文档库 最新最全的文档下载
当前位置:文档库 › 2018届高考数学考前模拟试卷(文科)

2018届高考数学考前模拟试卷(文科)

2018届高考数学考前模拟试卷(文科)
2018届高考数学考前模拟试卷(文科)

2018届高三考前模拟数学(文科)

全卷满分150分,时间120分钟. 注意事项:

1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。

2.作答选择题时,选出每个小题答案后,用2B 铅笔把答题卡上对应题目的答案信息点涂黑。如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。

3.非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效。

一.选择题:本大题共12小题,每小题5分。在每个小题给出的四个选项中,只有一项是符合题目

要求的。

1. 集合}{

022≤--=x x x A ,}{

1<=x x B ,则)(B C A R I = ( )

(A) }{1x x > (B) }{12x x <≤ (C) }{1x x ≥ (D) }{

12x x ≤≤ 2.设1i

z i

=

-(i 为虚数单位),则1z =( )

(A)

(B) (C)

1

2

(D) 2 3.等比数列{}n a 中,122a a +=,454a a +=,则1011a a +=( )

(A) 8 (B) 16 (C) 32 (D) 64

4. 已知向量a b ⊥r r ,2,a b ==r r 则2a b -=r r

( )

(A) (B) 2

(C)

(D)

5.下列说法中正确的是( )

(A) “(0)0f =”是“函数()f x 是奇函数”的充要条件

(B) 若2

000:,10p x R x x ?∈-->,则2

:,10p x R x x ??∈--<

(C) 若p q ∧为假命题,则,p q 均为假命题

(D) “若6π

α=

,则1sin 2α=

”的否命题是“若6πα≠,则1sin 2

α≠”

6.已知输入实数12x =,执行如图所示的流程图,则输出的x 是 ( )

(A) 25 (B) 102 (C) 103 (D) 51 7.将函数()()1cos 24f x x θ=

+(2πθ<)的图象向右平移

512

π

个单位后得到函数()g x

的图象,若()g x 的图象关于直线

9

x π

=对称,则θ=( )

(A)

718π (B) 18π (C) 18π- (D) 718

π- 8.已知x ,y 满足条件0

4010

x y x y x -≤??+-≤??-≥?

,则y

x 的最大值是 ( )

(A) 1 (B) 2 (C) 3 (D) 4

9.某几何体的三视图如图所示,则该几何体的体积为 ( ) (A)

833 (B) 163

3

(C) 3233 (D) 163 10.已知函数()y f x =的定义域为{}|0x x ≠,满足

()()0f x f x +-=,当0x >时,()ln 1f x x x =-+,

则函数()y f x =的大致图象是( )

(A) (B) (C) (D)

11.已知P 为抛物线2

4y x =上一个动点,Q 为圆()2

2

41x y +-=上一个动点,则点P 到

点Q 的距离与点P 到抛物线的准线的距离之和最小值是( )

(A) 171- (B) 252- (C) 2 (D) 17

12. 设定义在R 上的函数()y f x =满足任意t R ∈都有()()

1

2f t f t +=,且(]0,4x ∈时,

()()

f x f x x

'>

,则()()()20164201722018f f f 、、的大小关系是( )

(A) ()()()22018201642017f f f << (B) ()()()22018201642017f f f >>

(C) ()()()42017220182016f f f << (D) ()()()42017220182016f f f >>

二.填空题:本大题共4小题,每小题5分。

13.已知数据12,,,n x x x L 的平均数为2,则数据122,2,,2n x x x +++L 的平均数为 .

14.设0,0a b >>,且3是3a 与3b

的等比中项,则

11

a b

+的最小值为 . 15.当双曲线C 不是等轴双曲线时,我们把以双曲线C 的实轴、虚轴的端点作为顶点的椭圆称为

双曲线C 的“伴生椭圆”.则离心率为3的双曲线的“伴生椭圆”的离心率为 . 16.已知平面区域()2

2

{,|4}M x y x y =+≤, (){,|2}N x y y x =≥-+,在区域M 上

随机取一点A ,点A 落在区域N 内的概率为 .

三.解答题:共70分,解答应写出文字说明,证明过程或演算步骤。第17~21题为必考题,每个考

生都必须作答。第22、23题为选考题,考生根据要求作答。 (一)必考题:共60分。 17.(本小题满分12分)

在ABC ?中,角,,A B C 的对边分别为,,a b c ,已知cos cos cos 2cos sin C A B A B +=. (1)求tan A ;

(2)若25b =, AB 边上的中线17CD =,求ABC ?的面积.

18.(本小题满分12分)

在某大学联盟的自主招生考试中,报考文史专业的考生参加了人文基础学科考试科目

“语文”和“数学”的考试. 某考场考生的两科考试成绩数据统计如下图所示,本次 考试中成绩在]100,90[内的记为A ,其中“语文”科目成绩在)90,80[内的考生有10人.

(1)求该考场考生数学科目成绩为A 的人数;

(2)已知参加本场测试的考生中,恰有两人的两科成绩均为A .在至少一科成绩为A

的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A 的概率.

A

B

C

D

图2

E

19.(本小题满分12分)

如图1,在直角梯形ABCD 中,90ADC ∠=?,//CD AB ,1

22

AD CD AB ==

=, 点E 为AC 中点,将ADC ?沿AC 折起, 使平面ADC ⊥平面ABC ,得到几何 体D ABC -,如图2所示.

(1)在CD 上是否存在一点F ,使//AD 平面EFB ?若存在,证明你的结论, 若不存在,请说明理由;

(2)求点C 到平面ABD 的距离.

20.(本小题满分12分)

已知1F ,2F 分别为椭圆C :22

182

x y +=的左、右焦点,点P 在椭圆C 上. (1)求12PF PF ?u u u r u u u u r

的最小值;

(2)设直线l 的斜率为

1

2

,直线l 与椭圆C 交于A , B 两点,若点P 在第一象限, 且121PF PF ?=-u u u r u u u u r ,求ABP ?面积的最大值.

B

A C

D

图1 E

21.(本小题满分12分)

已知函数()3f x ax bx c =++,其导函数()233f x x =-'+,且()01f =-,

()()ln 1g x x x m m

x

=+

≥. (1)求()f x 的极值;

(2)求证:对任意()12,0,x x ∈+∞,都有()()12f x g x ≤.

