文档库 最新最全的文档下载
当前位置:文档库 › 2019年高考全国1卷理科数学及答案

2019年高考全国1卷理科数学及答案

2019年高考全国1卷理科数学及答案
2019年高考全国1卷理科数学及答案

11

答案解析

全国统一高考数学试卷(理科)(全国一卷)

绝密★启用前 全国统一高考数学试卷(理科)(新课标Ⅰ) 一、选择题:本题共12小题, 每小题5分, 共60分。在每小题给出的四个选项中, 只 有一项是符合题目要求的。 1.已知集合}242{60{}M x x N x x x =-<<=--<,, 则M N I = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 2.设复数z 满足=1i z -, z 在复平面内对应的点为(x , y ), 则 A .22 +11()x y += B .221(1)x y +=- C .22(1)1y x +-= D .2 2(+1)1y x += 3.已知0.20.32 log 0.220.2a b c ===,,, 则 A .a b c << B .a c b << C .c a b << D .b c a << 4.古希腊时期, 人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 512-( 51 2 -≈0.618, 称为黄金分割比例), 著名的“断臂维纳斯”便是如此.此外, 最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 51 -.若某人满足上述两个黄金分割比例, 且腿长为105 cm, 头顶至脖子下端的长度为26 cm, 则其身高可能是

A .165 cm B .175 cm C .185 cm D .190 cm 5.函数f (x )= 2 sin cos ++x x x x 在[,]-ππ的图像大致为 A . B . C . D . 6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个 爻组成, 爻分为阳爻“——”和阴爻“— —”, 如图就是一重卦.在所有重卦中随机取一重卦, 则该重卦恰有3个阳爻的概率是 A . 516 B . 1132 C . 2132 D . 1116 7.已知非零向量a , b 满足||2||=a b , 且()-a b ⊥b , 则a 与b 的夹角为 A . π6 B . π3 C . 2π3 D . 5π6 8.如图是求 112122 + +的程序框图, 图中空白框中应填入

全国统一高考数学试卷(理科全国卷1)

2016年全国统一高考数学试卷(理科)(新课标Ⅰ) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)(2016?新课标Ⅰ)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3) 2.(5分)(2016?新课标Ⅰ)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=() A.1 B.C.D.2 3.(5分)(2016?新课标Ⅰ)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97 4.(5分)(2016?新课标Ⅰ)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是() 《 A.B.C.D. 5.(5分)(2016?新课标Ⅰ)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距 离为4,则n的取值范围是() A.(﹣1,3)B.(﹣1,) C.(0,3) D.(0,) 6.(5分)(2016?新课标Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是() A.17πB.18πC.20πD.28π 7.(5分)(2016?新课标Ⅰ)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()

A.B.C. D. 8.(5分)(2016?新课标Ⅰ)若a>b>1,0<c<1,则() A.a c<b c B.ab c<ba c : C.alog b c<blog a c D.log a c<log b c 9.(5分)(2016?新课标Ⅰ)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足() A.y=2x B.y=3x C.y=4x D.y=5x 10.(5分)(2016?新课标Ⅰ)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()

2019年高考数学理科全国三卷

2019年高考数学理科 全国三卷 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2019年普通高等学校招生全国统一考试 理科数学(全国三卷) 一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。) 1.已知集合{}1,0,1,2A =-,{} 2|1B x x =≤,则A B =() A. {1,0,1}- B.{0,1} C.{1,1}- D. {0,1,2} 2.若(1)2z i i +=,则z =() A. 1i -- B. 1i -+ C. 1i - D. 1i + 3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为() A. 0.5 B. 0.6 C. 0.7 D. 0.8 4.24(12)(1)x x ++的展开式中x 3的系数为() A. 12 B. 16 C. 20 D. 24 5.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=() A. 16 B. 8 C. 4 D. 2 6.已知曲线ln x y ae x x =+在(1,)ae 处的切线方程为y =2x +b ,则() A.,1a e b ==- B.,1a e b == C.1,1a e b -== D.1,1a e b -==- 7.函数3 222 x x x y -=+在[6,6]-的图像大致为() A. B. C. D.

