文档库 最新最全的文档下载
当前位置:文档库 › 全国卷文科数学概率统计汇总

全国卷文科数学概率统计汇总

全国卷文科数学概率统计汇总
全国卷文科数学概率统计汇总

概率统计高考题

1.[2016.全国卷] 小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( ) A.

158 B. 81 C. 151 D. 30

1 2.[2016.全国卷] 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.

710 B. 58 C.38 D.310

3.[2015.全国卷] 如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为( ) A.

103 B.15 C.110 D.1

20

4.[201

5.全国卷]根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是( )

A

C .2006

5.[2013. ) A.

12 D.1

6

6.[2012.全国卷.T3]在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散

点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( ) A. -1 C. 1

2 D. 1

7.[2011.全国卷.T6]有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) A.

13 B. 12 C.23 D.34

8.[2014.全国卷] 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 9.[2014.全国卷]甲、已两名运动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为

10.[2013.全国卷]从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是

11.[2010.全国卷.T14]设函数()y f x =为区间(]0,1上的图像是连续不断的一条曲线,且恒有

()01f x ≤≤,可以用随机模拟方法计算由曲线()y f x =及直线0x =,1x =,0y =所围成部分的面

2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年

积,先产生两组i 每组N 个,区间(]0,1上的均匀随机数1, 2.....n x x x 和1, 2.....n y y y ,由此得到V 个点

()(),1,2....x y i N -。再数出其中满足1()(1,2.....)y f x i N ≤

=的点数1N ,那么由随机模拟方法可得S 的

近似值为

12. [2016.全国卷]下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图. 注:年份代码1–7分别对应年份2008–2014.

(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系, 请用相关系数加以说明;

(Ⅱ)建立y 关于t 的回归方程(系数精确到), 预测2016年我国生活垃圾无害化处理量. 参考数据:

7

1

9.32i

i y

==∑,7

1

40.17i i i t y ==∑,

7

2

1

()

0.55i

i y y =-=∑,≈. 参考公式:1

2

2

1

1

()()

()(y

y)n

i

i

i n n

i i

i i t t y y r t t ===--=

--∑∑∑,

回归方程y a bt =+)

))中斜率和截距的最小二乘估计公式分别为:1

2

1

()()

()

n

i

i

i n

i i t t y y b t t ==--=

-∑∑),=.a y bt -)))

13.[2015.全国卷] 某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表。

A 地区用户满意度评分的频率分布直方图

B 地区用户满意度评分的频数分布表 满意度评分分组

频 数

2 8 14 10 6 (1)在上图中作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平

均值及分散程度(不要求计算出具体值,给出结论即可); (2)根据用户满意度评分,将用户的满意度从低到高分为三个等级: 满意度评分 低于70分 70分到89分

不低于90分 满意度等级

不满意

满意

非常满意

估计哪个地区的满意度等级为不满意的概率大说明理由。

14.[2013.全国卷] 为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者

4567890 O 100

频率/组距

O 频率/组

服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h )

,试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:

服用B 药的20位患者日平均增加的睡眠时间:

(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好 (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好 15.[2013.全国卷]

经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售

出的产品,每1t 亏损300元。根据历史资料,得到销售季度内市场需求量的频率分布直方图,如右图所示。经销商为下一个销售季度购进了130t 该农产品。以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润。 (1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57000元的概率;

16.[2011.全国卷.T19] 某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果: (1)分别估计用A 配方,B 配方生产的产品的优质品率;

