届各专业 毕业论文成绩评定表 说明:1.以上各栏必须按要求逐项填写。2.此表附于毕业论文(设计)封面之后。

浅述鲁奇炉造气工艺 摘要 本文总结了加压气化装置的改进和管理经验。事实表明,随着工艺的不断改进和生产管理水平的提高,鲁奇加压气化工艺用于贫瘦煤的气化是可行的。新疆庆华集团隶属于中国庆华集团,是新疆第一个经国家核准的煤制天然气项目。新疆庆华集团依托丰富的煤炭资源和水资源,于2009年3月落户伊犁,并以“庆华速度”建成新疆庆华煤化工循环经济工业园,该园区总占地面积达10000多亩,计划总投资278亿元,建设项目包括:年产55亿立方米煤制天然气项目、60万吨煤焦油加氢项目、合成氨项目、综合利用热电厂项目、粉煤灰制砖项目和年产200万吨粉煤灰制水泥项目。整个煤制天然气项目建成投产后,每年需煤炭2100万吨,每年可实现销售收入160亿元,利税26亿元。 关键词:气化炉的发展,造气系统,煤气冷却,安全防范

一、概述 (一)简述 我国石油和化学工业在快速发展的同时,正面临着资源、能源和环境等多重压力。由于我国石油和天然气短缺,煤炭相对丰富的资源特征,加之国际油价的持续高位运行状态,煤炭在我国的能源和化工的未来发展中所处的地位会变得越来越重要。 目前,煤炭在我国的能源消费比重不断加大,用于发电和工业锅炉及窑炉的比例大约为70%左右,其余主要是作为化工原料及民用生活。随着煤化工技术的不断发展,煤炭作为化工原料的比重将会得到不断的提高。 传统的煤化工特点是高能耗、高排放、高污染、低效益,即通常所说的“三高一低”。随着科技的不断进步,新型的煤气化技术得到了快速的发展,煤炭作为化工原料的重要性得到了普遍的认可。煤化工目前采用的方法主要有三个途径:煤的焦化、煤的气化、煤的液化。由于最终产品的不同,三种途径均有存在的市场。煤焦化的直接产品主要有焦炭、煤焦油及焦炉气,煤气化的直接产品主要有合成气、一氧化碳和氢气,煤液化后可直接得到液体燃料。 煤焦化产业相对比较成熟,煤液化存在直接液化和间接液化两种方法,技术的成熟程度和投资等原因,制约了产业化和规模化的进一步发展。随着煤气化技术的不断成熟,特别是加压气化方法的逐步完善和下游产品的多样化,煤气化已成为我国目前煤化工的重中之重。 煤气化所产生的合成气,成为氮肥(主要是尿素)、甲醇、二甲醚、醋酸等过去主要依赖石油化工产品的主要原料,该技术途径也成为国内目前煤化工所上的主要项目。煤气化除了投资比较小的常压固定床以外,粉煤加压气化(以壳牌和GSP 为主要代表)、水煤浆加压气化(以德士古为主要代表)成为众多厂家引进国外节能环保的主要首选技术。 (二)鲁奇加压气化工艺发展前景展望

水处理设备常用的工艺介绍

水处理设备常用的工艺介绍 常用的水处理设备的方法有: (一)沉淀物过滤法、 (二)硬水软化法、 (三)活性炭吸附法、 (四)去离子法、 (五)逆渗透法、 (六)超过滤法、 (七)蒸馏法、 (八)紫外线消毒法、 (九)生物化学法。 新型纳米晶技术 纳米晶技术是派斯软水机独有的水软化技术,根据中立的实验室检测,除垢率达99.6%,达到完美的软化水的效果,比以前所知的任何一种类型的软水机效果都要优异。同时也是在无化学添加成分的情况下,被证明非常有效的软水机。纳米晶的技术原理是TAC(Template Assisted Crys-tallization)技术,即离