全国高考理科数学[全国一卷]试题及答案解析

全国普通高等学校招生全国统一考试 (全国一卷)理科数学 一、选择题:(本题有12小题, 每小题5分, 共60分。) 1、设z= , 则∣z ∣=( ) A.0 B. 12 C.1 D. 2 2、已知集合A={x|x 2-x-2>0}, 则CR A =( ) A 、{x|-12} D 、{x|x ≤-1}∪{x|x ≥2} 3、某地区经过一年的新农村建设, 农村的经济收入增加了一倍, 实现翻番, 为更好地了解该地区农村的经济收入变化情况, 统计了该地区新农村建设前后农村的经济收入构成比例, 得到如下饼图: 则下面结论中不正确的是( ) A. 新农村建设后, 种植收入减少 B. 新农村建设后, 其他收入增加了一倍以上 C. 新农村建设后, 养殖收入增加了一倍 D. 新农村建设后, 养殖收入与第三产业收入的总和超过了经济收入的一半 4、记S n 为等差数列{a n }的前n 项和, 若3S 3 = S 2+ S 4, a 1 =2, 则a 5 =( ) A 、-12 B 、-10 C 、10 D 、12 5、设函数f (x )=x 3+(a-1)x 2+ax .若f (x )为奇函数, 则曲线y= f (x )在点(0, 0)处的切线方程为( ) 建设后经济收入构成比例 建设前经济收入构成比例

A.y= -2x B.y= -x C.y=2x D.y=x 6、在?ABC中, AD为BC边上的中线, E为AD的中点,则EB=() A. 34 AB - 14 AC B. 14 AB - 34 AC C. 34 AB + 14 AC D. 14 AB + 34 AC 7、某圆柱的高为2,底面周长为16,其三视图如右图。圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为() A. 217 B. 25 C. 3 D. 2 8.设抛物线C:y2=4x的焦点为F,过点(-2, 0)且斜率为23的直线与C交于M, N两点,则FM ·FN =( ) A.5 B.6 C.7 D.8 9.已知函数f(x)= g(x)=f(x)+x+a,若g(x)存在2个零点,则a的取值范 围是( ) A. [-1, 0) B. [0, +∞) C. [-1, +∞) D. [1, +∞) 10.下图来自古希腊数学家希波克拉底所研究的几何图形。此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB, AC. △ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为 p 1, p 2 , p 3 ,则( ) A. p 1 =p 2 B. p 1 =p 3 C. p 2 =p 3 D. p 1 =p 2 +p 3 11.已知双曲线C:x23 - y2=1, O为坐标原点, F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N. 若△OMN为直角三角形,则∣MN∣=( )

2019-2020年高考等值预测卷(全国Ⅲ卷)数学(文)试卷及答案

高考等值试卷★预测卷 文科数学(全国Ⅲ卷) 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只 有一项是符合题目要求的。 1.设集合A ={x |x 2≤x },B ={x ||x |≥1},则A ∩B = A .? B .[01], C .{1} D .()-∞+∞, 2.已知i 为虚数单位,复数z 满足z (1+i)=2i ,则z = A .2 B .1+i C .-1+i D .1-i 3.改革开放40年来,我国综合国力显著提升,人民生活水平有了极大提高,也在不断追求美好生活.有研究所统计了近些年来空气净化器的销量情况,绘制了如图的统计图.观察统计图,下列说法中不正确的是 A .2012年——2018年空气净化器的销售量逐年在增加 B .2016年销售量的同比增长率最低 C .与2017年相比,2018年空气净化器的销售量几乎没有增长 D .有连续三年的销售增长率超过30% 4.下列函数是奇函数且在R 上是增函数的是 A .()sin f x x x = B .2()f x x x =+ C .()e x f x x = D .()e e x x f x -=- 100 200 300 400 500 600 700 800 900 0% 10% 20% 30% 40% 50% 60% 70% 80% 100% 90% 2012年 2013年 2014年 2015年 2016年 2017年 2018年 ? ? ? ? ? ? ? 空气净化器销售量(万台) 同比增长率(%)

高考真题理科数学全国卷

2018年普通高等学校招生全国统一考试 数学(理)(全国II 卷) 一.选择题(共12小题,每小题5分,共60分。在每小题列出的四个选项中,选出符合题目要求的一项) 1.1212i i +=-()(A )4355i --(B )4355i -+(C )3455i --(D )3455 i -+ 2.已知集合(){}22,|3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为() (A )9 (B )8 (C )5(D )4 3.函数()2x x e e f x x --=的图像大致为() 4.已知向量,a b 满足||1a =,1a b ?=-,则() 2a a b ?-=() (A )4(B )3(C )2(D )0 5.双曲线()22 2210,0x y a b a b -=>>的离心率为3,则其渐近线方程为() (A )2y x =±(B )3y x =±(C )22y x =±(D )32 y x =± 6.在ABC ?中,5cos 25 C =,1BC =,5AC =,则AB =() (A )42(B )30(C )29( D )25 7.为计算11111123499100 S =-+-++-,设计了下面的程序框图,则在空白框中应填入() (A )1i i =+ (B )2i i =+ (C )3i i =+ (D )4i i =+ 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+。在不超过 30的素数中,随机选取两个不同的数,其和等于30的概率是()(A )112(B )114 (C )115(D )118

