文档库 最新最全的文档下载
当前位置:文档库 › 椭圆曲线密码体制理论与安全性分析

椭圆曲线密码体制理论与安全性分析

椭圆曲线密码体制理论与安全性分析
椭圆曲线密码体制理论与安全性分析

椭圆曲线密码总结大全

椭圆曲线密码 概述: 椭圆曲线密码学(ECC, Elliptic curve cryptography )是基于椭圆曲线数学的一种公钥密码的方法。1985年,Neal Koblitz 和Victor Miller 分别独立提出了椭圆曲线密码体制(ECC),其依据就是定义在椭圆曲线点群上的离散对数问题的难解性。 引言: ECC 被广泛认为是在给定密钥长度的情况下,最强大的非对称算法,因此在对带宽要求十分紧的连接中会十分有用。 ECC 的主要优势是在某些情况下它比其他的方法使用更小的密钥——比如RSA ——提供相当的或更高等级的安全。ECC 的另一个优势是可以定义群之间的双线性映射,基于Weil 对或是Tate 对;双线性映射已经在密码学中发现了大量的应用,例如基于身份的加密。不过一个缺点是加密和解密操作的实现比其他机制花费的时间长。 国家标准与技术局和ANSI X9已经设定了最小密钥长度的要求,RSA 和DSA 是1024位,ECC 是160位,相应的对称分组密码的密钥长度是80位。NIST 已经公布了一列推荐的椭圆曲线用来保护5个不同的对称密钥大小(80, 112, 128, 192, 256)。一般而言,二进制域上的ECC 需要的非对称密钥的大小是相应的对称密钥大小的两倍。 椭圆曲线密码学的许多形式有稍微的不同,所有的都依赖于被广泛承认的解决椭圆曲线离散对数问题的困难性上,对应有限域上椭圆曲线的群。 引理及有关概念: (1) 无穷远元素(无穷远点,无穷远直线)平面上任意两相异直线的位置关系 有相交和平行两种。引入无穷远点,是两种不同关系统一。AB ⊥L1, L2∥L1,直线AP 由AB 起绕A 点依逆时针方向转动,P 为AP 与L1的交点,如图1。Q=∠BAP →π /2则AP → L2,可设想L1上有一点P ∞,它为L2和L1的交点,称之为无穷远点。直线L1上的无穷远点只能有一个(因为过A 点只能有一条平行于L1的直线L2,而两直线的交点只能有一个)。 图1 结论: 1. 平面上一组相互平行的直线,有公共的无穷远点(为与无穷远点相区别,把

量子密码导论

量子密码学导论期末论文 量子密码的简单介绍和发展历程及其前景 0引言 保密通信不仅在军事、社会安全等领域发挥独特作用,而且在当今的经济和日常通信等方面也日渐重要。在众多的保密通信手段中,密码术是最重要的一种技术措施。 经典密码技术根据密钥类型的不同分为两类:一类是对称加密(秘密钥匙加密)体制。该体制中的加解密的密钥相同或可以互推,收发双方之间的密钥分配通常采用协商方式来完成。如密码本、软盘等这样的密钥载体,其中的信息可以被任意复制,原则上不会留下任何印迹,因而密钥在分发和保存过程中合法用户无法判断是否已被窃听。另一类是非对称加密(公开密钥加密)体制。该体制中的加解密的密钥不相同且不可以互推。它可以为事先设有共享密钥的双方提供安全的通信。该体制的安全性是基于求解某一数学难题,随着计算机技术高速发展,数学难题如果一旦被破解,其安全性也是令人忧心的。