子晶体化,利用纳米晶聚合球体表面晶核产生的高能量把水中的钙、镁、碳酸氢根等离子打包成纳米级的晶体,当这种晶体长到2纳米左右时自动脱落到水中,水中没有了钙、镁、碳酸氢根离子也就不会在有水垢产生。 沉淀物过滤法 沉淀物过滤法的目的是将水源内之悬浮颗粒物质或胶体物 质清除乾净。这些颗粒物质如果没有清除,会对透析用水其它精密的过滤膜造成破坏或甚至水路的阻塞。这是最古老且最简单的净水法,所以这个步骤常用在水纯化的初步处理,或有必要时,在管路中也会多加入几个滤器(filter)以清除体积较大的杂质。滤过悬浮的颗粒物质所使用的滤器种类很多,例如网状滤器,沙状滤器(如石英沙等)或膜状滤器等。只要颗粒大小大於这些孔洞之大小,就会被阻挡下来。对於溶解于水中的离子,就无法阻拦下来。如果滤器太久没有更换或清洗,堆积在滤器上的颗粒物质会愈来愈多,则水流量及水压会逐渐减少。人们就是利用入水压与出水压差来判断滤器被阻塞的程度。因此滤器要定时逆冲以排除堆积其上的杂质,同时也要在固定时间内更换滤器。 沉淀物过滤法还有一个问题值得注意,因为颗粒物质不断被阻拦而堆积下来,这些物质面或许有细菌在此繁殖,并释放毒 性物质通过滤器,造成热原反应,所以要经常更换滤器,原则上进水与出水的压力落差升高达到原先的五倍时,就需要换掉滤器。

水处理技术介绍

水处理技术介绍 水处理技术概括 微电解技术是目前处理高浓度有机废水的一种理想工艺,又称内电解法。它是在不通电的情况下,利用填充在废水中的微电解材料自身产生1.2V电位差对废水进行电解处理,以达到降解有机污染物的目的。当系统通水后,设备内会形成无数的微电池系统,在其作用空间构成一个电场。在处理过程中产生的新生态[H] 、Fe2 + 等能与废水中的许多组分发生氧化还原反应,比如能破坏有色废水中的有色物质的发色基团或助色基团,甚至断链,达到降解脱色的作用;生成的Fe2 + 进一步氧化成Fe3 +,它们的水合物具有较强的吸附- 絮凝活性,特别是在加碱调pH 值后生成氢氧化亚铁和氢氧化铁胶体絮凝剂,它们的吸附能力远远高于一般药剂水解得到的氢氧化铁胶体,能大量吸附水中分散的微小颗粒,金属粒子及有机大分子.其工作原理基于电化学、氧化- 还原、物理吸附以及絮凝沉淀的共同作用对废水进行处理.该法具有适用范围广、处理效果好、成本低廉、操作维护方便,不需消耗电力资源等优点。该工艺用于难降解高色度废水的处理不但能大幅度地降低cod和色度,而且可大大提高废水的可生化性。 传统上微电解工艺所采用的微电解材料一般为铁屑和木炭,使用前要加酸碱活化,使用的过程中很容易钝化板结,又因为铁与炭是物理接触,之间很容易形成隔离层使微电解不能继续进行而失去作用,这导致了频繁地更换微电解材料,不但工作量大成本高还影响废水的处理效果和效率。另外,传统微电解材料表面积太小也使得废水处理需要很长的时间,增加了吨水投资成本,这都严重影响了微电解工艺的利用和推广。 技术特点 (1) 反应速率快,一般工业废水只需要半小时至数小时; (2) 作用有机污染物质范围广,如:含有偶氟、碳双键、硝基、卤代基结构的难除降解有机物质等都有很好的降解效果; (3) 工艺流程简单、使用寿命长、投资费用少、操作维护方便、运行成本低、处理效果稳定。处理过程中只消耗少量的微电解反应剂。微电解剂只需定期添加无需更换,添加也无需进行活化直接投入即可。 (4) 废水经微电解处理后会在水中形成原生态的亚铁或铁离子,具有比普通混凝剂更好的混凝作用,无需再加铁盐等混凝剂,COD去除率高,并且不会对水造成二次污染; (5) 具有良好的混凝效果,色度、COD去除率高,同量可在很大程度上提高废水的可生化性。 (6) 该方法可以达到化学沉淀除磷的效果,还可以通过还原除重金属; (7) 对已建成未达标的高浓度有机废水处理工程,用该技术作为已建工程废水的预处理,在降解COD的同时提高废水的可生化性,可确保废水处理后稳定达标排放。也可对生化后废水进很行微电解或微电解联合生物滤床的工艺进行深度处理。 (8该技术各单元可作为单独处理方法使用,又可作为生物处理的前处理工艺,利于污泥的沉降和生物挂膜 技术简介 简单讲,“水处理技术”便是通过物理的、化学的手段,去除水中一些对生产、生活不需要的物质的过程。是为了适用于特定的用途而对水进行的沉降、过滤、混凝、絮凝,以及缓蚀、阻垢等水质调理的过程。由于社会水处理生产、生活与水密切相关,因此,水处理领域涉及的应用范围十分广泛,构成了一个庞大的产业应用。 为达到成品水(生活或生产的用水和作为最后处置的废水)的水质要求而对原料水(原水)的加工过程。