(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。

答题时请写清题号并将相应信息点涂黑。 22.(本小题满分10分)选修4-4:坐标系与参数方程

已知曲线C

的参数方程为22x y α

α

?=+??

=+??(α为参数),以直角坐标系原点O 为极点, x 轴正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程;

(2)设射线1:3

l π

θ=

,2:6

l π

θ=

,若12,l l 分别与曲线C 相交于异于原点的两点,A B ,

求ABO ?的面积.

数学(文科)参考答案

一、选择题(本大题共12小题,每小题5分,共60分)

1.【解析】}{

12A x x =-≤≤,}{1≥=x x B C R ,}{

21≤≤=x x B C A R I ,故选D . 2.【解析】()()()1111

111222i i i i z i i i i +-+=

===-+--+,所以2

z = ,则 1z = B. 3.【解析3345124a a a q a q +=+=,解得32q =,99910111212()a a a q a q a a q +=+=+3

2216=?=.

故选B

4. 【解析】 2a b -=r r

2

(2)a b -r r =224416425a b ab +-=+=r r r r .故选C .

5.【解析】 试题分析:2

()f x x x =+时,(0)0f =,但()f x 是不是奇函数,A 错;

命题2

000:,10p x R x x ?∈-->的否定是2

:,10p x R x x ??∈--≤,B 错;,p q 中只要有一个为假

命题,则p q ∧为假命题,C 错;“若6

π

α=,则1sin 2α=

”的否命题是“若6πα≠,则1sin 2

α≠”是正确的,故选D . 6.【解析】输入12x =,

经过第一次循环得到212125,2x n =?+==, 经过第二循环得到225151,3x n =?+==, 经过第三次循环得到2511103,4x n =?+==,此时输出x , 故选C . 考点:程序框图的识别及应用 7.【解析】因为()()1cos 24f x x θ=+,所以()1515cos 2cos 241246g x x x ππθθ??????

=-+=-+ ? ????

?????,

所以

2596k ππθπ-+= ()k Z ∈,解得1118k πθπ=+ ()k Z ∈,又2πθ<,所以718

π

θ=-,

故选D. 8.【解析】. 因为0

y z x -=

- ,如图所示经过原点()0,0的直线斜率最大的为直线40x y +-=与直线1x =的交点()1,3,故max 3

31

z ==,选C.

9.【解析】由三视图可知该三棱锥底面是边长为4的正三角形,面积为43,高为4,

则11634334V =

??=,故选B . 10.【解析】由()()0f x f x +-=,知()f x 是奇函数,故排除C,D ;当1

2

x =

时,

1

2111111

()ln 1ln ln 2ln ln 20222222

f e =-+=+=-=-<,从而A 正确. 11.【解析】根据抛物线的定义,点P 到准线的距离等于到焦点的距离,则距离之和等于PQ PF +,

画图可得, PQ PF +的最小值为圆心C 与焦点F 连线与抛物线相交于点P ,则最小值等于

CF r -, 圆心(0,4)C ,得CF ==1-,故选A.

12.【解析】由题意可得: ()()21f t f t +=,则: ()()241f t f t ++=,

据此有: ()()4f t f t =+,即函数()f x 是周期为4的周期函数, 构造新函数()()(],0,4f x F x x x

=

∈,则()()()

2

''0f x x f x F x x -=

>,

则函数()F x 是定义域(]0,4内的增函数, 有:

()()()1241

2

4

f f f <<,即: ()()()41224f f f <<,

利用函数的周期性可得: ()()()()()()20164,20171,20182f f f f f f ===, 据此可得: ()()()42017220182016f f f <<.

二、填空题(本大题共4小题,每小题5分,共20分)

13. 4 14. 4 15. 16. 24ππ-

13.【解析】平均数为

()()()()12122222224n n x x x x x x n

n

n

++++++++++==+=L L

14.【解析】试题分析:因3)3(332

==?b a ,即33=+b a ,故1=+b a ,

所以=+b a 1142)11)((≥++=++a

b

b a b a b a ,应填4.

15.【解析】试题分析:设双曲线C 的方程为22221x y a b -=,所以222e b a a

==∴= ,

∴双曲线C 的“伴生椭圆”方程为:22

221y x b a +=,∴“伴生椭圆”2==

16.【解析】【答案】

2

4ππ

- 【解析】由题意可得,集合M 表示坐标原点为圆心,2为半径的圆及其内部,集合N 表示图中的阴

影区域,其中211

222242

S ππ=

?-??=-阴影 ,

由几何概型公式可得:点A 落在区域N 内的概率为2

22

24p ππππ

--==? .

三、解答题(本大题共6小题,共70分.解答应写出文字说明,演算步骤或证明过程) 17. (本小题满分12分)

【答案】(1)tan 2A =; (2)当2c =时, 1

sin 42

ABC S bc A =

=V ;当6c =时, 12ABC S ?=. 【解析】试题分析:(1)将()C A B π=-+代入化简求值即可;(Ⅱ)在ACD V 中,由余弦定理解

得2c =或6,利用面积公式求解即可.

试题解析:

(1)由已知得()cos cos cos cos πcos cos C A B A B A B ??+=-++??

()cos cos cos sin sin A B A B A B =-++=, ……2分

所以sin sin 2cos sin A B A B =, ………4分

因为在ABC ?中, sin 0B ≠, 所以sin 2cos A A =,

则tan 2A =. ……………6分 (2)由(1)得, 5cos A =

, 25sin A = ……………8分 在ACD ?中,

2

222cos 22c c CD b b A ??

=+-??? ???

