文档库 最新最全的文档下载
当前位置:文档库 › 人教版六年级上册数学《圆》知识点整理

人教版六年级上册数学《圆》知识点整理

人教版六年级上册数学《圆》知识点整理
人教版六年级上册数学《圆》知识点整理

认识圆及圆周长

1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。如下图中,中心的一点O 。一般用字母O 表示。它到圆上任意一点的距离都相等.

(画圆切忌别忘记标圆心0)

3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r 表示。如下图红色线。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d 表示。如下图蓝色线。

直径是一个圆内最长的线段。

8

5、圆心确定圆的位置,半径确定圆的大小。如果已知的是直径,我们要把直径除以2换成半径,确定圆心,然后才开始画圆。(画圆给出半径标半径r=?,给出直径标直径d=?)

要比较两圆的大小,就是比较两个圆的直径或半径。

6、在同圆或等圆内,有无数条半径,有无数条直径。同圆中所有的半径、直径都相等。

7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的

21。 用字母表示为:d = 2r 或r =

2

d 或r=d ÷2

8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线叫做对称轴。

9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。

10、常见图形的对称轴:

只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形

只有4条对称轴的图形是:正方形;

有无数条对称轴的图形是:圆、圆环。圆是轴对称图形,有无数条对称轴,

对称轴就是直径所在的直线。

11、正方形里最大的圆。两者联系:边长=直径;

圆的面积=78.5%正方形的面积

画法:(1)画出正方形的两条对角线;

(2)以对角线交点为圆心,以边长为直径画圆。

12、长方形里最大的圆。两者联系:宽=直径

画法:(1)画出长方形的两条对角线;

(2)以对角线交点为圆心,以宽为直径画圆。

13、同一个圆内的所有线段中,圆的直径是最长的。

14、车轮滚动一周前进的路程就是车轮的周长。

每分前进米数(速度)=车轮的周长×转数

15、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。

用字母π表示。π是一个无限不循环小数。π=3.141592653……

我们在计算时,一般保留两位小数,取它的近似值3.14。π>3.14

16、如果用C表示圆的周长,那么C=πd或C = 2πr

17、求圆的半径或直径的方法:d = C÷π r = C÷π÷2= C÷2π

18、半圆的周长等于圆周长的一半加一条直径。

C半圆= πr+2r=5.14r C半圆= πd÷2+d=2.57d

19、几个直径和为n的圆的周长=直径为n的圆的周长(如图)

圆的面积

1、圆的面积:圆所占平面的大小叫做圆的面积。用字母S(大写)表示。

1

2

上图中阴影部分就是该圆的面积。

2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。

3、圆的面积推导:

圆可以切拼成近似的长方形,长方形的面积与圆的面积相等(即S长方形=S圆);长方形的宽是圆的半径(即b=r);

长方形的长是圆周长的一半(即a=C÷2=πr)。

即:S长方形= a × b

↓↓

S圆=πr × r

=πr2所以,S圆=π r2注意:切拼后的长方形的周长比圆的周长多了两条半径。C长方形=2πr+2r =C圆+d

圆面积公式

圆的面积公式:S圆=πr2;变形可得到:r2 = S ÷ π

12 圆的面积公式: S =πr 2 ÷2或S = 12 πr 2

14 圆的面积公式: S =πr 2 ÷4 或S = 14 πr

2 注:已经圆的面积可以用变形公式求出圆的半径。

4、环形的面积:(环形的面积等于外圆面积与内圆面积的差)

4 5

一个环形,外圆的半径是R,内圆的半径是r 。(R =r +环的宽度.)

环形的面积公式:S 环 = πR2-πr2 或S 环 = π(R2-r2)。

如:上图中大圆的半径R=6cm,小圆半径r=2cm,阴影部分(圆环)的面积得: S 环 = π(62-22)cm2=32π(cm2)

注意:求环形的面积,一定要先想法分别求出外圆的半径(R )和内圆的半径(r ),再代入公式计算。一步一步的来,这样不容易错误。

注意用公式S 环 = π(R2-r2)计算时,要先算出2个平方数,再相减。切忌

相减后再平方。

5、扇形的面积计算公式:S 扇 = πr 2×360

n (n 表示扇形圆心角的度数) 注:扇形公式其实很好理解的,S=πr 2 是圆的面积,圆一周是360°,旋转一度得到的

面积是:S=πr 23601 ,如果是n 度,自然是S 扇 = πr 2×360

n 。注意n 是圆心角,如上图。

6、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小的倍数是这倍数的平方倍。

例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,

而面积扩大9倍。

7、两个圆:半径比 = 直径比 = 周长比;而面积比等于这比的平方。

如:两个圆的半径比即:r :r =2∶3,那么这两个圆的直径比和周长比都是2∶3,

而面积比是4∶9。

8、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π

圆的周长是直径的π倍,圆的周长与直径的比是π:1

圆的周长是半径的2π倍,圆的周长与半径的比是2π:1

9、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。

反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。

10、确定起跑线

(1)每条跑道的长度= 两个半圆形跑道合成的圆的周长+ 两个直道的长度。(2)每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。