2019年高考理科全国1卷数学(含答案解析)

2019年普通高等学校招生全国统一考试 理科数学 本试卷共4页,23小题,满分150分,考试用时120分钟。 注意事项: 1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。 2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合{} }2 42{60M x x N x x x =-<<=--<,,则M N ?=( ) A. }{43x x -<< B. }{42x x -<<- C. }{22x x -<< D. }{23x x << 2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则( ) A. 2 2 +11()x y += B. 22 (1)1x y -+= C. 22 (1)1x y +-= D. 2 2(+1)1y x += 3.已知0.20.3 2log 0.2,2,0.2a b c ===,则( ) A. a b c << B. a c b << C. c a b << D. b c a << 4. ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体 .若某人满足上述两个黄金分割

2019-2020年高考模拟预测数学(理)试题 含答案

2019-2020年高考模拟预测数学(理)试题含答案 参考公式: 如果事件A、B互斥,那么P(A+B)=P(A)+P(B) 如果事件A、B相互独立,那么P(A·B)=P(A)·P(B) 如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率P n(k)=C n k P k(1-P)n-k 球的表面积公式:S=4πR2,球的体积公式:V=πR3,其中R表示球的半径 数据x1,x2,…,x n的平均值,方差为:s2= 222 12 ()()() n x x x x x x n -+-++- 第I卷(选择题共60分) 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集U={1,2,3,4,5},集合M={1,2,3},N={3,4,5},则M∩(c U N)=() A. {1,2} B.{4,5} C.{3} D.{1,2,3,4,5} 2. 复数z=i2(1+i)的虚部为() A. 1 B. i C. -1 D. - i 3.正项数列{a n}成等比,a1+a2=3,a3+a4=12,则a4+a5的值是() A. -24 B. 21 C. 24 D. 48 4.一组合体三视图如右,正视图中正方形 边长为2,俯视图为正三角形及内切圆, 则该组合体体积为() A. 2 B. C. 2+ D. 5.双曲线以一正方形两顶点为焦点,另两顶点在 双曲线上,则其离心率为() A. 2 B. +1 C. D. 1 6.在四边形ABCD中,“=2”是“四边形ABCD为梯形”的() A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 7.积分的值为() A. e B. e-1 C. 1 D. e2 8.设P在上随机地取值,求方程x2+px+1=0有实根的概率为() A. 0.2 B. 0.4 C. 0.5 D. 0.6

2017高考全国Ⅰ卷理科数学试卷及答案(word版)

绝密★启用前 2017年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A ={x |x <1},B ={x |31x <},则 A. {|0}A B x x =< B. A B =R C. {|1}A B x x => D. A B =? 2.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A. 14 B. π8 C. 12 D. π4 3.设有下面四个命题 1:p 若复数z 满足1z ∈R ,则z ∈R ; 2:p 若复数z 满足2z ∈R ,则z ∈R ; 3:p 若复数12,z z 满足12z z ∈R ,则12z z =; 4:p 若复数z ∈R ,则z ∈R . 其中的真命题为

A.13,p p B.14,p p C.23,p p D.24,p p 4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,48S =,则{}n a 的公差为 A .1 B .2 C .4 D .8 5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3] 6.621(1)(1)x x ++展开式中2x 的系数为 A.15 B.20 C.30 D.35 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 A.10 B.12 C.14 D.16 8.右面程序框图是为了求出满足3n -2n >1000的最小偶数n ,那么在 和两个空白框中,可以分别 填入