全液体空分工艺流程说明

全液体空分工艺流程说明 液体空分设备通常是指以直接生产液氧、液氮产品的空分设备,这种空分设备一般不生产或少量生产气体产品。 为了要获得大量的液氧和液氮产品,目前大致有二种方法:一是先生产气态产品,然后再根据需要采用液化装置将气态产品液化,这种方法能耗相对较高;另一种方法是直接采用液体空气设备生产液氧和液氮产品,与前者相比该法能耗较低,液体空分设备从流程的组织上来看可以视为是常规气态产品空分设备和液化装置的二者结合体,因此其流程要相对复杂一些。为了降低液体空分设备产品的中耗,应根据用户提出的需求条件,在工艺流程的组织上要进行多个方案的技术比较。 目前液体空分设备根据工作压力的等级不同,一般可分为低压循环和中压循环二大类,在低压循环中按照制冷系统的组织方式不同又分成带增压透平膨胀机制冷和带增压透平膨胀机加低温予冷机制冷的二种流程。在中压循环流程中因采用的制冷循环工质的不同一般分成空气循环和氮气循环,同样在中压循环中按照制冷系统的组织方式不同也分成带增压透平膨胀机加低温予冷机制冷和带高、低温增压透平膨胀机制冷的二种流程。 液体空气设备流程的选择应根据用户提出的液体产品产量、纯度、品种等要求,来选择和确定液体空分设备的工艺流程、单元设备的结构形式和组织方式。一般来说液氧产量小于1000Lh的属小型液体空分设备,目前多数是采用全低压(1.OMPa)利用空气循环制冷的工艺流程。因为液体产量较小,同时为简化流程,达到操作方便,一般在流程中原料空气和制冷循环空气可由一台压缩机提供。这种流程单位产品能耗较高。 当液体产品在2000-3000m立方/h(折成气态)以上时,将属于中大型液体空气设备,由于液体产品数量加大,要求装置必须提供更多的冷量。而在低压流程中气体的液化是通过相变过程来实现的,因为工作压力低,气体膨胀产冷量小,最终气体液化率低,那么为要获得大量的冷量就必须大幅度的提高循环空气量,这样会造成单位产品能耗的大幅度升高。因此在工艺流程上必须由低压循环改为中压制冷循环,由于气体液化工作压力的提高,其相应的液化温度也随之提高,那么单位气体液化所需的冷量就会减少,当气体液化压力超过其临界压力而温度低于临界温度时,气体液化过程中就不存在等温的冷凝过程,而是直接变成液体,这样就能减少中压流程中的循环气量,使单位液体产品能耗大大的降低,这正是中压流程为什么经济性好的重要原因。在中大型液体空分设备中原料空气部分采用低压(0.6MPa),而循环气体为中压(压缩机压力为 2.5-3.OMPa),即分为空气循环和氮气循环二种。关于在制冷循环中如何确定膨胀机的台数和运行方式及其参数,这将取决于用户提供的要求。下面将对儿种工艺流程在组织中的技术问题进行分析讨论。 低压小型液体空分设备工艺流程 现对国内已开发成功的小型全低压液体空分设备在流程组织上的一些技术特点作一分析。 本设备是采用低压带增压透平膨胀机及空气制冷循环的工艺流程。空气经空气过滤器被透平空压机压缩至1.0MPa(G)压力,经末级冷却器冷却后将全部空气送入增压机中增压,经增