(因此起跑线不同)

(3)每相邻两个跑道相隔的距离是:2×π×跑道的宽度

(4)当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。

常用的3.14的倍数:

3.14×2=6.28 3.14×3=9.42 3.14×4=12.56

3.14×5=15.7 3.14×6=18.84 3.14×7=21.98

3.14×8=25.12 3.14×9=28.26 3.14×12=37.68 3.14×14=43.96

3.14×16=50.24 3.14×18=56.52 3.14×24=75.36 3.14×25=78.5

3.14×36=113.04 3.14×49=153.86 3.14×64=200.96 3.14×81=25

4.34

常用的平方数:

12=1 22=4 32=9 42=16 52=25 62=36

72=49 82=64 92=81 102=100 112=121 122=144 132=169

142=196 152=225 162=256 172=289 182=324 192=361 202=400

人教版六年级上册知识点梳理

小学毕业考试重点课文复习资料(六年级上) 一、重点课文可能涉及到的考点 1、作者 2、文章标题及含义 3、文中重点问题 4、蕴含的哲理(中心思想) 5、写作方法(包括文体) 6、评价主要人物 7、文章情节 二、六年级上册课文重点内容 (一)第一单元重点课文:《山中访友》《草虫的村落》 ★《山中访友》 1、作者:李汉荣 2、标题含义:山中访友运用拟人手法;访,拜访;友:指山中的一切自然界的朋友。 3、重点问题: (1)说说作者在山中都拜访了哪些朋友”,想一想课文为什么以山中访友”为题。 答:作者拜访的朋友有老桥、鸟儿、露珠、树、山泉、溪流、瀑布、悬崖、白云、云雀、落花、落叶等一切自然界的朋友作者以山中访友”为题目是运用拟人的手法,将自然界的一切都称之为朋友,这样写更能激发读者的阅读兴趣。 (2 )读读下面的句子,体会这样写的好处。 ①啊,老桥,你如一位德高望重的老人,在这涧水上站了 几百年了吧? 答:作者把老桥”匕喻为一位德高望重的老人” “站”是拟人的

用法,不但写出了桥的古老,而且也突出了它默默无闻为大众服务的品质,充分表达了作者对桥的赞美和敬佩。 ②走进这片树林,鸟儿呼唤我的名字,露珠与我交换眼神。答:拟人化的手法,形象地表达了作者和鸟儿、露珠这两位朋友和作者之间的默契和亲密的情谊。 4、中心思想:作者与山中朋友”互诉心声,营造了一个如诗如画的世界,表达了作者对大自然的无限热爱。 5、写作方法:构思新奇、富有想象力的散文,米用比喻、拟人、排比等手法,使文笔生动活泼,很好地表达了对山中 朋友”的那份深厚感情。 ★《草虫的村落》 1、作者:郭枫 2、标题含义:比喻句,指虫子们的快乐天地。村落:森林边缘的小丘。 3、重点问题 (1)想一想随着作者的目光,你在草虫的村落”看到些什么。答:我们和作者一道在草虫的村落看到了街道、小巷、来来往往的村民们”花色斑斓的小圆虫、庞大的蜥蜴、甲虫音乐家们、搬运食物的村民们”、气象观测者、建筑工程师。 (2)填空:作者看到一只孤零零地在草丛中爬行的小虫, 把它想象成了(一位游侠”);看到花色斑斓的小圆虫, 把它们想象(成南国的少女”);看到振动翅膀的甲虫,

六年级数学上册圆的知识点+练习题

圆知识点总结 一、圆的意义 1、圆是由一条曲线围成的平面图形。 (以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形) 2、画圆时,针尖固定的一点是圆心,通常用字母O表示; 连接圆心和圆上任意一点的线段是半径,通常用字母r表示; 通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。 在同一个圆里,有无数条半径和直径。 在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。 3、用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆。 画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。 4、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r =d÷2) 5、圆是轴对称图形,有无数条对称轴,对称轴就是直径所在的直线。 6、圆心决定圆的位置,半径决定圆的大小。要比较两圆的大小,就是比较两个圆的直径或半径。 7、正方形里最大的圆。两者联系:边长=直径;圆的面积=78.5%正方形的面积 画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。 8、长方形里最大的圆。两者联系:宽=直径 画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以宽为直径画圆。 9、同一个圆内的所有线段中,圆的直径是最长的。 10、车轮滚动一周前进的路程就是车轮的周长。 每分前进米数(速度)=车轮的周长×转数 11、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。用字母π表示。π是一个无限不循环小数。π=3.141592653…… 我们在计算时,一般保留两位小数,取它的近似值3.14。π>3.14 二、圆的基本公式 12、如果用C表示圆的周长,那么C=πd或C = 2πr