上述两类密码体系的立足点都是基于数学的密码理论。对密码的破解时间远远超出密码所保护的信息有效期。其实,很难破解并不等于不能破解,例如,1977年,美国给出一道数学难题,其解密需要将一个129位数分解成一个64位和一个65位素数的乘积,当时的计算机需要用64?10年,到了1994年,只用了8个月就能解出。 经典的密码体制都存在被破解的可能性。然而,在量子理论支配的世界里,除非违反自然规律,否则量子密码很难破解。量子密码是量子力学与信息科学相结合的产物。与经典密码学基于数学理论不同,量子密码学则基于物理学原理,具有非常特殊的随机性,被窃听的同时可以自动改变。这种特性,至少目前还很难找到破译的方法和途径。随着量子信息技术的快速发展,量子密码理论与技术的研究取得了丰富的研究成果。量子密码的安全性是基于Heisenberg 测不准原理、量子不可克隆定理和单光子不可分割性,它遵从物理规律,是无条件安全的。文中旨在简述量子密码的发展历史,并总结量子密码的前沿课题。 1 量子密码学简介 量子密码学是当代密码理论研究的一个新领域,它以量子力学为基础,这一点不同于经典的以数学为基础的密码体制。量子密码依赖于信息载体的具体形式。目前,量子密码中用于承载信息的载体主要有光子、微弱激光脉冲、压缩态光信号、相干态光信号和量子光弧子信号,这些信息载体可通过多个不同的物理量描述。在量子密码中,一般用具有共轭特性的物理量来编码信息。光子的偏振可编码为量子比特。量子比特体现了量子的叠加性,且来自于非正交量子比特信源的量子比特是不可克隆的。通过量子操作可实现对量子比特的密码变换,这种变换就是矢量的线性变换。不过变换后的量子比特必须是非正交的,才可保证安全性。一般来说,不同的变换方式或者对不同量子可设计出不同的密码协议或者算法,关键是所设计方案的安全性。 在量子密码学中,密钥依据一定的物理效应而产生和分发,这不同于经典的加密体制。目前,在经典物理学中,物体的运动轨迹仅山相应的运动方程所描述和决定,不受外界观察者观测的影响。但是在微观的量子世界中,观察量子系统的状态将不可避免地要破坏量子 系统的原有状态,而且这种破坏是不可逆的。信息一旦量子化,量子力学的特性便成为量子信息的物理基础,包括海森堡测不准原理和量子不可克隆定理。量子密钥所涉及的量子效应主要有: 1. 海森堡不确定原理:源于微观粒子的波粒二象性。自由粒子的动量不变,自由粒子同时 又是一个平面波,它存在于整个空间。也就是说自由粒子的动量完全确定,但是它的位置完全不确定. 2. 在量子力学中,任意两个可观测力学量可由厄米算符A B ∧∧来表示,若他们不对易,则不 能有共同的本征态,那么一定满足测不准关系式: 1,2A B A B ? ∧∧∧∧????≥ ||???? 该关系式表明力学量A ∧和B ∧不能同时具有完全确定的值。如果精确测定具中一个量必然无法精确测定以另一个力学量,即测不准原理。也就是说,对任何一个物理量的测量,都

椭圆曲线加密算法

椭圆曲线加密算法 椭圆曲线密码学(英语:Elliptic curve cryptography,缩写为 ECC),一种建立公开密钥加密的算法,基于椭圆曲线数学。椭圆曲线在密码学中的使用是在1985年由Neal Koblitz和Victor Miller分别独立提出的。 ECC的主要优势是在某些情况下它比其他的方法使用更小的密钥——比如RSA 加密算法——提供相当的或更高等级的安全。ECC的另一个优势是可以定义群之间的双线性映射,基于Weil对或是Tate对;双线性映射已经在密码学中发现了大量的应用,例如基于身份的加密。不过一个缺点是加密和解密操作的实现比其他机制花费的时间长 1.椭圆曲线 在数学上,椭圆曲线(英语:Elliptic curve,缩写为EC)为一代数曲线,被下列式子所定义 y2=x3+ax+b 其是无奇点的;亦即,其图形没有尖点或自相交。 满足此条件的a b满足:4a3+27b2≠0 图1 在基础上需要定义一个无穷远的点,将此点作为零点:此时椭圆曲线定义为:{(x,y)∈?2|y2=x3+ax+b,4a3+27b2≠0}∪{0} 在椭圆曲线中的群的运算律: 1. 所有的点都在椭圆曲线上 2. 0点作为群上的单元点即 P+0=P 3. P点关于X轴的对称点为P点的逆即 P+(?P)=0