全国三卷9年高考理科数学试卷分析及2019高考预测

2019年高考,除北京、天津、上海、江苏、浙江等5省市自主命题外,其他26个省市区全部使用全国卷. 研究发现,课标全国卷的试卷结构和题型具有一定的稳定性和连续性.每个题型考查的知识点、考查方法、考查角度、思维方法等相对固定.掌握了全国卷的各种题型,就把握住了全国卷 命题的灵魂.基于此,笔者潜心研究近3年全国高考理科数学Ⅲ卷和高考数学考试说明,精心分类汇总了全国卷近3年所有题型.为了便于读者使用,所有题目分类(共22类)列于表格之中,按年份排序.高考题的小题(填空和选择)的答案都列在表格的第三列,便于同学们及时解答对照答案,所有解答题的答案直接列在题目之后,方便查看. 一、集合与常用逻辑用语小题: 1.集合小题: 3年3考,每年1题,都是交并补子运算为主,多与不等式交汇,新定义运算也有较小的可 1.已知集合22{(,)1}A x y x y =+=,{(,)}B x y y x ==,则A B 中元素的个数为 3年0考.这个考点一般与其他考点交汇命题,不单独出题. 二、复数小题: 3年3考,每年1题,以四则运算为主,偶尔与其他知识交汇,难度较小.一般涉及考查概2.设复数z 满足(1)2i z i +=,则||z = 全国三卷9年高考理数学分析及2019高考预测

三、平面向量小题: 3年3考,每年1题,向量题考的比较基本,突出向量的几何运算或代数运算,一般不侧重 3年7考.题目难度较小,主要考察公式熟练运用,平移,由图像性质、化简求值、解三角形等问题(含应用题),基本属于“送分题”.三角不考大题时,一般考三个小题,三角函数的图

3年6考,每年2题,一般考三视图和球,主要计算体积和表面积.球体是基本的几何体, 8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()

2016全国一卷理科数学高考真题及答案

2016年普通高等学校招生全国统一考试(全国卷Ⅰ) 理科数学 一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求 的. 1.设集合{ }2 430A x x x =-+<,{ } 230x x ->,则A B =I (A )33,2??-- ??? (B )33,2??- ??? (C )31,2?? ??? (D )3,32?? ??? 2.设yi x i +=+1)1(,其中y x ,是实数,则=+yi x (A )1 (B )2 (C )3 (D )2 3.已知等差数列{}n a 前9项的和为27,108a =,则100a = (A )100 (B )99 (C )98 (D )97 4.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A )13 (B )12 (C )23 (D )3 4 5.已知方程22 2 213x y m n m n -=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是 (A )()1,3- (B )(- (C )()0,3 (D )( 6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是 283 π ,则它的表面积是 (A )17π (B )18π (C )20π (D )28π 7.函数2 2x y x e =-在[]2,2-的图像大致为 (A ) B ) (C ) D )

8.若101a b c >><<,,则 (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c < 9.执行右面的程序框图,如果输入的011x y n ===,,,则输出x ,y 的值满足 (A )2y x = (B )3y x = (C )4y x = (D )5y x = 10.以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB |= DE|=则C 的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)8 11.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α αI α I 21 3 知函数 ()sin()(0),2 4 f x x+x π π ω?ω?=>≤ =- , 为()f x 的零 点,4 x π= 为()y f x =图像的对称轴,且()f x 在51836ππ?? ?? ?,单调,则ω的最大值为 (A )11????????(B )9?????(C )7????????(D )5 二、填空题:本大题共3小题,每小题5分 13.设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = . 14.5(2x 的展开式中,x 3的系数是 .(用数字填写答案) 15.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 . 16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料,乙材料,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分为12分) ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c = (I )求C ; 结束

2019年高考数学试题分项版—统计概率(原卷版)

2019年高考数学试题分项版——统计概率(原卷版) 一、选择题 1.(2019·全国Ⅰ文,6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是() A.8号学生B.200号学生 C.616号学生D.815号学生 2.(2019·全国Ⅱ文,4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为() A. B. C. D. 3.(2019·全国Ⅱ文,5)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高. 成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为() A.甲、乙、丙B.乙、甲、丙 C.丙、乙、甲D.甲、丙、乙 4.(2019·全国Ⅲ文,3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是() A. B. C. D. 5.(2019·全国Ⅲ文,4)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为() A.0.5 B.0.6 C.0.7 D.0.8 6.(2019·浙江,7)设0<a<1.随机变量X的分布列是() 则当a在(0,1)内增大时,()

2018年高考全国卷一理科数学(含答案)

绝密★启用前 2018年普通高等学校招生全国统一考试 (新课标Ⅰ卷) 理科数学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。 一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设,则( ) A .0 B . C . D . 2.已知集合,则 ( ) A . B . C . D . 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图: 此卷 只装 订不密封 班级 姓名 准考证号 考场号 座位号