人教版小学一到六年级数学知识点归纳

小学数学基础知识整理 一、小学数学基础知识整理(一到六年级) 小学一年级九九乘法口诀表。学会基础加减乘。 小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。 小学三年级学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。 小学四年级线角自然数整数,素因数梯形对称,分数小数计算。 小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。 小学六年级比例百分比概率,圆扇圆柱及圆锥。 二、必背定义、定理公式 三角形的面积=底×高÷2。公式S= a×h÷2 正方形的面积=边长×边长公式S= a×a 长方形的面积=长×宽公式S= a×b 平行四边形的面积=底×高公式S= a×h 梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长×宽×高公式:V=abh 长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa 圆的周长=直径×π公式:L=πd=2πr 圆的面积=半径×半径×π公式:S=πr2

圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 分数的除法则:除以一个数等于乘以这个数的倒数。 三、读懂理解会应用以下定义定理性质公式 (一)、算术方面 1、加法交换律:两数相加交换加数的位置,和不变。 2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3、乘法交换律:两数相乘,交换因数的位置,积不变。 4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5 6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。

2020最新六年级数学上册圆练习题

2020最新课程标准实验教材六年级(上册) 第四单元圆测试卷 班别:姓名:得分: 一、想一想,填一填。 1、看图填空。(单位:厘米) r=()cm 长方形的周长 d=()cm d=()cm d=()cm 是()cm 2、一个车轮的直径为55cm,车轮转动一周,大约前进()m。 3、当圆规两脚间的距离为4厘米时,画出圆的周长是()厘米。 4、两个圆的半径分别是3cm和5cm,它们的直径的比是 (),周长的比是(),面积的比是()。 5、一个圆的半径扩大2倍,它的周长扩大( )倍,面积扩大 ( )倍。 6、一个环形的外圆直径是10cm,内圆直径是8cm,它的面

积是()cm2。 7、用一根12.56分米的铁丝弯成一个圆形铁环(接口处不 计),铁环 的直径是()分米,面积是()平方分米。 8、完成下表。 圆的半径r 圆的直径d 圆的周长C 圆的面积S 2dm 6.28dm 8cm 二、火眼金睛辨对错。 1、直径总比半径长。() 2、圆心决定圆的位置,半径决定圆的大小。() 3、一个圆的面积和一个正方形的面积相等,它们的周长也一 定 相 等 。 (

)4、半圆的周长是这个圆的周长的一半。() 5、两端都在圆上的线段,直径是最长的一条。() 三、对号入座。 1、下面各图形中,对称轴最多的是()。 A、正方形 B、圆 C、等腰 三角形 2、一个钟表的分针长10cm,从2时走到4时,分针走过了()cm。 A、31.4 B、62.8 C、314 3、一个圆的周长是31.4分米,它的面积是()平方 分米。 A、78.5 B、15.7 C、314 4、圆周率π()3.14。 A、大于 B、等于 C、小于 5、一个半圆,半径是r,它的周长是()。

人教版六年级上册数学知识点整理(个人整理资料)汇编

书 香 浸 润, 励 志 成 长!第一单元 位置 1、 用数对确定点的位置,如(3,5)表示:(第三列,第五行) ↓ ↓ 竖排叫列 横排叫行 (从左往右看) (从前往后看) 2、 平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。 3、 图形左、右平移: 行不变 图形上、下平移: 列不变 第二单元 分数乘法 一、分数乘法 (一)分数乘法的意义: 1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。 例如: 98×5表示求5个9 8的和是多少? 2、分数乘分数是求一个数的几分之几是多少。 例如: 98×43表示求98的4 3是多少? (二)、分数乘法的计算法则: 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分) 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。 3、为了计算简便,能约分的要先约分,再计算。 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)、规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。 一个数(0除外)乘小于1的数(0除外),积小于这个数。 一个数(0除外)乘1,积等于这个数。 (四)、分数混合运算的运算顺序和整数的运算顺序相同。 (五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。 乘法交换律: a × b = b × a 乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律:( a + b )×c = a c + b c 二、分数乘法的解决问题 (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、画线段图: (1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。 2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面 3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几 几 。 4、写数量关系式技巧: (1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量 三、倒数 1、倒数的意义:乘积是1的两个数互为 ..倒数。 强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 (要说清谁是谁的倒数)。

六年级上册数学《圆》的知识点

认识圆及圆周长 1、圆的定义:圆是由曲线围成的一种平面图形。 2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。如下图中,中心的一点O 。一般用字母O 表示。它到圆上任意一点的距离都相等. (画圆切忌别忘记标圆心0) 3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r 表示。如下图红色线。 把圆规两脚分开,两脚之间的距离就是圆的半径。 4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d 表示。如下图蓝色线。 直径是一个圆内最长的线段。 8 5、圆心确定圆的位置,半径确定圆的大小。如果已知的是直径,我们要把直径除以2换成半径,确定圆心,然后才开始画圆。(画圆给出半径标半径r=?,给出直径标直径d=?) 要比较两圆的大小,就是比较两个圆的直径或半径。 6、在同圆或等圆内,有无数条半径,有无数条直径。同圆中所有的半径、直径都相等。 7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的 21。 用字母表示为:d = 2r 或r = 2 d 或r=d ÷2 8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线叫做对称轴。 9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。 10、常见图形的对称轴: 只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。 只有2条对称轴的图形是:长方形 只有3条对称轴的图形是:等边三角形 只有4条对称轴的图形是:正方形;