4.对于位于同一条直线上的三个点P,Q,R.则有 P+Q+R=0 图2 P+Q+R=0(无限远点 P Q R三个点的位置是任意的,他们满足加法的结合律,因为这个群是一个阿贝尔群。 2.椭圆曲线加法 当P和Q不相等时(x P≠x Q) 由于是在阿贝尔群上可以将P+Q+R=0改写为P+Q=?R所以在椭圆曲线上的加法定义为P Q 两点加法为P,Q两点连线与曲线的交点R的关于X轴对称点?R 图2-3 P+Q=-R P Q两点的直线的斜率为: m=y P?y Q x P?x Q 这条线与曲线的交点为:R=(x R,y R) x R=m2?x P?x Q y R=y P+m(x R?x P) 因此(x P,y P)+(x Q,y Q)=(x R,?y R)如果在图上表示即为上述的P+Q=?R

BB84协议的安全性分析及计仿真研究1

BB84协议的安全性分析及计仿真研究 第一章绪论 1.1引言 秘密通信是人类长久以来的愿望。计算机的出现和互联网普及,促使这种愿望变为一种必然需要(对于银行交易、电子商务、个人档案和Internet通信等)。一般情况,有两种方法可以保证消息安全的传输到接收方而不被第三方(未授权者)在传输过程中截取消息的内容。一种方法就是隐藏消息本身的存在,如通过不可见的墨水来写消息;另一种方法是通过加密所传输的消息。 密码技术特别是加密技术是信息安全技术的核心,它与网络协议等安全技术相结合,成为解决认证、数据加密、访问控制、电子签名、防火墙和电子货币等的关键技术。研究传输信息采取何种秘密的交换,以确保不被第三方截获信息。密码技术可分为密码编制学和密码分析学。密码编制学是寻求产生安全性高的有效密码算法,以满足对消息进行加密或认证的要求;而密码分析学是破译密码或伪造认证码,实现窃取机密信息或进行诈骗破坏活动。传统的加密系统,不管是对私钥技术还是公钥技术,其密文的安全性完全依赖于密钥本身的秘密性。由于截获者的存在,从技术层面上来说,真正的安全很难保证,而且密钥的分配总是会在合法使用者无从察觉的情况下被消极窃听[1]。 近年来,由于量子力学和密码学的紧密结合,演变出了量子密码学(Quantum Cryptography),它可以完成仅仅由传统数学无法完成的完善保密系统。量子密码学是在量子理论基础上提出了一种全新的安全通信系统,它从根本上解决了通信线路被消极窃听的问题。已经有研究表明,使用量子力学的特征可以实现两个陌生人之间通信的完美保密。 1.2传统密码通信 密码通信主要是依赖密钥、加密算法、密码传送、解密算法、解密的保密来保证其安全性,它的基本目的使机密信息变成只有自己或合法授权的人才能认出的乱码。具体操作时都要使用密码将明文(被屏蔽的消息)变成密文(屏蔽后的消息),称为加密,密码称为密钥。完成加密的规则称为加密算法,将密文传送到接收方称为密码传送,把密文变成明文称为解密,完成解密的规则称为解密算法。传统密码通信的最大难题是被人破译而却不被察觉,从而导致严重的后果。 一般而言,传统保密通信可分作两大类,一是非对称密码系统(asymmetrical cryptosystem )另一是对称密码系统(symmetrical cryptosystem )。传统保密通信原理如图1.1 所示。 原理图中Alice和Bob是一般通讯中信息发送者和信息接收者的代称。Alice对信息明文

国密算法国家商用密码算法简介)