(2)已知用B 配方生产的一件产品的利润y (元)与其质量指标值t 的关系式为

估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润。

文科数学专题概率与统计(专练)高考二轮复习资料含答案

专題16概率与统计(押题专练〉 1 12 1 ?围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为7都是白子的概率是35.则从 中任意取出2粒恰好是同一色的概率是 ( ) 1 12 A : B. 35 7 17 C D. 1 35 【答案】 C 【解析】设如中取出2粒都是黒子彷事件直「从中取出2粒者卩是白子彷事件B 「任竜取出2粒恰 好是 同一色悄事件C f 则C=AUB,且事件A 与B 互斥-所叹PQ=P(A)+P(B)=昇||二¥即任青取出 -粒恰好是同一色的概率为紧 n 1 2?若[0 , n ],则sin ( 0 + 3)>5成立的概率为( ) 2 C 3 D 1 【答案】B n n 4 n n 1,口 n n 5 n n 【解析】依题意,当 0 € [0, n ]时,0 +-3€[§,丁],由 sin ( 0 +~3)>2得"3 w 0 + _3<_^,。三 0 <2. n 1 因此,所求的概率等于二十n =二,选B 3?在{1,3,5}和{2,4}两个集合中各取一个数组成一个两位数,则这个数能被 4整除的概率是( ) 1 1 A 3 B -2 C 1 【答案】D 【解析】所有的两位数为 12,14,21,41,32,34,23,43,52,54,25,45 ,共12个, 能被4整除的数为12,32,52,共3个, 3 1 故所求概率P = ;7=匚.故选D 12 4 4.在平面区域{(x , y)|0 w x w 1, 1w y w 2}内随机投入一点 P,则点P 的坐标(x , y)满足y w 2x 的概率 1 A 3 1 B-2

1 1 X - X1 S阴影2 2 5.在区间[0,1]上随机取一个数x,则事件“ log°.5(4x —3)>0”发生的概率为( 1 1 C3 D-4 【答案】D 【解析】因为log o.5(4x —3)>0,所以0<4x —3< 1,即|

高三文科数学统计概率的总结课件.doc

实用标准文案 统计概率考点总结 【考点一】分层抽样 01、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社 区做分层抽样调查。假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96 人。若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为() A 、101 B、808 C、1212 D、2012 02、某个年级有男生560 人,女生420 人,用分层抽样的方法从该年级全体学生中抽取一个容量为280 的 样本,则此样本中男生人数为____________. 03、一支田径运动队有男运动员56 人,女运动员42 人。现用分层抽样的方法抽取若干人,若抽取的男运 动员有8 人,则抽取的女运动员有______人。 04、某单位有840 名职工, 现采用系统抽样方法, 抽取42 人做问卷调查, 将840 人按1, 2, , 840 随机 编号, 则抽取的42 人中, 编号落入区间[481, 720] 的人数为() A .11 B.12 C.13 D.14 05、将参加夏令营的600 名学生编号为:001,002,,, 600,采用系统抽样方法抽取一个容量为50 的样 本,且随机抽得的号码为003.这600 名学生分住在三个营区,从001 到300 在第Ⅰ营区,从301 到495 住在第Ⅱ营区,从496 到600 在第Ⅲ营区,三个营区被抽中的人数依次为( ) A .26, 16, 8 B.25,17,8 C.25,16,9 D.24,17, 9 【考点二】频率分布直方图(估计各种特征数据) 01、从某小区抽取100 户居民进行月用电量调查, 发现其用电 量都在50 到350 度之间, 频率分布直方图所示. (I) 直方图中x的值为________; (II) 在这些用户中, 用电量落在区间100,250 内的户数为_____. 02、下图是样本容量为200 的频率分布直方图。根据样本的频率分布直 方图估计,样本数据落在[6,10]内的频数为,数据落在(2, 10)内的概率约为 精彩文档