有无数条对称轴的图形是:圆、圆环。圆是轴对称图形,有无数条对称轴, 对称轴就是直径所在的直线。 11、正方形里最大的圆。两者联系:边长=直径; 圆的面积=78.5%正方形的面积 画法:(1)画出正方形的两条对角线; (2)以对角线交点为圆心,以边长为直径画圆。 12、长方形里最大的圆。两者联系:宽=直径 画法:(1)画出长方形的两条对角线; (2)以对角线交点为圆心,以宽为直径画圆。 13、同一个圆内的所有线段中,圆的直径是最长的。 14、车轮滚动一周前进的路程就是车轮的周长。 每分前进米数(速度)=车轮的周长×转数 15、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。 用字母π表示。π是一个无限不循环小数。π=3.141592653…… 我们在计算时,一般保留两位小数,取它的近似值3.14。π>3.14 16、如果用C表示圆的周长,那么C=πd或C = 2πr 17、求圆的半径或直径的方法:d = C÷π r = C÷π÷2= C÷2π 18、半圆的周长等于圆周长的一半加一条直径。 C半圆= πr+2r=5.14r C半圆= πd÷2+d=2.57d 19、几个直径和为n的圆的周长=直径为n的圆的周长(如图) 圆的面积 1、圆的面积:圆所占平面的大小叫做圆的面积。用字母S(大写)表示。 1 2 上图中阴影部分就是该圆的面积。 2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。

六年级数学上册圆知识点

第四单元圆知识点 一、 认识圆 1、圆的定义:圆是平面上的一种曲线图形。 2、圆心:用圆规画圆时,针尖所在的点叫做圆心。圆心一般用字母O 表示。 圆心到圆上任意一点的距离都相等. 3、半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r 表示。 用圆规画圆时,圆规两脚之间的距离就是圆的半径。 4、直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d 表示。 直径是一个圆内最长的线段。 5、圆心确定圆的中心位置,半径决定圆的大小。 半径相等的两个圆叫做等圆。 6、一个圆有无数条半径,无数条直径。 在同圆或等圆内,所有的半径都相等,所有的直径都相等。 7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的 2 1。 用字母表示为:d =2r 或r = 2d 8、如果一个图形沿着一条直线对折,直线两侧的部分能够完全重合,这个图形叫做轴对称图形。折痕所在的这条直线叫做对称轴。 9、圆是轴对称图形,直径所在的直线是圆的对称轴。 10、轴对称图形 11、平行四边形不是轴对称图形

二、圆的周长 1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。 2、一个圆的周长总是它的直径的3倍多一些。 3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。 用字母π表示。 (1)圆周率π是一个无限不循环小数。在计算时,一般取π ≈ 3.14。 (2)在判断时,圆的周长总是它直径的π倍,圆的周长大约是它直径的3.14倍。 圆的周长是它的半径的2π倍。 (3)世界上第一个把圆周率精确到七位小数的人是我国的数学家祖冲之。 4、圆的周长公式: C= π÷π 或C=2π÷π÷2 5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。 在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。 6、区分圆的周长的一半和半圆的周长: (1)圆的周长的一半等于圆的周长÷2 计算方法:2π r ÷ 2 即π r (2)半圆的周长等于圆的周长的一半加一条直径。计算方法:πr+2r 7、车轮转动一周,所行的路程就是圆的周长。 三、圆的面积 1、圆的面积:圆所占平面的大小叫做圆的面积。用字母S表示。 2、圆面积公式的推导: 把一个圆等分(偶数份)拼成一个近似的长方形,拼成的长方形的长近似于圆的周长的一半(πr),长方形的宽近似于圆的半径(r),圆的面积公式:S =πr2

六年级上册数学知识点归纳整理

六年级上册数学知识点归纳 整理(总7页) 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

六年级数学上册知识梳理 第一单元分数乘法 一、分数乘法意义和计算 (一)分数乘法的意义: 1、分数乘整数与整数乘法的意义相同。 都是求几个相同加数的和的简便运算。 2、分数乘分数是求一个数的几分之几是多少。 (二)、分数乘法的计算法则: 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。 注意 (1)分数的化简:分子、分母同时除以它们的最大公因数。 (2)关于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,提倡在计算过程中约分,这样简便。 (3)当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 (三)、规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。 一个数(0除外)乘小于1的数(0除外),积小于这个数。 一个数(0除外)乘1,积等于这个数。 (四)、分数混合运算的运算顺序和整数的运算顺序相同。 (五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。 乘法交换律: a×b=b×d 乘法结合律: a×b×c=a×(b×c) 乘法分配律:a×(b+c)=ab+ac 或a×(b-c)=ab-ac 二、分数乘法的解决问题 (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)