代入条件得2

8120c c -+=,解得2c =或6, ………10分

当2c =时, 1

sin 42

ABC S bc A ?==;当6c =时, 12ABC S ?=. ………12分

18. (本小题满分12分)

解:(1)该考场的考生人数为10÷0.25=40人. ………2分 数学科目成绩为

A 的人数为

40×(1-0.0025×10-0.015×10-0.0375×10×2)=40×0.075=3人. ………5分 (2) 语文和数学成绩为A 的各有3人,其中有两人的两科成绩均为

A ,所以还有两名同学

只有一科成绩为

A . ……………7分

设这四人为甲、乙、丙、丁,其中甲、乙的两科成绩均为

A ,则在至少一科成绩为M 的考生中,

随机抽取两人进行访谈,基本事件为{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁}, {丙,丁}共6个, …………… 10分 设“随机抽取两人,这两人的两科成绩均为

A ”为事件M ,则事件M 包含的事件有1个,

则6

1

)(=M P . ……………12分

19. 试题解析:(1)存在CD 的中点F 成立, 连结EF ,BF

在ACD ?中,,E F Q ,分别为AC ,DC 的中点 ……2分 EF ∴为ACD ?的中位线

AD ∴//EF ………4分 EF ?平面EFB AD ?平面EFB

AD ∴//平面EFB ……………6分 (2) 设点C 到平面ABD 的距离为h

Q 平面ABD ⊥平面C AB ,平面ABD I 平面C=AB AB ,BC 且⊥B A

BC ∴⊥平面C AD BC ∴⊥AD ,AD ⊥DC ……………7分

AD ∴⊥平面BCD 即AD ⊥BD

S 23ADB ?∴= ………9分

三棱锥B ACD -的高22BC =,S 2ACD ?∴= ………10分

B ACD

C ADB V --=Q V

即11

233h ??=?

h ∴=

………12分

20. (本小题满分12分)

【答案】(1)12PF PF ?u u u r u u u u r

的最小值为4-; (2)12.

【解析】试题分析:

(1)设()00,P x y ,由向量数量积的坐标运算求得2012344

x PF PF ?=-+u u u r u u u u r ,注意椭圆中

有0x -≤≤,因此可得最小值;

(2)由直线与圆锥曲线相交的弦长公式求得弦长AB ,求出P 点坐标,再求得P 到直线AB 的距离

即三角形的高,从而得PAB ?面积

PAB S ?=

试题解析:

1)有题意可知()

1F

, )

2

F ,设点00(,)P x y

则()1

,PF x y =-u u u

r , )

2

00,PF x y =-u u u u r , ………2分

∴2212006PF PF x y ?=+-u u u r u u u u r ,

∵点()00,P x y 在椭圆C 上,∴2200182x y +=,即22

0024x y =-, ………3分 ∴222

00120326444

x x PF PF x ?=+--=-+u u u r u u u u

r

(0x -≤≤, ………4分 ∴当00x =时, 12PF PF ?u u u r u u u u r

的最小值为4-. ………6分

(注:此问也可用椭圆的参数方程表达点P 求解) (2)设l 的方程1

2

y x b =

+,点()11,A x y , ()22,B x y , 由22

1,2 18

2y x b x y =++=???????得22

2240x bx b ++-=, ………7分

令2248160b b ?=-+>,解得22m -<<.

由韦达定理得122x x b +=-, 2

1224x x b =-,

由弦长公式得

AB == ………8分

且121PF PF ?=-u u u r u u u u r ,得()2,1P .

又点P 到直线l

的距离d =

=

, ………9分

∴1122PAB S AB d ?=

=

= 22422

b b +-≤=, ………11分

当且仅当b = ∴ PAB ?面积最大值为2. ……12分

21.(本小题满分12分)

解析:(1)依题意得()3

31f x x x =-+-, ()()()2

33311f x x x x =-+=-+-' ………2分

知()f x 在(),1-∞-和()1,+∞上是减函数,在()1,1-上是增函数 ………4分 ∴()()13f x f =-=-极小值, ()()11

f x f ==极大值

………5分

(2)法1:易得0x >时, ()1f x =最大值, 依题意知,只要()()1(0)1ln 1(0)m

g x x x x m x x

≤>?≤+

≥> 由1a ≥知,只要22ln 1(0)ln 10(0)x x x x x x x x ≤+>?+-≥> ………7分 令()2ln 1(0)h x x x x x =+->,则()2ln 1

h x x x x =+-'

………8分

注意到()10h '=,当1x >时, ()0h x '>;当01x <<时, ()0h x '<,

………9分

即()h x 在()0,1上是减函数,在()1,+∞是增函数, ()()10h x h ==最小值

………10分 即()0h x ≥,综上知对任意()12,0,x x ∈+∞,都有()()

12f x g x ≤

………12分

法2:易得0x >时, ()1f x =最大值, ………7分 由1a ≥知, ()1ln (0)g x x x x x ≥+

>,令()1

ln (0)h x x x x x

=+>………8分 则()22211

ln 1ln x h x x x x x

-=+-=+'………9分

注意到()10h '=,当1x >时, ()0h x '>;当01x <<时, ()0h x '<,………10分 即()h x 在()0,1上是减函数,在()1,+∞是增函数, ()()11h x h ==最小值,所以()1h x =最小值, 即()1g x =最小值.

综上知对任意()12,0,x x ∈+∞,都有()()12f x g x ≤.

………12分

法3: 易得0x >时, ()1f x =最大值, ………7分

由1a ≥知, ()1

ln (0)g x x x x x

≥+

>, ………8分 令()1ln (0)h x x x x x =+>,则()21

ln 1(0)h x x x x =+->'………9分

令()21ln 1(0)x x x x ?=+->,则()311

0x x x ?=+>',………10分

知()x ?在()0,+∞递增,注意到()10?=,

所以, ()h x 在()0,1上是减函数,在()1,+∞是增函数,有()1h x =最小值,即()1g x =最小值

综上知对任意()12,0,x x ∈+∞,都有()()12f x g x ≤. ……12分

22. (本小题满分10分)

解:(1)∵曲线C

的参数方程为2(2x y α

αα

?=+??=+??为参数)

∴曲线的普通方程为2

2

(2)(2)8x y -+-= 即2

2

440x y x y +--= ……2分 将cos ,sin x y ρθρθ==代入并化简得:4cos 4sin ρθθ=+ 即曲线C 的极坐标方程为4cos 4sin ρθθ=+. …………5分

(2)由3

4cos 4sin πθρθθ

?

=

???=+?