高考文科数学真题全国卷

2010年普通高等学校招生全国统一考试 文科数学(全国I 卷) 第I 卷 一、选择题 (1)cos300°= (A ) (B )12- (C )12 (D (2)设全集U =(1,2,3,4,5),集合M =(1,4),N =(1,3,5),则N ?(C ,M ) (A )(1,3) (B )(1,5) (C )(3,5) (D )(4,5) (3)若变量x 、y 满足约束条件 1.0.20.y x y x y ≤??+≥??--≤? 则z =x-2y 的最大值为 (A )4 (B )3 (C )2 (D )1 (4)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6= (A ) (B)7 (C)6 (5)(1-x )2(1 )3的展开式中x 2的系数是 (A)-6 (B )-3 (C)0 (D)3 (6)直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC=AA 1,则异面直线BA 1与AC 1所成的角等于 (A )30° (B)45° (C)60° (D)90° (7)已知函数f (x )= lg x .若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是 (A )(1,+∞) (B )[1,+∞] (C)(2,+∞) (D)[2,+∞) (8)已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则 1PF ·2PF = (A )2 (B)4 (C)6 (D)8 (9)正方体ABCD -A 1BCD 1中,BB 1与平面ACD 1所成角的余弦值为 (A) 3 (B) 3 (C) 23 (D) 3 (10)设a =log 3,2,b =ln2,c =1 25 -,则 (A )a <b <c (B)b <c <a (C)c <a <b (D)c <b <a (11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA u u u r ·PB u u u r 的 最小值为 (A )- (B )- (C )- (D )-

2019年全国统一高考数学试卷文科Ⅰ

2019年全国统一高考数学试卷(文科)(新课标Ⅰ) 一、选择题(本大题共12小题,共60.0分) 1.设z=,则|z|=() A. 2 B. C. D. 1 2.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩?U A= () A. B. C. D. 6, 3.已知a=log20.2,b=20.2,c=0.20.3,则() A. B. C. D. 4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底 的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂 维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚 脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿 长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是( ) A. 165 cm B. 175 cm C. 185 cm D. 190 cm 5.函数f(x)=在[-π,π]的图象大致为() A. B. C. D. 6.某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些 新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是() A. 8号学生 B. 200号学生 C. 616号学生 D. 815号学生

7.tan255°=() A. B. C. D. 8.已知非零向量满足||=2||,且(-)⊥,则与的夹角为() A. B. C. D. 9.如图是求的程序框图,图中空白框中应填入 A. B. C. D. 10.双曲线C:-=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率 为() A. B. C. D. 11.△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-, 则=() A. 6 B. 5 C. 4 D. 3 12.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若 ,,则C的方程为() A. B. C. D. 二、填空题(本大题共4小题,共20.0分) 13.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________. 14.记S n为等比数列{a n}的前n项和,若a1=1,S3=,则S4=______. 15.函数f(x)=sin(2x+)-3cos x的最小值为______. 16.已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离 均为,那么P到平面ABC的距离为______.

全国卷文科数学概率统计汇总

概率统计高考题 1.[2016.全国卷3.T5] 小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( ) A. 158 B. 81 C. 151 D. 30 1 2.[2016.全国卷2.T8] 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A. 710 B. 58 C.38 D.310 3.[2015.全国卷1.T4] 如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为( ) A. 103 B.15 C.110 D.1 20 4.[201 5.全国卷2.T3]根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是( ) A .逐年比较,2008年减少二氧化硫排放量的效果最显著 B .2007年我国治理二氧化硫排放显现成效 C .2006年以来我国二氧化硫年排放量呈减少趋势 D .2006年以来我国二氧化硫年排放量与年份正相关 5.[2013.全国卷1.T3]从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A. 12 B.13 C.14 D.1 6 6.[2012.全国卷.T3]在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( ) A. -1 B.0 C. 1 2 D. 1 7.[2011.全国卷.T6]有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) A. 13 B. 12 C.23 D.34 8.[2014.全国卷1.T13] 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年