循环冷却水之电化学水处理器简介

一、什么是循环冷却水 循环冷却水是冷却水换热水并经降温,再循环使用的给水系统,包括敞开式和密闭式两种类型,由冷却设备、水泵和管道组成。 在许多工业部门的生产过程中,产生大量废热,需及时用传热介质将其转移到自然环境中,以保证生产过程正常运行。由于天然水具有优良的热传递性能且费用低廉,资源丰富而被用作工业废热的传热介质,在工业生产中称为冷却水,工业冷却水在各国都是工业水最大用户,除升高温度外冷却水的理化性质无甚显著变化,若采取适当降温措施,使之形成循环回用系统,是节约工业用水的重要途径。 循环冷却水由于受浓缩倍数的制约,在运行中必须要排出一定量的浓水和补充一定量的新水。使冷却水中的含盐量、PH值、有机物浓度、悬浮物含量控制在一个合理的允许范围。如何安全的提高浓缩倍数减少水资源的消耗和运行成本,在水资源税开征和排污收费的大趋势下将极大的节约企业的生产成本。 如何在保证不结垢、不腐蚀的条件下提高循环水的浓缩倍数已成为行业研究的课题。传统的通过加药剂阻垢、缓蚀在浓缩倍数达到一定程度的时候,必须对循环水进行置换,以保证系统的稳定运行。排出系统的废水含盐量高、因为添加药剂的原因,污水的成分比较复杂又难以处理,对后续的污水处理实现达标排放带来了诸多挑战。 二、循环水浓缩倍率与节水的关系 提高循环水的浓缩倍数(目前我国的循环冷却水浓缩倍数一般为1.5—3.0),可降低补充水的用量,节约水资源,同时可降低排污水量,从而减少其对环境的污染,降低生产成本。 设某企业循环冷却水系统,循环水量为10000m3/h,冷却塔进出口水温分别为42℃和32℃,风吹损失占循环水量的0.1%,在不同浓缩倍数下该系统的运行参数计算值见下表。 三、电化学除垢器概述 电化学除垢器又称为电化学除垢设备也称之为循环水电化除垢设备,在循环水处理中采用电化学除垢技术,是环保节能的高新技术。电化学除垢设备循环系统全部采用新型材料,设备使用期长达15年,系统无易损件,不侵蚀,不用维修。从病根上解决了出锈水的问题,和每年都要定期维修的问题。 四、电化学水处理系统介绍 原理和技术优势简介: 电化学水处理系统是以电化学的电解原理和极性水分子理论为基础发展起来的环保新技术,它具有除垢、防垢、杀菌、灭藻、缓蚀等功能,还可以溶解水循环管路已成固体的垢、降低盐类离子浓度、降解有机物质、节水、节能无污染等新的技术性能,是循环水处理未来的主流处理方式。

冷轧工艺技术基础知识简介

第一节钢铁行业知识简介 钢铁行业的定义:钢铁行业是以从事黑色金属矿物采选和黑色金属冶炼加工等工业生产活动为主的工业行业,包括金属铁、铬、锰等的矿物采选业、炼铁业、炼钢业、钢加工业、铁合金冶炼业、钢丝及其制品业等细分行业,是国家重要的原材料工业之一。此外,由于钢铁生产还涉及非金属矿物采选和制品等其他一些工业门类,如焦化、耐火材料、炭素制品等,因此通常将这些工业门类也纳入钢铁工业范围中。 原材料及主要产品分类:钢铁生产的主要原材料包括铁矿石、锰矿石、铬矿石、石灰石、耐火黏土、白云石、菱铁矿等矿物的原矿及其成品矿,人造块矿,铁合金,洗煤、焦炭、煤气及煤化工产品,耐火材料制品,炭素制品等。 钢铁产品是以铁元素(Fe)为基础组成成分的金属产品的统称,日常形态包括铁、粗钢、钢材、铁合金等。由于铁合金在钢铁工业生产过程中主要用做炼钢时的脱氧剂和合金添加剂,在管理和统计上通常将铁合金归入钢铁生产主要原材料而非钢铁产品。此外,钢丝、钢丝绳、钢绞线、铁丝、铁钉等钢丝及其制品属于钢铁产品的再加工产品,不属于金属基础产品。所以在统计上,钢铁产品仅包括

生铁、粗钢、钢材三大类产品。 铁是钢铁产品的“初级产品”,经过进一步冶炼就可得到钢,二者主要根据铁基产品中含碳量多少来区别。铁经冶炼直接得到的产品为粗钢(固体状态称钢坯或钢锭),粗钢通过铸、轧、锻、挤等方法处理加工后成为钢材。 钢材是钢铁工业为社会生产和生活提供的最终产品的主要形式。由于钢材产品品种、规格复杂多样,为了适应统计、生产、营销、库存等多方面管理的需要,国际上通常将钢材分为型材、线材、板材、管材等几大类。具体分类如下: 一、型材 (1)铁道用钢材 是指主要供铁道部门生产和建设用的钢材,主要包括轻轨、重轨、工业升降机用导轨、起重机用轨、导电轨、道岔轨等钢轨、钢轨配件;每米重量大于30公斤的钢轨为重轨,30公斤及以下的为轻轨。 (2)大型型钢 是指高度不小于80毫米的I型钢(工字钢)、H型钢、U型钢(槽钢)、角钢、Z字钢、丁字钢、T