则下面结论中不正确的是() A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记为等差数列的前项和.若,,则()A.B.C.D.12 5.设函数.若为奇函数,则曲线在点处的切线方程为() A.B.C.D. 6.在中,为边上的中线,为的中点,则() A.B. C.D. 7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为, 则在此圆柱侧面上,从到的路径中,最短路径的长度为() A.B.C.D.2 8.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则() A.5 B.6 C.7 D.8 9.已知函数,,若存在2个零点,则的取值范围是() A.B.C.D. 10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,

2019年高考真题理科数学(全国II卷)

AB=(2,3),AC=(3,t),|BC|=1,则AB?BC=( ) M233 3

7.8.9.10.11. 12.13.设α,β为两个平面,则α∥β的充要条件是( ) α内有无数条直线与β平行 α内有两条相交直线与β平行α,β平行于同一条直线α,β垂直于同一平面 若抛物线y =2px(p>0)的焦点是椭圆x 23p +y 2p =1的一个焦点,则p=( ) 2348下列函数中,以π2为周期且在区间(π4,π2 )单调递增的是( )f(x)=|cos2x| f(x)=|sin2x|f(x)=cos|x|f(x)=sin|x|已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( )15553325 5设F为双曲线C:x 2a 2-y 2b 2 =1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x +y =a 交于P,Q两点.若|PQ|=|OF|,则C的离心率为( )2325 设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x-1).若对任意x∈(-∞,m],都有f(x)≥-89 ,则m的取值范围是( )(-∞,94](-∞,73](-∞,52](-∞,83 ]我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 . A. B. C. D. 2A. B. C. D. A. B. C. D. A. B. C. D. 222A. B. C. D. A. B. C. D.

2018高考全国1卷理科数学试卷及答案

绝密★启用前 2018年普通高等学校招生全国统一考试 (全国一卷)理科数学 一、选择题,本题共12小题,每小题5份,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 设i i i z 211++-=,则=z A.0 B. 2 1 C.1 D.2 2. 已知集合{ } 02|2 >--=x x x A ,则=A C R A. {}21|<<-x x B.{}21|≤≤-x x C.{}{}2|1|>-

线方程为 A.x y 2-= B.x y -= C.x y 2= D.x y = 6.在ABC ?中,AD 为BC 边上的中线,E 为AD 的中点,则=EB A.AC AB 4143- B.AC AB 43 41- C.AC AB 4143+ D.AC AB 4 341+ 7.某圆柱的高为2,地面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A.172 B.52 C.3 D.2 8.设抛物线x y C 4:2 =的焦点为F ,过点()0,2-且斜率为 3 2 的直线与C 交于N M ,两点,则=?FN FM A.5 B.6 C.7 D.8 9.已知函数()()()a x x f x g x x x e x f x ++=?? ?>≤=,0 ,ln 0 ,,若()x g 存在2个零点,则a 的取值范围是 A.[)0,1- B.[)+∞,0 C.[)+∞-,1 D.[)+∞,1 10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成。三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AC AB ,,ABC ?的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。在整个图形中随机取一点,此点取自的概率分别记为321,,p p p ,则 A B