高三文科数学统计概率总结

统计概率考点总结 【考点一】分层抽样 01、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规得知晓情况,对甲、乙、丙、丁四个社区 做分层抽样调查。假设四个社区驾驶员得总人数为N ,其中甲社区有驾驶员96人。若在甲、乙、丙、丁四个社区抽取驾驶员得人数分别为12,21,25,43,则这四个社区驾驶员得总人数N 为( ) A 、101 B 、808 C 、1212 D 、2012 02、某个年级有男生560人,女生420人,用分层抽样得方法从该年级全体学生中抽取一个容量为280得样 本,则此样本中男生人数为____________、 03、一支田径运动队有男运动员56人,女运动员42人。现用分层抽样得方法抽取若干人,若抽取得男运动 员有8人,则抽取得女运动员有______人。 04、某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机 编号, 则抽取得42人中, 编号落入区间[481, 720]得人数为( ) A.11 B.12 C.13 D.14 05、将参加夏令营得600名学生编号为:001,002,……600,采用系统抽样方法抽取一个容量为50得样本, 且随机抽得得号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中得人数依次为( ) A.26, 16, 8 B.25,17,8 C.25,16,9 D.24,17,9 【考点二】频率分布直方图(估计各种特征数据) 01、从某小区抽取100户居民进行月用电量调查,发现其用电 量都在50到350度之间,频率分布直方图所示、 (I)直方图中x 得值为________; (II)在这些用户中,用电量落在区间[)100,250内得户数为_____、 02、下图就是样本容量为200得频率分布直方图。 根据样本得频率分布直方图估计,样本数据落在[6,10] 内得频数为 ,数据落在(2,10)内得概率约为 03、有一个容量为200得样本,其频率分布直方图如图所示,根据样本得频率分布直方图估计,样本数据落 在区间)10,12??内得频数为 A.18 B.36 C.54 D.72 04、如上题得频率分布直方图,估计该组试验数据得众数为_______,

全国高考文科全国卷数学试题及答案

全国高考文科全国卷数学 试题及答案 The document was prepared on January 2, 2021

年普通高等学校招生全国统一考试 文科数学卷3 注意事项: 1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。 回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出 的四个选项中,只有一项是符合题目要求的。 1.已知集合A={1,2,3,4},B={2,4,6,8},则A B中元素的个数为A.1 B.2 C.3 D.4 2.复平面内表示复数(2) =-+的点位于 z i i A.第一象限B.第二象限C.第三象限D.第四象限 3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

根据该折线图,下列结论错误的是 A.月接待游客逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8月 D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 4.已知 4 sin cos 3 αα -=,则sin2α= A. 7 9 - B. 2 9 -C. 2 9 D. 7 9 5.设,x y满足约束条件 3260 x y x y +-≤ ? ? ≥ ? ?≥ ? ,则z x y =-的取值范围是 A.[-3,0] B.[-3,2] C.[0,2] D.[0,3] 6.函数 1 ()sin()cos() 536 f x x x ππ =++-的最大值为 A.6 5 B.1 C. 3 5 D. 1 5

高考文科数学真题 全国卷

2018年普通高等学校招生全国统一考试(全国卷3) 文科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 C.{1,2} ( ) 5.若某群里中的成员只用现金支付的概率为0.45,既用现金支付又用非现金支付的概率为0.15,则不用现金支付的概率为() A.0.3 B.0.4 C.0.6 D.0.7 A.π 4B.π 2 C.π D.2π 8.直线x+y+2=0分别于x轴,y轴交于A,B两点,则?ABP的面积的取值范围是()A.[2,6] B.[4,8] C.[√2,3√2] D.[2√2,3√2] A.π 2B.π 3 C.π 4 D.π 6 A.12√3 B.18√3 C.24√3 D.54√3 14.某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是。

19.如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是弧CD 上异于C,D 的点。 (1)证明:平面AMD ⊥平面BMC ; (2)在线段上是否存在点P ,使得MC ∥平面PBD ?说明理由。 20. 已知斜率为k 的直线l 与椭圆C :22143x y +=交于,A B 两点,线段AB 的中点()1,(0)M m m >. (1)证明:1;2 k <- (2)设F 为C 右焦点,P 为C 上一点,且0FP FA FB ++=u u u r u u u r u u u r ,证明:2.FP FA FB =+u u u r u u u r u u u r (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,按所做的第一题计分。 23.[选修4-5:不等式选讲](10分)