1、找单位“1”:“占”、“是”、“比”的后面,“的”前面 2、求一个数的几倍是多少;求一个数的几分之几是多少。用乘法 对应量=单位“1”的量×对应分率 第二单元位置与方向 要比较准确的确定一个物体的位置,方向和距离这两个条件缺一不可,一般通过定方向、测角度、量距离、定位置这几个基本步骤完成。 第三单元分数除法 一、倒数 1、倒数的意义:乘积是1的两个数互为倒数。 (互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。) 2、求倒数的方法: (1)、求分数的倒数:交换分子分母的位置。 (2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。 (3)、求带分数的倒数:把带分数化为假分数,再求倒数。 (4)、求小数的倒数:把小数化为分数,再求倒数。 3、1的倒数是1; 0没有倒数。 4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 二、分数除法 1、分数除法的意义: 分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。 2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。 3、规律(分数除法比较大小时): (1)当除数大于1,商小于被除数; (2)当除数小于1(不等于0),商大于被除数; (3)当除数等于1,商等于被除数。

(完整版)六年级数学总复习知识点梳理

第一部分数与代数 (一)数的认识 知识点一:数的意义和分类 自然数、整数、正数和负数、分数、百分数、小数 知识点二:计数单位和数位 1、计数单位:个、十、百……以及十分之一、百分之一、千分之一……都是计数单位。“一”是基本单位,其他单位又叫做辅助单位。 2、十进制计数法 3、数位:在计数时,计数单位要按照一定的顺序排列起来,它们所在的位置叫做数位。 4、数位顺序表 知识点三:数的大小比较 知识点四:数的性质 1、分数的基本性质: 分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。2、小数的基本性质: 小数的末尾添上0或者去掉0,小数的大小不变。 3、小数点位置移动引起小数大小变化的规律 知识点五:因数、倍数、质数、合数 1、因数和倍数 已知a、b、c均为正整数,且a×b=c,那么c就是a和b的倍数,a和b就是c的因数。倍数和因数是相互依存的。 一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它的本身;一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。一个数既是它自身的因数,又是它自身的倍数。 2、最大公因数和最小公倍数 最大公因数:几个数公有的因数,叫做这几个数的公因数,其中最大的一个,

叫做这几个数的最大公因数。 最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。 3、质数和合数 质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。最小的质数是2。 合数:一个数,如果除了1和它本身两个因数外还有别的因数,这样的数叫做合数。最小的合数是4。 1既不是质数,也不是合数。 (二)数的运算 知识点一:四则运算的意义 1、加法的意义:把两个数合并成一个数的运算。 2、减法的意义:已知两个数的和与其中的一个加数,求另一个加数的运算。 3、整数乘法的意义:求几个相同加数的和的简便运算。 4、小数乘法的意义: 小数乘整数与整数乘法的意义相同,也是求几个相同加数的和的简便运算; 一个数乘小数求这个数的十分之几、百分之几……是多少。 5、分数乘法的意义: 分数乘整数与整数乘法的意义相同,也是求几个相同加数的和的简便运算; 一个数乘分数就是求这个数的几分之几是多少。 6、除法的意义:已知两个因数的积和其中的一个因数,求另一个因数的运算。 知识点二:四则运算的法则 整数加减法,小数加减法,分数加减法,整数乘法,分数乘法,整数除法,小数除法,分数除法 知识点三:四则混合运算 加法和减法叫做第一级运算,乘法和除法叫做第二级运算。 在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,再做第一级运算。 在一个有括号的算式里,要先算小括号里面,再算中括号里面的,最后算大括号里面的。 知识点四:运用定律,使计算简便 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc) 乘法分配律:a(b+c)=ab+ac 知识点五:通过运算解决问题 (三)式与方程 知识点一:用字母表示数、运算定律和计算公式

六年级数学上册圆的专项练习

六年级数学上册圆的专项练习 一、填空题: 1、圆是平面上的一种()图形。 2、一个圆的直径扩大2倍,它的半径扩大()倍。 3、两个圆的半径的比是2:3,它们直径的比是()。 4、一个圆形花坛的半径2.25米,直径是()米。 5、一个圆的直径扩大4倍,半径扩大()倍。 6、画一个直径8厘米的圆,圆规两脚间的距离是()厘米。 7、在一张长6厘米,宽4厘米的长方形纸片上画一个最大的圆,这个圆的半径是()厘米;如果画一个最大的半圆,这个圆的半径是()厘米。 8、圆的半径扩大5倍,直径扩大()倍。 9、小圆半径2厘米,大圆半径6厘米,小于半径是大圆半径的(),小于直径是大圆直径的()。 10、小圆半径6厘米,大圆半径8厘米。大圆和小圆半径的比是();直径的比是()。 11、圆是平面内的一种()图形,它有()条对称轴。 12、在同一个圆中,所有的()都相等;所有的()都相等。它俩之间的关系可以用()表示;也可以用()表示。 13、画圆时固定的一点是圆的(), ()叫做半径, ()叫做直径。 14、用圆规画一个直径10厘米的圆,圆规两脚间的距离应是()厘米。 二、判断题: 1、圆的半径有无数条。………………………………………………………… () 2、圆的直径是半径的2倍。…………………………………………………… () 3、圆有无数条对称轴。………………………………………………………()