8种电化学水处理方法

8种电化学水处理方法 电化学水处理 - 世间万物,都是有一利就有一弊。社会的进步和人们生活水平的提高,也不可避免地对环境产生污染。废水就是其中之一。随着石化、印染、造纸、农药、医药卫生、冶金、食品等行业的迅速发展,世界各国的废水排放总量急剧增加,且由于废水中含有较多的高浓度、高毒性、高盐度、高色度的成分,使其难以降解和处理,往往会造成非常严重的水环境污染。 为了处理每天大量排出的工业废水,人们也是蛮拼的。物、化、生齐用,力、声、光、电、磁结合。今天笔者为您总结用“电”来处理废水的电化学水处理技术。 电化学水处理技术,是指在电极或外加电场的作用下,在特定的电化学反应器内,通过一定的化学反应、电化学过程或物理过程,对废水中的污染物进行降解的过程。电化学系统设备相对简单,占地面积小,操作维护费用较低,能有效避免二次污染,而且反应可控程度高,便于实现工业自动化,被称为“环境友好”技术。 电化学水处理的发展历程 1799年 Valta制成Cu-Zn原电池,这是世界上第一个将化学能转化为电能的化学电源。1833年 建立电流和化学反应关系的法拉第定律。 19世纪70年代 Helmholtz提出双电层概念。任何两个不同的物相接触都会在两相间产生电势,这是因电荷分离引起的。两相各有过剩的电荷,电量相等,正负号相反,相互吸引,形成双电层。 1887年 Arrhenius提出电离学说。 1889年 Nernst提出电极电位与电极反应组分浓度关系的能斯特方程。 1903年

Morse和Pierce把两根电极分别置于透析袋内部和外部溶液中,发现带电杂质能迅速地从凝胶中除去。 1905年 提出Tafel 公式,揭示电流密度和氢过电位之间的关系。 1906年 Dietrich取得一个电絮凝技术的专利,专门有人和公司对电絮凝过程进行改进和修正。1909年 Harries(美国)取得电解法处理废水的专利,它是利用自由离子的作用和铝作为阳极。 1950年 Juda首次试制成功了具有高选择性的离子交换膜,这促使电渗析技术进入了实用阶段,奠定了电渗析的实用化基础。电渗析首先被用于苦咸水的化,而后逐步扩大到海水淡化和制取工业纯水的应用中。 20世纪50年代 Bochris等发展的电极过程动力学,为今后半导体电极过程特性研究和量子理论解释溶液界面电子转移过程的研究打下理论基础。 1956年,Holden(英国)利用铁作为电极来处理河水。 20世纪60年代初期 随着电力工业的迅速发展,电解法开始引起人们的注意。传统的电解反应器采用的是二维平板电极,这种反应器有效电极面积很小,传质问题不能很好地解决。而在工业生产中,要求有高的电极反应速度,所以客观上需要开发新型、高效的电解反应器。 20世纪六七十年代 从俄克拉荷马大学研究去除略带碱性的水中盐分开始,Y.Oren等研究了电吸附和电解吸附技术的基础理论、参数的影响和对多种候选电极材料的评价。 1969 年 Backnurst等提出流化床电极(FBE) 的设计。这种电极与平板电极不同,有一定的立体构型,比表面积是平板电极的几十倍甚至上百倍,电解液在孔道内流动,电解反应器内的传质过程得到很大的改善。 1972年 Fujishima和Honda报道了在光电池中光辐射Ti02可持续发生水的氧化还原反应,标志着光催化氧化水处理时代的开始。 1973年 M.Fleischmamm与F.Goodridge等研制成功了双极性固定床电极(BPBE)。内电极材料在高梯度电场的作用下复极化,形成双极粒子,分别在小颗粒两端发生氧化-还原反应,每一个颗粒都相当于一个微电解池。由于每个微电解池的阴极和阳极距离很小,迁移就容易实现。同时,由于整个电解槽相当于无数个微电解池串联组成,因此效率大大提高。 20世纪七十年代 前苏联科研人员将铁屑用于印染废水的处理,从此微电解法开始应用到废水治理中。 1976年 Asovov等人(前苏联)利用电絮凝法处理石化废水。1977年,Osipenko等人(前苏联)利用电絮凝法处理含铬废水。 20世纪80年代

空分设备及深冷空分工艺流程(新)