高三文科数学统计概率总结

高三文科数学统计概率 总结 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

统计概率考点总结 【考点一】分层抽样 01、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对 甲、乙、丙、丁四个社区做分层抽样调查。假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人。若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为() 02、A、101 B、808 C、1212 D、2012 03、某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽 取一个容量为280的样本,则此样本中男生人数为____________. 04、一支田径运动队有男运动员56人,女运动员42人。现用分层抽样的方法抽取若 干人,若抽取的男运动员有8人,则抽取的女运动员有______人。 05、某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人 按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为() 06、A.11 B.12 C.13 D.14 07、将参加夏令营的600名学生编号为:001,002,……600,采用系统抽样方法抽取 一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营 区,三个营区被抽中的人数依次为() 08、A.26, 16, 8B.25,17,8 C.25,16,9 D.24,17,9 【考点二】频率分布直方图(估计各种特征数据) 01、从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间, 频率分布直方图所示. 02、(I)直方图中x的值为________; 100,250内的户数为_____. 03、(II)在这些用户中,用电量落在区间[) 04、下图是样本容量为200的频率分布直方图。根据样本的 频率分布直方图估计,样本数据落在[6,10]内的频数 为,数据落在(2,10)内的概率约为

高中数学概率统计知识万能公式(文科)

第六部分 概率与统计万能知识点及经典题型Ⅰ 【考题分析】 1、考试题型:选择填空1个,解答题:18(必考) 2、考题分值:17分; 3、解答题考点:①频率直方图的应用,②线性回归直线的应用,③独立性检验和概率 4、难度系数:0.7-0.8左右,(120分必须全对,100以上者全对) 【知识总结】 一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。 2、平均数:①、常规平均数:12n x x x x n ++???+= ②、加权平均数:112212n n n x x x x ωωωωωω++???+=++???+ 3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。 4、方差:2222121 [()()()]n s x x x x x x n = -+-+???+- 二、频率直方分布图下的频率 1、频率 =小长方形面积:f S y d ==?距;频率=频数/总数 2、频率之和:121n f f f ++???+=;同时 121n S S S ++???+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。 2、平均数: 112233n n x x f x f x f x f =+++???+ 112233n n x x S x S x S x S =+++???+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。 4、方差:22221122()()()n n s x x f x x f x x f =-+-+???+- 四、线性回归直线方程:???y bx a =+ 其中:1 1 2 22 1 1 ()() ?() n n i i i i i i n n i i i i x x y y x y nxy b x x x nx ====---∑∑== --∑∑ , ??a y bx =- 1、线性回归直线方程必过样本中心(,)x y ; 2、?0:b >正相关;?0:b <负相关。 3、线性回归直线方程:???y bx a =+的斜率?b 中,两个公式中分子、分母对应也相等;中间可以推导得到。 五、回归分析 1、残差:??i i i e y y =-(残差=真实值—预报值)。 分析:?i e 越小越好; 2、残差平方和:21 ?()n i i i y y =-∑, 分析:①意义:越小越好; ②计算:222211221 ????()()()()n i i n n i y y y y y y y y =-=-+-+???+-∑ 3、拟合度(相关指数):2 21 2 1 ?()1() n i i i n i i y y R y y ==-∑=- -∑, 分析:①.(]20,1R ∈的常数; ②.越大拟合度越高; ()() n n i i i i x x y y x y nx y ---?∑∑

高考试题数学文科-(全国卷)

普通高等学校招生全国统一考试(全国卷) 数学(文史类) 一.选择题:本大题共12小题, 每小题5分, 共60分, 在每小题给出的四个选 项中, 只有一项是符合要求的 1.直线2y x x =关于对称的直线方程为 ( ) A .12 y x =- B .12 y x = C .2y x =- D .2y x = 2.已知,02x π??∈- ??? , 54cos =x , 则2tg x = ( ) A .24 7 B .247- C .7 24 D .7 24- 3.抛物线2 y ax =的准线方程是2,y a =则的值为 ( ) A . 1 8 B .1 8 - C .8 D .8- 4.等差数列{}n a 中, 已知1251 ,4,33,3 n a a a a n =+==则为( ) A .48 B .49 C .50 D .51 5.双曲线虚轴的一个端点为M , 两个焦点为1212,,120F F F MF ∠=?, 则双曲线的离心率为( ) A B C D 6.设函数?????-=-2112)(x x f x 00>≤x x , 若1)(0>x f , 则0x 的取值范围是 ( ) A .(1-, 1) B .(1-, ∞+) C .(∞-, 2-)?(0, ∞+) D .(∞-, 1-) ?(1, ∞+) 7.已知5 ()lg ,(2)f x x f ==则( ) A .lg 2 B .lg32 C .1 lg 32 D .1lg 25