得到12OA ρ==+ …………7分

同理22OB ρ==+ ………… 9分 又∵3

6

6

AOB π

π

π

∠=-

=

∴1

sin 42

AOB S OA OB AOB ?=

∠=+

即AOB ?的面积为4+ …………10分

2018年高考理科数学试题及答案-全国卷2

2018年普通高等学校招生全国统一考试(全国卷2) 理科数学 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。1. 12i 12i + = - A. 43 i 55 --B. 43 i 55 -+C. 34 i 55 --D. 34 i 55 -+ 2.已知集合() {} 223 A x y x y x y =+∈∈ Z Z ,≤,,,则A中元素的个数为 A.9 B.8 C.5 D.4 3.函数()2 e e x x f x x - - =的图像大致为 4.已知向量a,b满足||1 = a,1 ?=- a b,则(2) ?-= a a b A.4 B.3 C.2 D.0 5.双曲线 22 22 1(0,0) x y a b a b -=>>3 A.2 y x =B.3 y x =C. 2 y=D. 3 y= 6.在ABC △中, 5 cos 2 C 1 BC=,5 AC=,则AB= A.2B30C29 D.25 7.为计算 11111 1 23499100 S=-+-++- …,设计了右侧的程序框图,则在空白 框中应填入 A.1 i i=+ B.2 i i=+ C.3 i i=+ D.4 i i=+ 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723 =+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 开始 0,0 N T == S N T =- S 输出 1 i= 100 i< 1 N N i =+ 1 1 T T i =+ + 结束 是否

2019年高考数学模拟试题含答案

F D C B A 2019年高考数学模拟试题(理科) 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。 3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并收回。 一.选择题:本大题共12个小题,每小题5分,共60分。在每小题给出的四个选项中只有一项是符合题目要求的 1.已知集合}032{2>--=x x x A ,}4,3,2{=B ,则B A C R ?)(= A .}3,2{ B .}4,3,2{ C .}2{ D .φ 2.已知i 是虚数单位,i z += 31 ,则z z ?= A .5 B .10 C . 10 1 D . 5 1 3.执行如图所示的程序框图,若输入的点为(1,1)P ,则输出的n 值为 A .3 B .4 C .5 D .6 (第3题) (第4题) 4.如图,ABCD 是边长为8的正方形,若1 3 DE EC =,且F 为BC 的中点,则EA EF ?=

A .10 B .12 C .16 D .20 5.若实数y x ,满足?? ???≥≤-≤+012y x y y x ,则y x z 82?=的最大值是 A .4 B .8 C .16 D .32 6.一个棱锥的三视图如右图,则该棱锥的表面积为 A .3228516++ B .32532+ C .32216+ D .32216516++ 7. 5张卡片上分别写有0,1,2,3,4,若从这5张卡片中随机取出2张,则取出的2张卡片上的数字之和大于5的概率是 A . 101 B .51 C .103 D .5 4 8.设n S 是数列}{n a 的前n 项和,且11-=a ,11++?=n n n S S a ,则5a = A . 301 B .031- C .021 D .20 1 - 9. 函数()1ln 1x f x x -=+的大致图像为 10. 底面为矩形的四棱锥ABCD P -的体积为8,若⊥PA 平面ABCD ,且3=PA ,则四棱锥 ABCD P -的外接球体积最小值是

2018年高考数学全国卷III

2018年普通高等学校招生全国统一考试(理科数学全国卷3) 数 学(理科) 一、选择题:本题共12小题。每小题5分. 1.已知集合{}10A x x =-≥,{}2,1,0=B ,则=?B A ( ) .A {}0 .B {}1 .C {}1,2 .D {}0,1,2 2.()()=-+i i 21 ( ) .A i --3 .B i +-3 .C i -3 .D i +3 3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ) 4. 若1 sin 3α= ,则cos 2α= ( ) .A 89 .B 79 .C 79- .D 89- 5. 25 2()x x +的展开式中4x 的系数为 ( ) .A 10 .B 20 .C 40 .D 80 6.直线20x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆()2 2 22x y -+=上,则ABP ?面积 的取值范围是 ( ) .A []2,6 .B []4,8 .C .D ?? 7.函数422y x x =-++的图像大致为 ( )

8.某群体中的每位成员使用移动支付的概率都为P ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,4.2=DX ,()()64=<=X P X P ,则=P ( ) .A 0.7 .B 0.6 .C 0.4 .D 0.3 9.ABC ?的内角C B A 、、的对边分别c b a 、、,若ABC ?的面积为222 4 a b c +-,则=C ( ) . A 2π . B 3π . C 4π . D 6 π 10.设D C B A 、、、是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为,则三棱锥ABC D -积的最大值为 ( ) .A .B .C .D 11.设21F F 、是双曲线C : 22 221x y a b -=(0,0>>b a )的左、右焦点,O 是坐标原点,过2F 作C 的一 条渐近线的垂线,垂足为P ,若1PF =,则C 的离心率为 ( ) .A .B 2 .C .D 12.设3.0log 2.0=a ,3.0log 2=b ,则 ( ) .A 0a b ab +<< .B 0a b a b <+< .C 0a b a b +<< .D 0ab a b <<+

2019-2020高考数学模拟试题含答案

2019-2020高考数学模拟试题含答案 一、选择题 1.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( ) A .10组 B .9组 C .8组 D .7组 2.已知向量a v ,b v 满足a =v ||1b =v ,且2b a +=v v ,则向量a v 与b v 的夹角的余弦值 为( ) A . 2 B . 3 C D . 4 3.设双曲线22 22:1x y C a b -=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别 交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ?=u u u u v u u u u v ,22MF NF =u u u u v u u u u v ,则双曲 线C 的离心率为( ). A B C D 4.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4 B .15x 4 C .-20i x 4 D .20i x 4 5.已知P 为双曲线22 22:1(0,0)x y C a b a b -=>>上一点,12F F , 为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =± B .34 y x =? C .3 5y x =± D .5 3 y x =± 6.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是 ( ) A .2 B .3 C .4 D .5 7.若不等式222424ax ax x x +-<+ 对任意实数x 均成立,则实数a 的取值范围是 ( ) A .(22)-, B .(2)(2)-∞-?+∞, , C .(22]-, D .(2]-∞, 8.已知函数()(3)(2ln 1)x f x x e a x x =-+-+在(1,)+∞上有两个极值点,且()f x 在 (1,2)上单调递增,则实数a 的取值范围是( ) A .(,)e +∞ B .2(,2)e e C .2(2,)e +∞ D .22(,2)(2,)e e e +∞U 9.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )

2018高职高考数学模拟试卷

页脚内容1 2018高职高考数学模拟试卷 本试题卷共24小题,满分150分。考试时间120分钟。 注意事项: 1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填定在答题卡上。用2B 铅笔将试卷类型填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴除” 2、选择题每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。 3、非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上。 4、考生必须保持答题卡的整洁。不能使用涂改液。 试卷类型:A 一、单项选择题(本大题共15小题,每小题5分,共75分) 在每小题列出的四个备选答案中,只有一个是符合题目要求的。错涂、多涂或未涂均无分。 1.已知集合{}4,3,2,1,0=M ,{}5,4,3=N ,则下列结论正确的是( ) A. N M ? B. M N ? C. {}4,3=?N M D. {}5,2,1,0=?N M 2、函数x x x f --=2) 1(log )(2的定义域是( ) A )0,(-∞ B )2,1( C ]2,1( D ),2(+∞

页脚内容2 3.“01a <<”是“log 2log 3a a >”的( ) A.必要非充分条件 B.充分非必要条件 C.充分必要条件 D.非充分非必要条件 4. 下列等式正确的是( ) . A. lg 7lg31+= B. 7 lg 7 lg 3lg 3= C. 3lg 3 lg 7lg 7= D. 7lg 37lg 3= 5. 设向量()4,5a =r ,()1,0b =r ,()2,c x =r ,且满足→→+b a 与→c 垂直,则x = ( ). A. 2- B. 1 2- C. 1 2 D. 2 6.不等式312x -<的解集是( ) A.1 13??- ???, B.1 13?? ???, C.(-1,3) D.(1,3) 7、过点A (2,3),且垂直于直线2x +y -5=0的直线方程是( ). A 、 x -2y +4=0 B 、y -2 x +4=0 C 、2x -y -1=0 D 、 2x +y -7=0 8. 函数()4sin cos ()f x x x x R =∈的最大值是( ). A. 1 B. 2 C. 4 D. 8

2018年全国各地高考数学(理科试卷及答案)

2018年高考数学理科试卷(江苏卷) 数学Ⅰ 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上.. . 1.已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么=?B A . 2.若复数z 满足i z i 21+=?,其中i 是虚数单位,则z 的实部为 . 3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 . 4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 . 5.函数()1log 2-=x x f 的定义域为 .

6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 . 7.已知函数()??? ??<<-+=22 2sin ππ ?x x y 的图象关于直线3π=x 对称,则?的值 是 . 8.在平面直角坐标系xOy 中,若双曲线()0,0122 22>>=-b a b y a x 的右焦点()0,c F 到一条 渐近线的距离为 c 2 3 ,则其离心率的值是 . 9.函数()x f 满足()()()R x x f x f ∈=+4,且在区间]2,2(-上,()??? ? ???≤<-+≤<=02,2120,2cos x x x x x f π, 则()()15f f 的值为 . 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 . 11.若函数()()R a ax x x f ∈+-=122 3 在()+∞,0内有且只有一个零点,则()x f 在[]1,1-上 的最大值与最小值的和为 .

2018年高考数学(理科)模拟试卷(二)

2018年高考数学(理科)模拟试卷(二) (本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟) 第Ⅰ卷(选择题满分60分) 一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2016年北京)已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B=() A.{0,1} B.{0,1,2} C.{-1,0,1} D.{-1,0,1,2} 2.已知z为纯虚数,且z(2+i)=1+a i3(i为虚数单位),则复数a+z在复平面内对应的点所在的象限为() A.第一象限B.第二象限 C.第三象限D.第四象限 3.(2016年新课标Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图M2-1.图中A点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是() A.各月的平均最低气温都在0 ℃以上 B.七月的平均温差比一月的平均温差大 C.三月和十一月的平均最高气温基本相同 D.平均气温高于20 ℃的月份有5个 图M2-1 图M2-2

4.已知平面向量a =(1,2),b =(-2,k ),若a 与b 共线,则||3a +b =( ) A .3 B .4 C.5 D .5 5.函数y =1 2x 2-ln x 的单调递减区间为( ) A .(-1,1] B .(0,1] C .[1,+∞) D .(0,+∞) 6.阅读如图M2-2所示的程序框图,运行相应的程序,则输出的结果为( ) A .2 B .1 C .0 D .-1 7.(2014年新课标Ⅱ)如图M2-3,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) 图M2-3 A.1727 B.59 C.1027 D.13 8.已知F 1,F 2分别为双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,离心率为5 3,过原点的直线l 交双曲线左、右两支分别于A ,B ,若|BF 1|-|AF 1|=6,则该双曲线的标准方程为( ) A.x 29-y 216=1 B.x 218-y 2 32=1 C.x 29-y 225=1 D.x 236-y 2 64=1 9.若函数f (x )=???? ? x -a 2x ≤0,x +1x +a x >0的最小值为f (0),则实数a 的取值范围是( ) A .[-1,2] B .[-1,0] C .[1,2] D .[0,2]

2018年高三数学模拟卷及答案

高级中学高三数学(理科)试题 一、选择题:(每小题5分,共60分) 1、已知集合A={x ∈R||x|≤2},B={x ∈Z|x 2≤1},则A∩B=( ) A 、[﹣1,1] B 、[﹣2,2] C 、{﹣1,0,1} D 、{﹣2,﹣1,0,1,2}【答案】C 解:根据题意,|x|≤2?﹣2≤x≤2,则A={x ∈R||x|≤2}={x|﹣2≤x≤2}, x 2≤1?﹣1≤x≤1,则 B={x ∈Z|x 2≤1}={﹣1,0,1},则A ∩B={﹣1,0,1};故选:C . 2、若复数 31a i i -+(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( ) A 、3 B 、﹣3 C 、0 D 、 【答案】A 解:∵ = 是纯虚数,则 ,解得:a=3.故选A . 3、命题“?x 0∈R , ”的否定是( ) A 、? x ∈R ,x 2﹣x ﹣1≤0 B 、? x ∈R ,x 2﹣x ﹣1>0 C 、? x 0∈R , D 、? x 0∈R , 【答案】A 解:因为特称命题的否定是全称命题, 所以命题“?x 0∈R , ”的否定为:?x ∈R ,x 2﹣x ﹣ 1≤0.故选:A 4、《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织多少尺布?( ) A 、18 B 、20 C 、21 D 、25 【答案】C 解:设公差为d ,由题意可得:前30项和S 30=390=30×5+ d ,解得d= . ∴最后一天织的布 的尺数等于5+29d=5+29× =21.故选:C . 5、已知二项式 43x x ? - ? ? ?的展开式中常数项为 32,则a=( ) A 、8 B 、﹣8 C 、2 D 、﹣2【答案】D 解:二项式(x ﹣ )4的展开式的通项为T r+1=(﹣a )r C 4r x 4﹣ r ,令4﹣ =0,解得r=3,∴(﹣a ) 3 C 43=32,∴a=﹣2,故选:D 6、函数y=lncosx (﹣ <x < )的大致图象是( ) A 、 B 、 C 、 D 、 【答案】A 解:在(0, )上,t=cosx 是减函数,y=lncosx 是减函数,且函数值y <0, 故排除B 、C ; 在(﹣ ,0)上,t=cosx 是增函数,y=lncosx 是增函数,且函数值y <0,故排除D ,故选:A .