国家商用密码算法简介 密码学是研究编制密码和破译密码的技术科学,起源于隐秘消息传输,在编码和破译中逐渐发展起来。密码学是一个综合性的技术科学,与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。密码学的基本思想是对敏感消息的保护,主要包括机密性,鉴别,消息完整性和不可否认性,从而涉及加密,杂凑函数,数字签名,消息认证码等。 一.密码学简介 密码学中应用最为广泛的的三类算法包括对称算法、非对称算法、杂凑算法。 1.1 对称密码 对称密码学主要是分组密码和流密码及其应用。分组密码中将明文消息进行分块加密输出密文区块,而流密码中使用密钥生成密钥流对明文消息进行加密。世界上应用较为广泛的包括DES、3DES、AES,此外还有Serpent,Twofish,MARS和RC6等算法。对称加密的工作模式包括电码本模式(ECB 模式),密码反馈模式(CFB 模式),密码分组链接模式(CBC 模式),输入反馈模式(OFB 模式)等。1.2 非对称密码 公钥密码体制由Diffie和Hellman所提出。1978年Rivest,Shamir和Adleman提出RAS密码体制,基于大素数分解问题。基于有限域上的离散对数问题产生了ElGamal密码体制,而基于椭圆曲线上的离散对数问题产生了椭圆曲线密码密码体制。此外出现了其他公钥密码体制,这些密码体制同样基于困难问题。目前应用较多的包括RSA、DSA、DH、ECC等。 1.3杂凑算法 杂凑算法又称hash函数,就是把任意长的输入消息串变化成固定长的输出串的一种函数。这个输出串称为该消息的杂凑值。一个安全的杂凑函数应该至少满足以下几个条件。 1)输入长度是任意的; 2)输出长度是固定的,根据目前的计算技术应至少取128bits长,以便抵抗生日攻击; 3)对每一个给定的输入,计算输出即杂凑值是很容易的; 4)给定杂凑函数的描述,找到两个不同的输入消息杂凑到同一个值是计算上不可行的,或给定 杂凑函数的描述和一个随机选择的消息,找到另一个与该消息不同的消息使得它们杂凑到同一个值是计算上不可行的。 杂凑函数主要用于完整性校验和提高数字签名的有效性,目前已有很多方案。这些算法都是伪随机函数,任何杂凑值都是等可能的。输出并不以可辨别的方式依赖于输入;在任何输入串中单个比特

量子密码

量子密码 摘要 论文说明了量子密码的现实可行性与未来可行性,强调了量子密码比传统密码和公开密钥更加方便和安全,探讨了量子密码的理论基础与试验实践。密码技术是信息安全领域的核心技术,在当今社会的许多领域都有着广泛的应用前景。量子密码术是密码技术领域中较新的研究课题,它的发展对推动密码学理论发展起了积极的作用。量子密码技术是一种实现保密通信的新方法,它比较于经典密码的最大优势是具有可证明安全性和可检测性,这是因为量子密码的安全性是由量子物理学中量子不可克隆性Heisenburg 测不准原理来保证的,而不是依靠某些难解的数学问题。自从BB84量子密钥分配方案提出以来,量子密码技术无论在理论上还是在实验上都取得了大量研究成果。 关键词:密码学;量子;偏光器;金钥;量子密码;金钥分配 目录 1.密码学原理............................................................................................................. - 2 - 1.1密码学概念...................................................................................................... - 2 - 1.2对称密钥.......................................................................................................... - 2 - 1.3公开密钥.......................................................................................................... - 2 - 2.量子密码学原理.................................................................................................... - 2 - 2.1量子密码学概念.............................................................................................. - 2 - 2.2量子密码工作原理.......................................................................................... - 3 - 2.3量子密码理论基础.......................................................................................... - 4 - 2.4试验与实践...................................................................................................... - 5 - 3.结论 ........................................................................................................................... - 5 - 参考文献................................................................................................................ - 6 -

椭圆曲线密码的C语言设计与实现

计算机研究生开放研究 《椭圆曲线密码的C语言设计与实现》 美国GeneChiu基金资助 基于TOM算法库的ECC加密算法的C语言设计与实现 研究生徐立均 内容: 一、源代码下载 二、ECC算法的设计思想 三、椭圆曲线参数的选取和基点的确定 四、椭圆曲线的点加和纯量乘法 五、加密文件的读入与输出 六、密文的存取和读入 七、ECC加密的实现

八、ECC解密的实现 九、测试结果及分析 一、源代码下载 本文使用了TOM算法库实现了椭圆曲线公钥密码体制,能对各类不同的磁盘文件进行加密和解密。 1 请下载可执行程序MY_ECC.exe,此程序无需任何额外的LIB或DLL,可在Windows下独立运行,运行情况如下:

2 请下载源代码source.rar: 编译此源代码需要使用TOM的高精度算法库 MathLib.lib 和相关的头文件 tommath.h tommath_class.h tommath_superclass.h 一并打包在source.rar中,请下载