4、圆的半径都相等。…………………………………………………………() 5、直径4厘米的圆与半径2厘米的圆一样大。……………………………… () 6、直径总比半径长。.............................................() 7、圆心决定圆的位置,半径决定圆的大小。 ........................() 8、两端都在圆上的线段,直径是最长的一条。.......................() 9、把一张圆形纸片对折若干次,所有折痕相交于圆心...............( ) 10、圆的半径扩大3倍,它的直径就扩大6倍。.......................( ) 11、圆的直径都相等。……………………………………………() 12、经过一点可以画无数个圆。…………………………………() 13、等腰三角形、等腰梯形都是轴对称图形。……………………() 三、选择题: 1、直径是通过圆心并且两端都在圆上的()。 A 线段 B 直线 C 射线 2、圆中最长的线段是圆的()。 A 周长 B 直径 C 半径 D 无法确定 3、画圆时,()决定圆的位置,()决定圆的大小。 A 圆规 B 半径 C 圆心 D 无法确定 4、小圆半径4厘米,大圆半径6厘米,大、小圆直径的比是(); 大。 A 2:3 B 3:2 C 4:9 D 9:4 5、一个圆的半径扩大a倍,直径扩大()倍。 A 2 B a C 2a D ∏ E 2∏ F a2 6、下面的图形只有两条对称轴的是() A 长方形 B 正方形 C 等边三角形 D 圆 7、在一个长5厘米、宽3厘米的长方形中画一个最大的圆,它的半径是()。 A 5厘米 B 3厘米 C 2.5厘米 D 1.5厘米

北师大版六年级上册数学圆练习题

北师大版六年级上册数学圆练习题 一、填空题。 1、把一个圆分成若干等份,剪开拼成一个近似的长方形。这个长方形的长相当于(),长方形的宽就是圆的()。因为长方形的面积是(),所以圆的面积是()。 2、圆的直径是6厘米,它的周长是(),面积是()。 3、圆的周长是25.12分米,它的面积是()。 4、甲圆半径是乙圆半径的3倍,甲圆的周长是乙圆周长的(),甲圆面积是乙圆面积的()。 5、一个圆的半径是8厘米,这个圆的面积是()平方厘米。 6、周长相等的长方形、正方形、圆,()面积最大。 7、圆的半径由6厘米增加到9厘米,圆的面积增加了()平方厘米。 8、要在一个边长为10厘米的正方形纸板里剪出一个最大的圆,剩下的面积是()。 9、要在底面半径是12厘米的圆柱形水桶外面打上一个铁丝箍,接头部分是8厘米,需用铁丝()厘米。 10、用圆规画一个圆,如果圆规两脚之间的距离是7厘米,画出的这个圆的周长是()厘米,这个圆的面积是()平方厘米。 11、圆的半径扩大3倍,它的直径扩大()倍,周长扩大()倍,面积就扩大()。 12、用长12.56厘米的铁丝分别围成一个正方形、圆、长方形,()的面积最大。 13、一个半圆的直径是8厘米,这个半圆的面积是()平方厘米。 14、一个正方形的边长是6厘米,在这个正方形里面画一个最大的圆,圆的面积是()平方厘米。 15、一根铁丝可围成边长是3.14厘米的正方形,如果用这根铁丝围成一个圆,圆的半径是()厘米,面积是()平方厘米。 16、两个半径不同的同心圆,内半径是3厘米,外直径是8厘米,圆环的面积是()平方厘米。 。))2CM,它的周长是( CM,面积是(、一个圆的半径是17 )。 518、用米长2CM 的绳子将一只羊拴在一根木桩上,这只羊的最大活动面积是( 3 / 1 二、解决问题。 1、把一只羊用3米长的绳子拴在一根木桩上,这只羊能吃到草的最大面积是多少米?

小学六年级数学知识点归纳总结

小学六年级数学知识点归纳总结 六年级上册 知识点概念总结 1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。 2.分数乘法的计算法则: 分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。 3.分数乘法意义 分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。 4.分数乘整数:数形结合、转化化归 5.倒数:乘积是1的两个数叫做互为倒数。 6.分数的倒数 找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。 7.整数的倒数 找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。 8.小数的倒数: 普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1 9.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。 11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。 12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。 13.分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。 14.比和比例: 比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。 所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个. 15.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。 比的性质用于化简比。 比表示两个数相除;只有两个项:比的前项和后项。 比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。 16.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。