2019年高考数学模拟试题(含答案)

2019年高考数学模拟试题(含答案) 一、选择题 1.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数学之和为偶数的概率是( ) A . 12 B . 13 C . 23 D . 34 2.若圆与圆22 2:680C x y x y m +--+=外切,则m =( ) A .21 B .19 C .9 D .-11 3.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( ) A .0 B .2 C .4 D .14 4.已知平面向量a =(1,-3),b =(4,-2),a b λ+与a 垂直,则λ是( ) A .2 B .1 C .-2 D .-1 5. ()()3 1i 2i i --+=( ) A .3i + B .3i -- C .3i -+ D .3i - 6.数列2,5,11,20,x ,47...中的x 等于( ) A .28 B .32 C .33 D .27 7.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为 A .1220 B .2755 C . 2125 D . 27 220 8.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他

十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( ) A .32 B .0.2 C .40 D .0.25 9.设双曲线22221x y a b -=(0a >,0b >)的渐近线与抛物线2 1y x =+相切,则该双曲 线的离心率等于( ) A .3 B .2 C .6 D .5 10.在[0,2]π内,不等式3 sin 2 x <-的解集是( ) A .(0)π, B .4,33 ππ?? ??? C .45,33ππ?? ??? D .5,23ππ?? ??? 11.将函数()sin 2y x ?=+的图象沿轴向左平移8 π 个单位后,得到一个偶函数的图象,则?的一个可能取值为( ) A . B . C .0 D .4 π- 12. sin 47sin17cos30 cos17- A .3 B .12 - C . 12 D 3二、填空题 13.若双曲线22 221x y a b -=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程 是___________. 14.曲线2 1 y x x =+ 在点(1,2)处的切线方程为______________. 15.在ABC 中,60A =?,1b =3sin sin sin a b c A B C ________. 16.在区间[1,1]-上随机取一个数x ,cos 2 x π的值介于1[0,]2 的概率为 . 17.已知函数()sin ([0,])f x x x π=∈和函数1 ()tan 2 g x x = 的图象交于,,A B C 三点,则ABC ?的面积为__________. 18.学校里有一棵树,甲同学在A 地测得树尖D 的仰角为45?,乙同学在B 地测得树尖D 的仰角为30,量得10AB AC m ==,树根部为C (,,A B C 在同一水平面上),则 ACB =∠______________. 19.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________. 20.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥

2018年高考全国二卷理科数学试卷

2018 年普通高等学校招生全国统一考试( II 卷) 理科数学 一、选择题:本题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 1 2i 1 2i 4 3 4 3 i 3 4 3 4 A . i B . 5 C . i D . i 5 5 5 5 5 5 5 2.已知集合 A x ,y x 2 y 2≤3 ,x Z ,y Z ,则 A 中元素的个数为 A .9 B . 8 C . 5 D . 4 3.函数 f e x e x 的图像大致为 x x 2 A B C D 4.已知向量 a 、 b 满足 | a | 1 , a b 1 ,则 a (2a b ) A .4 B . 3 C . 2 D . 0 2 2 5.双曲线 x 2 y 2 1( a 0, b 0) 的离心率为 3 ,则其渐近线方程为 a b A . y 2x B . y 3x C . y 2 D . y 3 x x 2 2 6.在 △ABC 中, cos C 5 ,BC 1 , AC 5,则 AB 开始 2 5 N 0,T A .4 2 B . 30 C . 29 D .2 5 i 1 1 1 1 1 1 7.为计算 S 1 3 ? 99 ,设计了右侧的程序框图,则在 是 100 否 2 4 100 i 空白框中应填入 1 A . i i 1 N N S N T i B . i i 2 T T 1 输出 S i 1 C . i i 3 结束 D . i i 4 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以 表示为两个素数的和”,如 30 7 23 .在不超过 30 的素数中,随机选取两个不同的数,其和等于 30 的概率是 1 B . 1 1 1 A . 14 C . D . 12 15 18 ABCD A B C D AD DB

2018年江苏高考数学全真模拟试卷附答案

(第3题) 2018年江苏高考数学全真模拟试卷(1) 试题Ⅰ 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案直接填写在答题卡相应.....位置上... . 1.已知集合{}1A =,{}1,9B =,则A B =U ▲ . 2.如果复数 2i 12i b -+(i 为虚数单位)的实部和虚部互为相反数,那么b = ▲ . 3.对一批产品的长度(单位:mm )进行抽样检测,样 本容量为400,检测结果的频率分布直方图如图 所示.根据产品标准可知:单件产品的长度在区间 [25,30)内的为一等品,在区间[20,25)和[30, 35)内的为二等品,其余均为三等品.那么样本中 三等品的件数为 ▲ . 4.执行下面两段伪代码. 若Ⅰ与Ⅱ的输出结果相同,则Ⅱ输入的x 的值为 ▲ . 5.若将一枚质地均匀的骰子(各面上分别标有1,2,3,4,5,6的正方体玩具)先后抛掷两次,向上的点数依次为m ,n ,则方程220x mx n ++=无实数根的概率是 ▲ . 6.如图1,在△ABC 中,CE 平分∠ACB ,则 AEC BEC S AC S BC ??=.将这个结论类比到空间:如图2,在三棱锥A BCD -中,平面DEC 平分二面角A CD B --且与AB 交于点E ,则类比的结论为 ▲ . 7.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 ▲ . 8.已知集合{} ()0A x x x a =-<,{ } 2 7180B x x x =--<.若A B ?,则实数a 的取值范围是 ▲ . 9.已知函数2 4()2. x x a f x x x x a +

2019-2020高考数学一模试卷(附答案)

2019-2020高考数学一模试卷(附答案) 一、选择题 1.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( ) A .①③④ B .②④ C .②③④ D .①②③ 2.()62111x x ??++ ??? 展开式中2x 的系数为( ) A .15 B .20 C .30 D .35 3.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高. 成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲 D .甲、丙、乙 4.已知函数()()sin f x A x =+ω?()0,0A ω>>的图象与直线()0y a a A =<<的三个相邻交点的横坐标分别是2,4,8,则()f x 的单调递减区间是( ) A .[]6,63k k ππ+,k Z ∈ B .[]63,6k k ππ-,k Z ∈ C .[]6,63k k +,k Z ∈ D .[]63,6k k -,k Z ∈ 5.在等比数列{}n a 中,44a =,则26a a ?=( ) A .4 B .16 C .8 D .32 6.函数()1 ln 1y x x = -+的图象大致为( ) A . B .