8.函数sin()(0)y x R ??π?=+≤≤=是上的偶函数,则( ) A .0 B . 4 π C . 2 π D .π 9.已知(,2)(0):-30a a l x y a >+==点到直线的距离为1,则( ) A B .2 C 1 D 1 10.已知圆锥的底面半径为R , 高为3R , 它的内接圆柱的底面半径为3 4 R , 该圆柱的全面积为( ) A .2 2R π B .24 9R π C .238 R π D .252R π 11.已知长方形的四个顶点A (0, 0), B (2, 0), C (2, 1)和D (0, 1), 一质点从AB 的中点0P 沿与AB 夹角为θ的方向射到BC 上的点1P 后, 依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角)若40P P 与重合, 则tg θ= ( ) A .3 1 B . 5 2 C . 2 1 D .1 12.一个四面体的所有棱长都为2, 四个顶点在同一球面上, 则此球的表面积为( ) A .π3 B .π4 C .π33 D .π6 普通高等学校招生全国统一考试 数 学(文史类) 第Ⅱ卷(非选择题共90分) 二.填空题:本大题共4小题, 每小题4分, 共16分把答案填在题中横线上 13x <的解集是____________________. 14.92)21(x x -的展开式中9 x 系数是 ________ . 15.在平面几何里, 有勾股定理:“设22,,ABC AB AC AB AC BC +=V 的两边互相垂直则”

2010高考数学文科试题及答案-全国卷1

2010年普通高等学校招生全国统一考试(全国Ⅰ卷) 文科数学(必修+选修) 本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。第I 卷1至2页。第Ⅱ卷3 至4页。考试结束后,将本试卷和答题卡一并交回。 第I 卷 注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。 3.第I 卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 33 4 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1) (0,1,2,)k k n k n n P k C p p k n -=-=… 一、选择题 (1)cos300?= (A)2- 12 (C)12 (D) 2 1.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1 cos300cos 36060cos 602 ?=?-?=?= (2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则() U N M ?=e A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,5 2.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识 【解析】{}2,3,5U M =e,{}1,3,5N =,则() U N M ?=e{}1,3,5{}2,3,5?={}3,5

2020年高考文科数学概率与统计题型归纳与训练

2020年高考文科数学《概率与统计》题型归纳与训练 【题型归纳】 题型一古典概型 例1 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(). A. 1 5B. 2 5 C. 8 25 D. 9 25 【答案】B 【解析】可设这5名学生分别是甲、乙、丙、丁、戊,从中随机选出2人的方法有: (甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共有10种选法,其中只有前4种是甲被选中,所以所求概率为42 105 =.故选B. 例2 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 【答案】2 3 【解析】根据题意显然这是一个古典概型,其基本事件有:数1,数2,语; 数1,语,数2;数2,数1,语; 数2,语,数1;语,数2,数1; 语,数1,数2共有6 种,其中2本数学书相邻的有4种,则其概率为:42 63 p==. 【易错点】列举不全面或重复,就是不准确 【思维点拨】直接列举,找出符合要求的事件个数. 题型二几何概型 1 / 18

例 1 如图所示,正方形ABCD 内的图形来自中国古代的太极 图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( ). A. 14 B. π8 C. 12 D. π 4 【答案】B 【解析】不妨设正方形边长为a ,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,所求概率为 8 22122 ππ=??? ????a a .故选B. 例2 在区间[0,5]上随机地选择一个数p ,则方程22320x px p 有两个负根的概率为________. 【答案】3 2 【解析】方程2 2320x px p 有两个负根的充要条件是2121244(32)0 20320 p p x x p x x p ??=--≥? +=-? 即 2 1,3 p <≤或2p ≥,又因为[0,5]p ∈,所以使方程22320x px p 有两个负根的p 的取值范围为2(,1][2,5]3,故所求的概率2(1)(52)23503 -+-=-,故填:32. 【易错点】“有两个负根”这个条件不会转化. 【思维点拨】“有两个负根”转化为函数图像与x 轴负半轴有两个交点.从而得到参数p 的范围.在利用几何概型的计算公式计算即可. D