2019年高考数学上海卷及答案解析

数学试卷 第1页(共14页) 数学试卷 第2页(共14页) 绝密★启用前 2019年普通高等学校招生全国统一考试(上海卷) 数 学 本试卷满分150分,考试时间120分钟. 第Ⅰ卷(选择题 共36分) 一、填空题(本大题共12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知集合{1,2,3,4,5}A =,{356}B =,,,则A B = . 2.计算2 2231lim 41 n n n n n →∞-+=-+ . 3.不等式|1|5x +<的解集为 . 4.函数2()(0)f x x x =>的反函数为 . 5.设i 为虚数单位,365z i i -=+,则||z 的值为 6.已知2 221 4x y x a y a +=-??+=? ,当方程有无穷多解时,a 的值为 . 7 .在6 x ? ? 的展开式中,常数项等于 . 8.在ABC △中,3AC =,3sin 2sin A B =,且1 cos 4 C = ,则AB = . 9.首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有 种(结果用数值表示) 10.如图,已知正方形OABC ,其中(1)OA a a =>,函数23y x =交BC 于点P ,函数1 2 y x -=交AB 于点Q ,当||||AQ CP +最小时,则a 的值为 . 11.在椭圆22 142x y +=上任意一点P ,Q 与P 关于x 轴对称, 若有121F P F P ?…,则1F P 与2F Q 的夹角范围为 . 12.已知集合[,1]U[4,9]A t t t t =+++,0A ?,存在正数λ,使得对任意a A ∈,都有A a λ ∈, 则t 的值是 . 二、选择题(本大题共4题,每题5分,共20分) 13.下列函数中,值域为[0,)+∞的是 ( ) A .2x y = B .1 2 y x = C .tan y x = D .cos y x = 14.已知,a b R ∈,则“22a b >”是“||||a b >”的 ( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 15.已知平面αβγ、、两两垂直,直线a b c 、、满足:a α?,b β?,c γ?,则直线 a b c 、、不可能满足以下哪种关系 ( ) A .两两垂直 B .两两平行 C .两两相交 D .两两异面 16.以()1,0a ,()20,a 为圆心的两圆均过(1,0),与y 轴正半轴分别交于()1,0y ,()2,0y , 且满足12ln ln 0y y +=,则点1211,a a ?? ??? 的轨迹是 ( ) A .直线 B .圆 C .椭圆 D .双曲线 三、解答题(本大题共5题,共14+14+14+16+18=76分) 17.如图,在正三棱锥P ABC - 中,2,PA PB PC AB BC AC ====== (1)若PB 的中点为M ,BC 的中点为N ,求AC 与MN 的夹角; (2)求P ABC -的体积. 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________ -------------在 --------------------此-------------------- 卷-------------------- 上-------------------- 答-------------------- 题-------------------- 无--------------------效 ----------------

2018高考全国1卷理科数学试卷及答案

2018 年普通高等学校招生全国统一考试 (全国一卷)理科数学 一、选择题,本题共12小题,每小题 5 份,在每小题给出的四个选项中,只有一项是符合题目要求的。 1i 1. 设z 2i ,则z 1i 1 A.0 B. C.1 D. 2 2 2. 已知集合A x |x2 x 2 0 ,则C R A A. x | 1 x 2 B. x|1x2 C. x|x 1 x|x2 D. x|x 1 x| x 2 3.某地区经过一年的新农村建设,农村的经济收入增加了一杯,实现翻番。为更好地了解该地区农村的经济收入变化情况,统计和该地图新农村建设前后农村的经济收入构成比例,得到如下饼图: A. 新农村建设后,种植收入减少 B. 新农村建设后,其他收入增加了一倍以上 C. 新农村建设后,养殖收入增加了一倍 D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记S n为等差数列a n 的前n项和,若3S3 S2 S4,a1 2,则a5 A.-12 B.-10 C.10 D.12 5.设函数f x x3 a 1 x2 ax ,若f x 为奇函数,则曲线y f x 在点0,0 处的切 绝密★启用 前 则下面结论中不正确的 是

线方程为 10. 下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成。三个半圆 的直径分别为直角三角形 ABC 的斜边 BC ,直角边 AB,AC , ABC 的三边所围成的区域 记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。 在整个图形中随机取一点,此点取自的概率分 别记为 p 1, p 2, p 3 ,则 A. y 2x B.y x C.y 2x D. y x 6.在 ABC 中, AD 为BC 边上的中线, E 为 AD 的中点,则 EB 3 1 1 3 A. AB AC B. AB AC 4 4 4 4 3 1 1 3 C. AB AC D. AB AC 4 4 4 4 7.某圆柱的高为 2,地面周长为 16,其三视图如右图,圆柱表面 上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视 图上的对应点为 B ,则在此圆柱侧面上,从 M 到N 的路径中, 最短路径的长度为 A.2 17 B.2 5 C.3 D.2 则 FM FN A.5 B.6 C.7 9.已知函数 f e x ,x 0 x ,g x ln x,x 0 fx 围是 A. 1,0 B. 0, 2 2,0 且斜率为 的直线与 C 交于 M ,N 两点, 3 D.8 x a ,若 g x 存在 2 个零点,则 a 的取值范 C. 1, D. 1, 8.设抛物线 C: y 2 4 x 的焦点为 F ,过点

2019年高考理科数学考试大纲

理科数学 Ⅰ.考核目标与要求 根据普通高等学校对新生思想道德素质和科学文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列2和系列4的内容,确定理工类高考数学科考试内容. 一、知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明. 对知识的要求依次是了解、理解、掌握三个层次. 1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. 2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力. 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等. 3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决. 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等. 二、能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识. 1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质. 空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志. 2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论. 抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.

相关文档
相关文档 最新文档