3 对于TOM的高精度算法库的详细说明,请看本站C语言: 二、 ECC算法的设计思想 根据椭圆曲线进行加密通信的过程,首先选定一个适合加密的椭圆曲线Ep(a,b),并取椭圆曲线上一点,作为基点G。选择一个私有密钥k,并生成公开密钥K=kG。加密时,将明文编码到Ep(a,b)上一点M,并产生一个随机整数r(r < n)。计算点C1=M+rK;C2=rG。将C1、C2存入密文。解密时,从密文中读出C1、C2,计算C1-kC2,根据:C1-kC2=M+rK-k(rG)=M+rK-r(kG)=M, 解得的结果就是点M,即明文。 三、椭圆曲线参数的选取和基点的确定 并不是所有的椭圆曲线都适合加密,y^2=x^3+ax+b是一类可以用来加密的椭圆曲线,也是最为简单的一类。下面我们就选用 y^2=x^3+ax+b作为我们的加密曲线。这条曲线定义在Fp上:两个满足下列条件的小于p(p为素数)的非负整数a、b:4a3+27b2≠0 (mod p) 则满足下列方程的所有点(x,y),再加上无穷远点∞ ,构成一条椭圆曲线。y^2=x^3+ax+b(mod p) 其中 x,y属于0到p-1间的整数,并将这条椭圆曲线记为Ep(a,b)。

公钥密码体制(RSA)算法及安全性

公钥密码体制(RSA)算法及安全性探析 □宣克祥 【摘要】作为现代经典加密技术,无论是数据加密标准(DES)还是高级加密标准(AES),都是一种私钥密码体制,其安全性是由其密钥的私密性来保证的;而RSA则是一种公钥密码体制,不仅加密算法本身可以公开,甚至加密用的密钥也可以公开。本文对公钥密码体制RSA算法原理、具体实现过程及安全性进行深入探讨和分析。 【关键词】RSA算法;加密标准;信息安全 【作者单位】宣克祥,解放军国际关系学院 1976年,美国斯坦福大学的威特菲尔德·笛福(Whit-field Diffie)和马丁·赫尔曼(Martin Hellman)在题为《密码学的新方向》的论文中提出了一种崭新的思想,不仅加密算法本身可以公开,甚至加密用的密钥也可以公开,这种密码体制被称作非对称式公钥密码体制。1978年,美国麻省理工学院的隆·里维斯特(Ronald L.Rivest)、阿迪·沙米尔(Adi Shamir)和雷奥纳德·阿德曼(Leonard M.Adleman)提出了迄今为止理论上最成熟、最成功的RSA公钥密码体制,它变革了已使用几千年的对称密钥技术。在公开密钥加密技术中,加密密钥与解密密钥是不一样的。如果要向对方发送消息,可以先用对方的公开密钥加密要发送的消息;对方收到消息后,可用自己的私钥解密。加密密钥是公开的,谁都可以找到,然而,以其加密的消息却必须用接收者保留的私钥才能解密,因而别人无法阅读该消息。 一、RSA算法简介 RSA公钥密码体制的安全性是基于数论中的大整数因子分解:两个大质数p和q相乘得到乘积n,在min(p,q)与(p-1)(q-1)之间选取另一个数d,该数与(p-1)(q-1)互质,即两者之间没有公因子,然后用如下公式计算出e:ed mod(p-1)(q-1)=1 假如明文块用M表示,密文块用C表示,那么RSA的加密过程为: Me mod n=C RSA的解密过程即为: C d mod n=M 假如选定了两个小的质数11和23,那么n=11?23= 253。接着,在11与220(10?22)之间选取一个与220互质的数d,假设是19,则由19e mod220=1计算出e=139。根据RSA公钥密码体制,n(253)和e(139)是公开的,而p (11)、q(23)和d(19)是保密的。在ASCII码中,对于消息“Hi”,用16位二进制数表示为0100100001011001,将它置换为十进制数为72和105。甲加密过程为: 72139mod253=2 105139mod253=101 乙得到密文2和101后,用密钥d(19)解密: 219mod253=72 10119mod253=105 由于e和n是公钥,可以公开,所以任何人都可以生成密文;但是d是密钥,与p、q一起都要保密。要想找出d,必须知道p和q,也就是要将n进行因子分解。但是,如果n很大,分解是十分困难的,现今所有的算法不可能在有效的时间里实现。这样,情报的安全性就得到了保障。 二、RSA算法公钥和私钥的生成 RSA算法实际上是对质数(prime)特性的一种利用。所谓质数即这样的一种正整数,除了1和其自身外,不存在其它约数(非质数整数被称为合数)。任何正整数都可能有多种形式被分解为若干整数的乘积,但只具有一种质因数分解形式。数学家很早就发现了质数的这种特性,但没有加以应用。 RSA算法所使用的公钥必须能够分解成两个质数之乘积。在目前条件下,分解一个较小的数字如6185371,数秒之 -1与3-2,4-1与4-2。在不同图组的显示图标中,每个热区域对应的显示图标应不同。 4.总分统计。(1)擦除前图:添加计算图标,录入函数eraseall并添加显示图标,输入“您的总分为”;(2)录入函数“正确{x},错误{y},总分{z}”,完成整个游戏如图4所示。 三、结语 利用“开发游戏”为手段进行authorware的教学,不但能够提高学生的学习兴趣,锻炼学生的动手能力,还对全部已学内容进行全面的复习与应用,使得学生记忆深刻,并收到不错的教学效果。 【参考文献】 1.冯建平符策群等.中文authorware多媒体制作教程[M].北京:人民邮电出版社,2006 2.高新考试编委会.authorware6.5职业考试培训教程[M].北京:北京希望电子出版社,2004 · 86 ·