高三文科数学概率与统计

达濠侨中高三数学(文科)第二轮复习题 概率与统计 一 选择题 1.(2015·新课标全国卷Ⅱ)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( ) A .逐年比较,2008年减少二氧化硫排放量的效果最显着 B .2007年我国治理二氧化硫排放显现成效 C .2006年以来我国二氧化硫年排放量呈减少趋势 D .2006年以来我国二氧化硫年排放量与年份正相关 2.为了解某社区居民的家庭收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为( ) A .11.4万元 B .11.8万元 C .12.0万元 D .12.2万元 3.一个频数分布表(样本容量为30)不小心被损坏了一部分,若样本中数据在[20,60)上的频率为0.8,则估计样本在[40,50),[50,60)内的数据个数共为( ) A .15 B .16 C .17 D .19 4. 【2015高考新课标文】如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) (A ) 310 (B )15 (C )110 (D )1 20 5. 设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率( ) A .3142π+ B . 112π+ C .1142π- D . 112π - 6.某班级有50名学生,现用系统抽样的方法从这50名学生中抽出10名学生,将这50名学生随机编号为1~50号,并按编号顺序平均分成10组(1~5号,6~10号,…,46~50号),若在第三组抽到的编号是13,则在第七组抽到的编号是( ) A .23 B .33 C .43 D .53 7.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等

高考文科数学真题及答案全国卷

高考文科数学真题及答 案全国卷 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

2013年高考文科数学真题及答案全国卷1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A 【考点】本题主要考查集合的基本知识。 【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}. 2.(2013课标全国Ⅰ,文2) 2 12i 1i +(-)=( ). A. ?1?1 2i B .1 1+i 2 - C .1+1 2i D .1?1 2i 【答案】B 【考点】本题主要考查复数的基本运算。 【解析】 2 12i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=1 1+i 2 -. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16 【答案】B 【考点】本题主要考查列举法解古典概型问题的基本能力。 【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),

概率统计专题复习(文科)

概率、统计专题复习(文科) 例1.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其 他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨): “厨余垃圾”箱 “可回收物”箱 “其他垃圾”箱 厨余垃圾 400 100 100 可回收物 30 240 30 其他垃圾 20 20 60 (1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率; (3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,,a b c ,其中0a >,600a b c ++=.当数据,,a b c 的方差2 S 最大时,写出,,a b c 的值(结论不要求证明),并求此时2 S 的值.(注:方差2222121[()()()]n s x x x x x x n =-+-++-,其 中x 为12,,n x x x 的平均数) 例2.从装有编号分别为a,b 的2个黄球和编号分别为 c,d 的2个红球的袋中无放回地摸球,每次任摸一球,求:(Ⅰ)第1次摸到黄球的概率;(Ⅱ)第2次摸到黄球的概率. 例3.一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆): 轿车A 轿车B 轿车C 舒适型 100 150 z 标准型 300 450 600 按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆. (1)求z 的值; (2)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率; (3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下: 9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.

高中文科数学(统计与概率)综合练习

《概率与统计》练习 求:(Ⅰ)年降雨量在) 200 , 100 [范围内的概率; (Ⅱ)年降雨量在) 150 , 100 [或) 300 , 250 [范围内的概率; (Ⅲ)年降雨量不在) 300 , 150 [范围内的概率; (Ⅳ)年降雨量在) 300 , 100 [范围内的概率. > · 2.高三某班40名学生的会考成绩全部在40分至100分 之间,现将成绩分成6段:) 50 , 40 [、) 60 , 50 [ 、) 70 , 60 [、 ) 80 , 70 [、) 90 , 80 [、] 100 , 90 [.据此绘制了如图所示的频率分布直方图。在这40名学生中, (Ⅰ)求成绩在区间) 90 , 80 [内的学生人数; (Ⅱ)从成绩大于等于80分的学生中随机选2名学生,求至少有1名学生成绩在区间] 100 , 90 [内的概率. " @