人教版六年级上册数学知识点整理

1 第一单元 位置 1、 用数对确定点的位置,如(3,5)表示:(第三列,第五行) ↓ ↓ 竖排叫列 横排叫行 (从左往右看) (从前往后看) 2、 平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。 3、 图形左、右平移: 行不变 图形上、下平移: 列不变 第二单元 分数乘法 一、分数乘法 (一)分数乘法的意义: 1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。 例如: 98×5表示求5个98 的和是多少? 2、分数乘分数是求一个数的几分之几是多少。 例如: 98 ×43表示求98的43 是多少? (二)、分数乘法的计算法则: 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分) 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。 3、为了计算简便,能约分的要先约分,再计算。 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 (三)、规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。 一个数(0除外)乘小于1的数(0除外),积小于这个数。 一个数(0除外)乘1,积等于这个数。

2 (四)、分数混合运算的运算顺序和整数的运算顺序相同。 (五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。 乘法交换律: a × b = b × a 乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律:( a + b )×c = a c + b c 二、分数乘法的解决问题 (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、画线段图: (1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。 2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面 3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几 几 。 4、写数量关系式技巧: (1)“的”相当于“×”“占”、“是”、“比”相当于“÷”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量 三、倒数 1、倒数的意义:乘积是1的两个数互为 ..倒数。 强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 (要说清谁是谁的倒数)。 2、求倒数的方法: (1)、求分数的倒数:交换分子分母的位置。 (2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。 (3)、求带分数的倒数:把带分数化为假分数,再求倒数。 (4)、求小数的倒数:把小数化为分数,再求倒数。

六年级数学上册圆单元重点公式

1.圆周长=直径×圆周率=半径×2×圆周率 2.半圆形周长=πr+2r=(π+2)r=5.14r(注意:半圆形周长不同于圆周长的一半,前者要加直径) 3.圆面积=半径2×圆周率=(直径÷2)2×圆周率=(周长÷圆周率÷2)2×圆周率 4.圆环面积=(R2-r2)×圆周率 5.外圆内方阴影面积=1.14r2 6.外方内圆阴影面积=0.86r2 3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×42=50.24 3.14×52=78.5 3.14×62=113.04 1.圆周长=直径×圆周率=半径×2×圆周率 2.半圆形周长=πr+2r=(π+2)r=5.14r(注意:半圆形周长不同于圆周长的一半,前者要加直径) 3.圆面积=半径2×圆周率=(直径÷2)2×圆周率=(周长÷圆周率÷2)2×圆周率 4.圆环面积=(R2-r2)×圆周率 5.外圆内方阴影面积=1.14r2 6.外方内圆阴影面积=0.86r2 3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×42=50.24 3.14×52=78.5 3.14×62=113.04 1.圆周长=直径×圆周率=半径×2×圆周率 2.半圆形周长=πr+2r=(π+2)r=5.14r(注意:半圆形周长不同于圆周长的一半,前者要加直径) 3.圆面积=半径2×圆周率=(直径÷2)2×圆周率=(周长÷圆周率÷2)2×圆周率 4.圆环面积=(R2-r2)×圆周率 5.外圆内方阴影面积=1.14r2 6.外方内圆阴影面积=0.86r2 3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×42=50.24 3.14×52=78.5 3.14×62=113.04 1.圆周长=直径×圆周率=半径×2×圆周率 2.半圆形周长=πr+2r=(π+2)r=5.14r(注意:半圆形周长不同于圆周长的一半,前者要加直径) 3.圆面积=半径2×圆周率=(直径÷2)2×圆周率=(周长÷圆周率÷2)2×圆周率 4.圆环面积=(R2-r2)×圆周率 5.外圆内方阴影面积=1.14r2 6.外方内圆阴影面积=0.86r2 3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×42=50.24 3.14×52=78.5 3.14×62=113.04 1.圆周长=直径×圆周率=半径×2×圆周率 2.半圆形周长=πr+2r=(π+2)r=5.14r(注意:半圆形周长不同于圆周长的一半,前者要加直径) 3.圆面积=半径2×圆周率=(直径÷2)2×圆周率=(周长÷圆周率÷2)2×圆周率 4.圆环面积=(R2-r2)×圆周率 5.外圆内方阴影面积=1.14r2 6.外方内圆阴影面积=0.86r2 3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×42=50.24 3.14×52=78.5 3.14×62=113.04 1.圆周长=直径×圆周率=半径×2×圆周率 2.半圆形周长=πr+2r=(π+2)r=5.14r(注意:半圆形周长不同于圆周长的一半,前者要加直径) 3.圆面积=半径2×圆周率=(直径÷2)2×圆周率=(周长÷圆周率÷2)2×圆周率 4.圆环面积=(R2-r2)×圆周率 5.外圆内方阴影面积=1.14r2 6.外方内圆阴影面积=0.86r2 3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×42=50.24 3.14×52=78.5 3.14×62=113.04

人教版六年级上册数学知识点整理(个人整理资料)