空分设备就是以空气为原料,通过压缩循环深度冷冻的方法把空气变成液态,再经过精馏而从液态空气中逐步分离生产出氧气、氮气及氩气等惰性气体的设备。 目前我国生产的空分设备的形式、种类繁多。有生产气态氧、氮的装置,也有生产液态氧、氮的装置。但就基本流程而言,主要有四种,即高压、中压、高低压和全低压流程。我国空分设备的生产规模已经从早期只能生产20m3/h(氧)的制氧机,发展到现在具有生产20000 m3/h、30000 m3/h和50000 m3/h(氧)的特大型空分设备的能力。 空分设备从工艺流程来说可以分为5个基本系统: 1 杂质的净化系统:主要是通过空气过滤器和分子筛吸收器等装置,净化空气中混有的机械杂质、水分、二氧化碳、乙炔等。 2 空气冷却和液化系统:主要由空气压缩机、热交换器、膨胀机和空气节流阀等组成,起到使空气深度冷冻的作用。 3空气精馏系统:主要部件为精馏塔(上塔、下塔)、冷凝蒸发器、过冷器、液空和液氮节流阀。起到将空气中各种组分分离的作用 4 加温吹除系统:用加温吹除的方法使净化系统再生。 5仪表控制系统:通过各种仪表对整个工艺进行控制。 深冷空分制氮 深冷空分制氮以空气为原料,经过压缩、净化、用热交换使空气液化成为液空。液空主要是液氧和液氮的混合物,利用液氧和液氮的沸点不同,通过精馏,使它们分离来获得氮气。 1. 深冷制氮的典型工艺流程 整个流程由空气压缩及净化、空气分离、液氮汽化组成。 1.1 空气压缩及净化 空气经空气过滤器清除灰尘和机械杂质后进入空气压缩机,压缩至所需压力,然后送入空气冷却器,降低空气温度。再进入空气干燥净化器,除去空气中的水份、二氧化碳、乙炔及其它碳氢化合物。 1.2 空气分离 净化后的空气进入空分塔中的主换热器,被返流气体(产品氮气、废气)冷却至饱和温度,送入精馏塔底部,在塔顶部得到氮气,液空经节流后送入冷凝蒸发器蒸发,同时冷凝由精馏塔送来的部分氮气,冷凝后的液氮一部分作为精馏塔的回流液,另一部分作为液氮产品出空分塔。 由冷凝蒸发器出来的废气经主换热器复热到约130K进膨胀机膨胀制冷为空分塔提供冷量,膨胀后的气体一部分作为分子筛的再生和吹冷用,然后经消音器排入大气。 1.3 液氮汽化 由空分塔出来的液氮进液氮贮槽贮存,当空分设备检修时,贮槽内的液氮进入汽化器被加热后,送入产品氮气管道。 深冷制氮可制取纯度≧99.999%的氮气。 2. 主要设备简介 2.1 空气过滤器 为减少空气压缩机内部机械运动表面的磨损,保证空气质量,空气在进入空气压缩机之前,必须先经过空气过滤器以清除其中所含的灰尘和其他杂质。目前空气压缩机进气多采用粗效过滤器或中效过滤器。 2.2 空气压缩机 按工作原理,空气压缩机可分为容积式和速度式两大类。目前空气压缩机多采用往复活塞式空气压缩机、离心式空气压缩机和螺杆式空气压缩机。 2.3 空气冷却器 是用来降低进入空气干燥净化器和空分塔前压缩空气的温度,避免进塔温度大幅度波动,并可析出压缩空气中的大部分水分。通常采用氮水冷却器(由水冷却塔和空气冷却塔组成:水冷塔是用空分塔内出来的废气冷却循环水,空冷塔是用水冷塔出来的循环水冷却空气)、氟里昂空冷器。 2.4 空气干燥净化器

电化学循环水处理技术

冷却水使升温冷水流过冷却设备使水温回降,用泵送回生产设备再次使用,称循环冷却水系统。水在循环的过种中常常会出现一系列的问题,从而影响冷却水系统的正常运行。 冷却水循环后遇到什么问题? 腐蚀:冷却水在循环使用中,水在冷却塔内和空气充分接触,使水中的溶解氧得到补充,所以循环水中溶解氧总是饱和的,水中溶解氧是造成金属电化学腐蚀的主要原因,这是冷却水循环后易带来的问题之一。 结垢:水在运行中蒸发(尤其是在冷却塔的环境中),使循环水中含盐量逐渐增加,加上水中二氧化碳在塔中解析逸散,使水中碳酸钙或其它盐类在传热面上结垢析出的倾向增加,这是问题之二。 生物污垢:冷却水和空气接触,吸收了空气中大量的灰尘、泥沙、微生物及其孢子,使系统的污泥增加;冷却塔内的光照、适宜的温度、充足的氧和养分都有利于细菌和藻类的生长,从而使系统粘泥增加,在换热器内沉积下来,造成了粘泥的危害,这是水循环使用后易带来的问题之三。 电化学循环水处理技术是将待处理水进入电化学循环水设备后,在阴极区附近,发生电化学反应,阴极区产生大量的OH-,使该区域形成强碱性环境,溶解在水中的少量CO2与OH-结合,生产CO32-,易结垢的离子与OH-及CO32-反应,预先结垢,附着在反应室内壁上。设备自带的自清洗系统可定期地将设备内壁产生的水垢刮除。 电化学循环水处理设备利用电化学原理将水中的成垢离子以水垢的形式预先析出,从而防止了水垢在循环水系统中生成,同时产生的强氧化物质起到杀菌灭藻及延缓腐蚀的效果,一次性解决了工业循环水结垢、菌藻滋生及腐蚀三大问题,具有良好的使用效果。电化学循环水处理设备运行过程中可不断地去除循环水中的成垢离子,降低循环水的硬度,提高循环水系统运行浓缩倍数,降低排污水量和补充水量。 常州沛德水处理设备有限公司成立于2004年,专注于循环水物理法水质优化处理的解决方案并研发生产了物理法除垢、杀菌、灭藻、缓蚀设备以及循环水处理的过滤设备,定压补水,真空气设备等相关设备,先后申报数十项专利,是知名的循环水系统物理法除垢、杀菌、灭藻、过滤解决方案的供应商,沛德先后已为秦山核电、红沿河核电、万达广场、可口可乐、雪花啤酒、等多家企业提供水垢解决方案及服务。