C . D . 7.ABC ?的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =, 3b = ,则 c =( ) A .23 B .2 C .2 D .1 8.如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上一点(不同于A 、B )且PA = AC ,则二面角P -BC -A 的大小为( ) A .60? B .30° C .45? D .15? 9.已知,a b ∈R ,函数32 ,0 ()11(1),03 2x x f x x a x ax x C .1,0a b >-< D .1,0a b >-> 10.在同一直角坐标系中,函数11,log (02a x y y x a a ? ?==+> ??? 且1)a ≠的图象可能是( ) A . B . C . D . 11.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( )

全国三卷9年高考理科数学试卷分析及2019高考预测

2019年高考,除北京、天津、上海、江苏、浙江等5省市自主命题外,其他26个省市区全部使用全国卷. 研究发现,课标全国卷的试卷结构和题型具有一定的稳定性和连续性.每个题型考查的知识点、考查方法、考查角度、思维方法等相对固定.掌握了全国卷的各种题型,就把握住了全国卷 命题的灵魂.基于此,笔者潜心研究近3年全国高考理科数学Ⅲ卷和高考数学考试说明,精心分类汇总了全国卷近3年所有题型.为了便于读者使用,所有题目分类(共22类)列于表格之中,按年份排序.高考题的小题(填空和选择)的答案都列在表格的第三列,便于同学们及时解答对照答案,所有解答题的答案直接列在题目之后,方便查看. 一、集合与常用逻辑用语小题: 1.集合小题: 3年3考,每年1题,都是交并补子运算为主,多与不等式交汇,新定义运算也有较小的可 1.已知集合22{(,)1}A x y x y =+=,{(,)}B x y y x ==,则A B 中元素的个数为 3年0考.这个考点一般与其他考点交汇命题,不单独出题. 二、复数小题: 3年3考,每年1题,以四则运算为主,偶尔与其他知识交汇,难度较小.一般涉及考查概2.设复数z 满足(1)2i z i +=,则||z = 全国三卷9年高考理数学分析及2019高考预测

三、平面向量小题: 3年3考,每年1题,向量题考的比较基本,突出向量的几何运算或代数运算,一般不侧重 3年7考.题目难度较小,主要考察公式熟练运用,平移,由图像性质、化简求值、解三角形等问题(含应用题),基本属于“送分题”.三角不考大题时,一般考三个小题,三角函数的图

3年6考,每年2题,一般考三视图和球,主要计算体积和表面积.球体是基本的几何体, 8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()

2018年高考数学模拟试卷(文科)

2018年高考数学模拟试卷(文科) 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)已知集合A={x|x2≤1},B={x|0<x<1},则A∩B=() A.[﹣1,1)B.(0,1) C.[﹣1,1]D.(﹣1,1) 2.(5分)若i为虚数单位,则复数z=在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限 3.(5分)已知等差数列{a n}前3项的和为6,a5=8,则a20=() A.40 B.39 C.38 D.37 4.(5分)若向量,的夹角为,且||=4,||=1,则||=()A.2 B.3 C.4 D.5 5.(5分)已知双曲线C:(a>0,b>0)的渐近线与圆(x+4)2+y2=8无交点,则双曲线离心率的取值范围是() A.(1,)B.()C.(1,2) D.(2,+∞) 6.(5分)已知实数x,y满足约束条件,则z=x+2y的最大值为() A.6 B.7 C.8 D.9 7.(5分)函数y=log(x2﹣4x+3)的单调递增区间为() A.(3,+∞)B.(﹣∞,1)C.(﹣∞,1)∪(3,+∞)D.(0,+∞)8.(5分)宜宾市组织“歌颂党,歌颂祖国”的歌咏比赛,有甲、乙、丙、丁四个单位进入决赛,只评一个特等奖,在评奖揭晓前,四位评委A,B,C,D对比赛预测如下: A说:“是甲或乙获得特等奖”;B说:“丁作品获得特等奖”; C说:“丙、乙未获得特等奖”;D说:“是甲获得特等奖”. 比赛结果公布时,发现这四位评委有三位的话是对的,则获得特等奖的是()

A.甲B.乙C.丙D.丁 9.(5分)某几何组合体的三视图如图所示,则该几何组合体的体积为() A.B.C.2 D. 10.(5分)若输入S=12,A=4,B=16,n=1,执行如图所示的程序框图,则输出 的结果为() A.4 B.5 C.6 D.7 11.(5分)分别从写标有1,2,3,4,5,6,7的7个小球中随机摸取两个小球,则摸得的两个小球上的数字之和能被3整除的概率为()A.B.C.D. 12.(5分)已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=e x(x+1),给出下列命题: ①当x≥0时,f(x)=e﹣x(x+1);

2018年高考数学试题

2018年普通高等学校招生全国统一考试 (全国卷Ⅱ)理科试卷 本试卷共23题,共150分,共5页。考试结束后,将本试卷和答题卡一并交回。 注意事项:1、答题前,考试现将自己的姓名,准考证号填写清楚,将条形 码准确粘贴在条形码区域内 2、选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。 3、请按照题号顺序在答题卡 各题目的答题区域内做答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4、作图可先试用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5、保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、 选择题:本题共12小题,每小题5分,共60分。 在每小题给出的四个选项中,只有一项是符合题目要求的。 1、1212i i +=- A 、4355i -- B 、4355i -+ C 、3455i -- D 3455 i -+ 2、已知集合(){}22,|3,,,A x y x y x Z y Z =+≤∈∈则A 中元素的个数为() A 、9 B 、8 C 、5 D4 3、函数 ()2x x e e f x x --=的图象大致是() x x