3.已知集合}1,1(},2,0,2{-=-=B A . ; (Ⅰ)若},|),{(B y A x y x M ∈∈=,用列举法表示集合M ; (Ⅱ)在(Ⅰ)中的集合M 内,随机取出一个元素),(y x ,求以),(y x 为坐标的点位于区 域D :?? ? ??-≥≤-+≥+-10202y y x y x 内的概率. . 4.某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于%90,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如 A 组 B 组 C 组 ? 疫苗有效 673 x y 疫苗无效 77 90 z > 已知在全体样本中随机抽取1个,抽到B 组疫苗有效的概率是33.0. (Ⅰ)求x 的值; (Ⅱ)现用分层抽样的方法在全体样本中抽取360个测试结果,问C 组应抽取几个? (Ⅲ)已知465≥y ,30≥z ,求不能通过测试的概率.

高考文科数学真题及答案全国卷

2013年高考文科数学真题及答案全国卷1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A 【考点】本题主要考查集合的基本知识。 【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}. 2.(2013课标全国Ⅰ,文2)212i 1i +(-) =( ). A. ?1?12i B .11+i 2 - C .1+12i D .1?12i 【答案】B 【考点】本题主要考查复数的基本运算。 【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2 -. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .1 6 【答案】B 【考点】本题主要考查列举法解古典概型问题的基本能力。 【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13 . 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0) 的离心率为2,则C 的渐近线方程为( ). A . y =±14x B .y =±13x C .12 y x =± D .y =±x 【答案】C 【考点】本题主要考查双曲线的离心率、渐近线方程。 【解析】∵e = c a =2254 c a =. ∵c 2=a 2+b 2,∴2214b a =.∴12 b a =. ∵双曲线的渐近线方程为b y x a =±,

高考全国卷1文科数学真题及答案

2019年高考文科数学真题及答案全国卷I 第Ⅰ卷 一、选择题:本大题共12小题, 每小题5分, 在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.(2019课标全国Ⅰ, 文2) 2 12i 1i +(-) =( ). A . 11i 2-- B .11+i 2- C .11+i 2 D .11i 2- 2.(2019课标全国Ⅰ, 文1)已知集合A ={1,2,3,4}, B ={x |x =n 2 , n ∈A }, 则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 3.(2019课标全国Ⅰ, 文3)从1,2,3,4中任取2个不同的数, 则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16 4.(2019课标全国Ⅰ, 文4)已知双曲线C :22 22=1x y a b -(a >0, b >0)5 则 C 的渐近线方程为( ). A .y =14x ± B .y =13x ± C .y =1 2x ± D .y =±x 5.(2019课标全国Ⅰ, 文5)已知命题p :?x ∈R,2x <3x ;命题q :?x ∈R , x 3 =1-x 2 , 则下列命题中为真命题的是( ). A .p ∧q B .?p ∧q C .p ∧?q D .?p ∧?q 6.(2019课标全国Ⅰ, 文6)设首项为1, 公比为 2 3 的等比数列{a n }的前n 项和为S n , 则( ). A .Sn =2an -1 B .Sn =3an -2 C .Sn =4-3an D .Sn =3-2an 7.(2019课标全国Ⅰ, 文7)执行下面的程序框图, 如果输入的t ∈[-1,3], 则输出的s 属于( ). A .[-3,4] B .[-5,2] C .[-4,3] D .[-2,5] 8.(2019课标全国Ⅰ, 文8)O 为坐标原点, F 为抛物线C :y 2 =2x 的焦点, P 为C 上一点, 若|PF |=42 则△POF 的面积为( ). A .2 B .22.3.4 9.(2019课标全国Ⅰ, 文9)函数f (x )=(1-cos x )sin x 在[-π, π]的图像大致为( ).

相关文档
相关文档 最新文档