冷轧生产线的工艺流程

说道冷轧产品,相信很多人都不会陌生,但说到冷轧生产线的具体工艺流程,很多人确是知之甚少,因此,为使大家对此有进一步的了解,现整理了以下具体的工艺流程,以供大家了解。 1.立式上料 圆圈钢筋经上料架进行上料,换卷时,对原料进行对焊作业。 2.除锈 轧制的钢筋经过此设备产生弯曲变形及拉直,使表面氧化皮脱离,提高产品的性能及外观质量。 3.一道轧 对钢筋进行第一道轧制,将钢筋减经轧扁,是钢筋成型的前道工序。 4.二道轧 目的使钢筋在此工序成型,轧制成符合要求的带肋钢筋。 5.分卷剪 按产品要求重量,根据理论长度,进行分卷剪切. 6.热处理 对带助钢筋回火处理,提高延性及综合机械性能,打外线测温控制。 7.测量直径 检测轧制成型的钢筋直径,控制钢筋直径在要求的范围内。 8.矫直测长 对成型的带肋钢筋进行矫直并测量长度。 9.收线 将直条钢筋收卷成要求的盘卷,两台收线机替运行,连续生产.

10.翻转 由运卷机械手将收好的盘卷爪抓至翻专台,并翻转90°. 11.打包 由运卷机械手将盘卷运至打包站,进行捆扎打包。 12.入库 由智能系统将盘卷运至卸卷位,实现产品入库管理。 以上就是冷轧生产线有关工艺流程的一些简单介绍,当然,除了以上工艺流程外,在生产一些特殊产品时还有各自的特殊工序。如轧制硅钢板时,在冷轧前要进行脱碳退火,轧后要进行涂膜、高温退火、拉伸矫直(见张力矫直)与回火等。 河南金迪是专业生产成套冷轧设备的厂家,生产高、中、低速成套冷轧机,轧制CRB600H,CRB800H达到国家新标准,适用于楼层建筑、高铁、桥梁、隧道、高速公路,市场前景应用广阔。远程全智能控制,大型线速达到600--1000米/分。终身技术支持,可根据客户本地,钢筋的规格、实际应用情况量身定做。