4、已知向量() ,1,1,2a b a a b a a b =?=--=满足则() A 、4 B 、3 C 、2 D 、0 5、双曲线()222210,0x y a b a b -=>> 则其渐近线方程为() A 、 y = B 、 y = C 、2 y x =± D y x = 6、在△ABC 中,cos 2C = ,BC=1,AC=5,则AB=( ) A 、 B C D 7、为计算11111123499100S =-+-+ +-,设计了右侧的程序框图,则空白框中应填入 A 、i=i+1 B 、i=i+2 C 、i=i+3 D 、i=i+4

2019春季高考模拟数学试题

**市2019年春季高考第二次模拟考试 数学试题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分120分,考试时间120分钟。 第Ⅰ卷(选择题,共60分) 注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。 一、选择题(本大题共20个小题,每小题3分,共60分。在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出) 1.设全集U={1,2,3,4,5,6},集合A={2,4,6},则?uA= ( ) A.{2,4,6} B.{1,3,5} C.{1,2,3,4,5,6} D.Φ 2. 01=+x 是0322 =--x x 的( ) A.充分不必要条件 B. 必要不充分条件 C. 充要条件 D.既不充分也不必要条件 3. 函数y = ) A.{x ∣x > 10或 x < -10 } B. {x ∣-10≤x ≤10且0x ≠} C. }1|{>x x D. x x |{≤10,且x ≠0} 4. 若命题q p ∨是真命题,q p ∧是假命题,则下列命题中真命题共有( ) ①p q ?∨ ②()p q ?∨ ③()p q ?∧ ④p q ∧? A. 1个 B. 2个 C. 3个 D. 4个 5. 如果a b >且0ab >,那么正确的是: A. 11 a b > B. 11a b < C.22a b > D.a b > 6. 函数12 log y x = 在(),0-∞上的增减性是( ) A. 单调递减 B. 单调递增 C. 先增后减 D. 先减后增 7.二次函数()2 24f x x x =-+,当[]2,4x ∈时的最小值是( ) A. 2 B. 3 C. 4 D. 7

(完整)2018高考数学模拟试卷(衡水中学理科)

2018年衡水中学高考数学全真模拟试卷(理科) 第1卷 一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.) 1.(5分)(2018?衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.?B.(0,1)C.[0,1)D.[0,1] 2.(5分)(2018?衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=() A.0.8 B.0.4 C.0.3 D.0.2 3.(5分)(2018?衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D. 4.(5分)(2018?衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为() A.y=±x B.y=±x C.y=±x D.y=±x 5.(5分)(2018?衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为() A.B.2 C.D.1 6.(5分)(2018?衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是() A.2 B.3 C.4 D.5 7.(5分)(2018?衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n} 的前8项和为() A.B.C.D. 8.(5分)(2018?衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=() A.45 B.180 C.﹣180 D.720

2018年高考数学立体几何试题汇编

2018年全国一卷(文科):9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3 D .2 18.如图,在平行四边形ABCM 中,3AB AC ==,90ACM =?∠,以AC 为折痕将△ACM 折起,使点M 到达点 D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ; (2)Q 为线段AD 上一点,P 为线段BC 上一点,且2 3 BP DQ DA == ,求三棱锥Q ABP -的体积. 全国1卷理科 理科第7小题同文科第9小题 18. 如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点 P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 全国2卷理科: 9.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为

A .1 B . 5 C . 5 D . 2 20.如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M PA C --为30?,求PC 与平面PAM 所成角的正弦值. 全国3卷理科 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 19.(12分) 如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ; (2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值. 2018年江苏理科:

(完整版)江苏省2019年高考数学模拟试题及答案

江苏省2019年高考数学模拟试题及答案 一、填空题:本大题共14小题,每小题5分,共70分. 1.若全集}3,2,1{=U ,}2,1{=A ,则=A C U . 【答案】}3{ 2.函数x y ln =的定义域为 . 【答案】),1[+∞ 3.若钝角α的始边与x 轴的正半轴重合,终边与单位圆交于点)2 3 ,(m P ,则αtan . 【答案】3- 4.在ABC ?中,角C B A ,,的对边为c b a ,,,若7,5,3===c b a ,则角=C . 【答案】 3 2π 5.已知向量)1,1(-=m ,)sin ,(cos αα=n ,其中],0[πα∈,若n m //,则=α . 【答案】 4 3π 6.设等差数列}{n a 的前n 项和为n S ,若63=a ,497=S ,则公差=d . 【答案】1 7.在平面直角坐标系中,曲线12++=x e y x 在0=x 处的切线方程为 . 【答案】23+=x y 8.实数1-=k 是函数x x k k x f 212)(?+-=为奇函数的 条件(选填“充分不必要”,“必要不充分”, “充要”,“既不充分也不必要”之一) 【答案】充分不必要 9.在ABC ?中,0 60,1,2===A AC AB ,点D 为BC 上一点,若?=?2,则 AD . 【答案】 3 3 2 10.若函数)10(|3sin |)(<<-=m m x x f 的所有正零点构成公差为)0(>d d 的等差数列,则

=d . 【答案】 6 π 11.如图,在四边形ABCD 中,0 60,3,2===A AD AB ,分别CD CB ,延长至点F E ,使得CB CE λ=, CD CF λ=其中0>λ,若15=?AD EF ,则λ的值为 . 【答案】 2 5 12.已知函数x m x e m x x f x )1(2 1)()(2 +--+=在R 上单调递增,则实数m 的取值集合为 . 【答案】}1{- 13.已知数列}{n a 满足023211=+++++n n n n a a a a ,其中2 1 1-=a ,设1+-=n n a n b λ,若3b 为数列} {n b 中的唯一最小项,则实数λ的取值范围是 . 【答案】)7,5( 14.在ABC ?中,3tan -=A ,ABC ?的面积为1,0P 为线段BC 上的一个定点,P 为线段BC 上的任意一点,满足BC CP =03,且恒有C P A P PC PA 00?≥?,则线段BC 的长为 . 【答案】6 二、解答题:本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分14分) 若函数)0,0()3 sin()(>>++=b a b ax x f π 的图像与x 轴相切,且图像上相邻两个最高点之间的距离 为π. (1)求b a ,的值; (2)求函数)(x f 在?? ? ???4, 0π上的最大值和最小值.

相关文档
相关文档 最新文档