第一单元 位置 1、 用数对确定点的位置,如(3,5)表示:(第三列,第五行) 竖排叫列 横排叫行 (从左往右看) (从前往后看) 2、 平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。 3、 图形左、右平移: 行不变 图形上、下平移: 列不变 第二单元 分数乘法 一、分数乘法 (一)分数乘法的意义: 1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。 例如: 98×5表示求5个9 8 的和是多少? 2、分数乘分数是求一个数的几分之几是多少。 例如: 98×4 3表示求 98的4 3是多少? (二)、分数乘法的计算法则: 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分) 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。 3、为了计算简便,能约分的要先约分,再计算。 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 (三)、规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。 一个数(0除外)乘小于1的数(0除外),积小于这个数。 一个数(0除外)乘1,积等于这个数。 (四)、分数混合运算的运算顺序和整数的运算顺序相同。 (五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。 乘法交换律: a × b = b × a 乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律: ( a + b )×c = a c + b c 二、分数乘法的解决问题 (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、画线段图: (1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。 2、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面 3、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数×几 几 。 4、写数量关系式技巧: (1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ” (2)分率前是“的”: 单位“1”的量×分率=分率对应量 (3)分率前是“多或少”的意思: 单位“1”的量×(1±分率)=分率对应量 三、倒数 1、倒数的意义: 乘积是1的两个数互为.. 倒数。 强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 (要说清谁是谁的倒数)。 2、求倒数的方法: (1)、求分数的倒数:交换分子分母的位置。 (2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。 (3)、求带分数的倒数:把带分数化为假分数,再求倒数。 (4)、求小数的倒数: 把小数化为分数,再求倒数。 3、1的倒数是1; 0没有倒数。 因为1×1=1;0乘任何数都得0, 1 (分母不能为0) 4、 对于任意数(0)a a ≠,它的倒数为 1a ;非零整数 a 的倒数为 1a ;分数 b a 的倒数是 a b ; 5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 第三单元 分数除法 一、 分数除法 1、分数除法的意义: 乘法: 因数 × 因数 = 积 除法: 积 ÷ 一个因数 = 另一个因数 分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。 2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。 3、 规律(分数除法比较大小时): (1)、当除数大于1,商小于被除数; (2)、当除数小于1(不等于0),商大于被除数; (3)、当除数等于1,商等于被除数。 4、 “ []”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。 二、分数除法解决问题 (未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”的量。 ) 1、数量关系式和分数乘法解决问题中的关系式相同: (1)分率前是“的”: 单位“1”的量×分率=分率对应量 (2)分率前是“多或少”的意思: 单位“1”的量×(1 ±分率)=分率对应量 2、解法:(建议:最好用方程解答) (1)方程: 根据数量关系式设未知量为X ,用方程解答。 (2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量 3、求一个数是另一个数的几分之几:就 一个数÷另一个数 4、求一个数比另一个数多(少)几分之几: 两个数的相差量÷单位“1”的量 或:

人教版六年级数学上册圆单元测试题

人教版六年级数学上册:圆的单元测试题 一、直接写出得数.(每题1分) 20×54= 3-0.73= 32÷2= 122= 43÷5 3= 31+92= 52-42= 85-8 3= 3π= 5π= 152= 0.35÷0.7= 二、填空题. 1、圆有( )条直径.同一圆内,所有直径的长度都( ),直径长度是半径的( )倍. 2、一个圆的半径是1dm,直径是( ),周长是( ),面积是( ). 3、一个圆的的直径是12厘米,它的半径是( )厘米,周长是( ). 4、要画一个周长是25.12厘米的圆,圆规两脚间的距离是( ). 5、一个时钟的时针长4厘米,它转动一周形成的图形是( ),这根时针的尖端转动一昼夜所走的路程是( )厘米. 6一块圆形菜地,它一周篱笆的长为18.84m,那么它的半径是( )m,这块地的面积是( )m 2. 7、大小两圆直径之比是2∶1,则它们的周长之比是( ),面积之比是( ). 8、从边长是6cm 的正方形纸片中剪出一个最大的圆,圆的直径是( ),它的周长是( ). 9、圆有( )条对称轴,长方形有( )条对称轴,正方形有( )条对称轴,等边三角形有( )对称轴. 10、下图是把圆平均分成若干等份后拼成的一个近似的长方形.已知长方形的宽是5cm,求这个长方形的长是( )cm,面积是( )cm 2. 二、判断题. 1.半径是2厘米的圆,它的周长与面积相等. ( ) 2.圆的周长与它的直径的比值是 3.14 . ( ) 3.圆的直径就是它的对称轴. ( ) 4.周长相等的圆、正方形和等边三角形中,正方形的面积最大. ( ) 5.大圆和小圆直径的比是3∶1,大圆和小圆周长的比是3∶1 .( ) 三、选择题. 1.要画一个直径是5cm 的圆,圆规两脚之间的距离是( ). A.2.5cm B.5cm C.10cm 2.如果圆的半径扩大到5倍,那么它的面积也扩大到它的( ). A.5倍 B.10倍 C.25倍.

相关文档
相关文档 最新文档