循环水电化学除垢器介绍

电化学水处理处理方法是以电化学基本原理为基础,利用电极反应及其相关过程,通过直接和间接的氧化还原,凝聚絮凝,吸附降解和协同转化等综合作用,对水中的硬度、重金属、悬浮物、胶体、细菌、藻类、色度、硝酸盐等污染物有明显的去除作用。无需向水中加投药剂、水质净化效率高、无二次污染、使用方面、易于控制,在工业水处理、自来水处理、生活污水处理和回用、饮用水净化等方面,效果非常明显。 近些年来,电解法因其具有的多种功能的处理效果,并且无二次污染,是一种“绿色环保技术”,逐渐替代了化学药剂法,被越来越多的应用于循环水处理中。循环水处理设备通过一种专用的电解除垢装置,进行电解,电解过程中,水中的重金属离子 (包括水垢)会附着在电解除垢系统电解槽中的负电极(阴极)表面,从而降低离子浓度。在阳极附近的反应区域,在电场作用下氯离子失去电子转化为游离氯,伴随产生微量臭氧、氢氧根自由基,这些物质起到良好的杀菌灭藻效果,从而抑制藻类及菌类的增长。同时,在电解反应的同时,产生大量的电子,补充电子电位差,从而起到防腐的效果。 特点: 1、本装置设计结构简单,操作方便,可直接放在冷却塔或者蓄水池,使用极为方便。可设计倒极使用,阴极阳极极性互换,沉积在阴极筒上的污垢,会发生松动,自行脱落,定期清理即可。 2、本装置的核心电解槽,设计倒极用的时候,除垢脱垢时间较短,对阳极涂层的损耗相对减小,所以,降低了维护成本。 3、不用添加其他药剂,直接发生电解反应,无二次污染,符合环保要求。 4、可根据实际的水质及处理量设计不同规格。常规的有筒状、板式,也可定制其他规格。 5、根据不同的水质,通过改变不同的电极材料、电极布置方式、电解室结构,电极作用过程和催化氧化还原等措施,可以获得不同的电解净水效果。处理效果显著、稳定,不随被处理水的条件或组成发生变化。 适用范围: 1、工业循环水处理领域,如发电厂、钢铁厂、水泥厂、石化、电力、制药、食品、造纸印刷、冶金、煤炭开采、机械加工、制造、工业用空压站、供热系统等解决循环水系统结垢、锈蚀、杀菌灭藻等问题; 2、中央空调循环冷却水处理,解决结垢、污泥沉积、细菌藻类等问题;如工厂、酒店、商场、写字楼、机关办公楼等; 3、生活用水领域用于解决自来水厂、家用自备水井水质硬度高、口感差等问题,在不添加任何化学品前提下直接可降低水的总硬、总碱和细菌数,保障居民饮用的水干净、卫生。 4、污水处理厂,能明显改善沉淀池污泥的沉淀速度,使水质变得清澈,降低处理费用,同时能吸附水中极大部分有害的金属离子,杀灭水中细菌,保护环境。 常州沛德水处理设备有限公司成立于2004年,专注于循环水物理法水质优化处理的解决方案并研发生产了物理法除垢、杀菌、灭藻、缓蚀设备以及循环水处理的过滤设备,定压补水,真空气设备等相关设备,先后申报数十项专利,是知名的循环水系统物理法除垢、杀菌、灭藻、过滤解决方案的供应商,沛德先后已为秦山核电、红沿河核电、万达广场、可口可乐、雪花啤酒、等多家企业提供水垢解决方案及服务。

鲁奇MTP工艺流程简介

鲁奇煤化工MTP 工艺流程简介 甲醇制丙烯(MTP)工艺是德国鲁奇公司使用甲醇作为原料生产聚合物级丙烯的专利技术,该工艺同时可副产乙烯,LPG 和汽油。MTP 工艺包含五个工艺步骤:MTP 反应部分、MTP 反应器再生部分、水烃冷却分离部分、碳氢压缩部分、产品/副产品精制部分。 单元工艺方框流程图 吸附单元 处理水粗汽油 丙烯乙烯 净化燃料气 万吨年 万吨年 万吨年

来自甲醇中间罐区的新鲜甲醇和由甲醇回收塔返回的循环甲醇经过一系列换热设备,加热到275℃。混合物料先在DME反应器中于275℃,1.6MPa,在氧化铝基催化剂的作用下反应生产二甲醚。之后,生成的二甲醚与循环回的 C2/C4/C5/C6混合进入MTP反应器(3台,2开1备),于480℃,0.13MPa下,在沸石基催化剂的作用下进行反应,生成以丙烯为主要产品的各种烃类,送到下一单元-气体冷却和分离单元。 2CH3OH→CH3OCH3(DME)+H2O +Q nCH3OCH3→2CnH2n+nH2O +Q(N=2,3,4….) MTP反应器经过一段时间(每台反应器运行500-600小时后需再生)的运行,在催化剂的表面会产生一定的结焦,降低了催化剂的活性,从而影响丙烯的产率。此时,需用热的再生气(装置空气和氮气)对催化剂进行再生,再生所需时间为56-69小时。 由MTP反应器出来的烃类物料经废热回收系统降到190℃后,首先进入预急冷塔(3台),用激冷水进行冷却至55℃。之后再送入急冷塔,用激冷水进行冷却,温度降至40℃后送至碳氢压缩单元。出急冷塔的激冷水大部分经过热量回收后循环回急冷塔,小部分送到甲醇回收塔,回收其中含有的甲醇,回收的甲醇与新鲜甲醇混合进入DME反应器。 经急冷塔冷却分离后的MTP反应器物流温度为40℃,压力为0.105MPa,送入压缩单元。通过压缩机进行四级压缩,压力达2.25MPa。每级压缩后都设一水冷器和一分离器,分离冷凝下来的水份和一部份液态烃。分离出的水送到急冷塔作为激冷水,分离出的烃送到四级压缩分离器,进行气烃和液烃分离,然后气烃送入气烃干燥器,液烃送入液烃干燥器分别进行干燥。

相关文档