椭圆曲线密码ECC

旺旺:旺我旺:能我过能软过软考考

主要内容
? ??公钥密码使用的几个单向性很好的函数 ? ??ElGamal密码回顾 ? ??椭圆曲线概述 ? ??椭圆曲线及解点 ? ??椭圆曲线的几何意义 ? ??椭圆曲线的解点等计算 ? ??椭圆曲线密码体制 ? ??利用椭圆曲线密码加解密实例
旺旺:我能过软考

公钥密码使用的几个单向性很好的函数
版权所有:我能过软考
1)大合数的因子分解问题: 大素数的乘积容易计算,如(p*q=n),而大合数 的因子分解困难(n推出p和q) 代表:RSA密码
2)有限域上的离散对数问题: 有限域上大素数的幂乘容易计算(ab
对数计算困难(logac b) 乘法群: ElGamal密码
加法群:ECC密码
c),而
3 旺旺:我能过软考

ElGamal密码回顾
版权所有:我能过软考
ElGamal密码是建立在有限域GF(p)之上,其中p是一个大素数, 选取有限域GF(p)的一个本原元α ,并将GF(p)和α公开。
注意:p是大素数,且p-1有大素数因子。
1、密钥生成 用户随机选取一个整数d: 1≤d ≤p-2,并计算出 y= αd mod p
将y作为公开的加密密钥,将d作为保密的解密密钥。
由公钥y求出私钥d,必须求解离散对数,非常困难
4 旺旺:我能过软考

椭圆曲线概述
版权所有:我能过软考
? 受ELGamall密码启发,在其它离散对数问题难解的群中,同样可以构成ELGamal 密码
? 有限域GF(p)上的椭圆曲线的解点构成交换群,而且离散对数问题是难解的,于是 可在此群上建立ELGamal密码,并称为椭圆曲线密码
? 它密钥短、签名短、软件实现规模小、硬件实现电路省电。
? 应用:基于智能卡的多种应用,如电子商务中的数字签名与认证,移动通讯中的安 全保密等方面
? 普遍认为160位长的椭圆曲线密码的安全性相当于1024位的RSA密码,而且运算速 度也较快。
6 旺旺:我能过软考

分组密码算法发展及安全性研究概要

分组密码算法发展及安全性研究 高彩云 中国矿业大学计算机学院,江苏徐州 (221116 E-mail: 摘要:分组密码一直以来都是人们普遍使用的密码体制,其典型代表为 DES ,但DES 的安全性很脆弱,在实际应用中,人们通常使用扩展的三重DES 。AES 作为新的,高级加密标准,其设计的基本要求就是比三重DES 快并且至少与三重DES 一样安全。 关键词:分组密码;DES ;三重DES ;AES ;安全性 1. 引言 数据加密作为一项基本技术是所有通信安全的基石。数据加密过程是由形形色色的加密算法来具体实施,它以很小的代价提供很大的安全保护。在多数情况下,数据加密是保证信息机密性的唯一方法。据不完全统计,到目前为止,已经公开发表的各种加密算法多达数百种。如果按照收发双方密钥是否相同来分类,可以将这些加密算法分为私钥密码算法和公钥密码算法,而分组密码算法属于私钥密码算法。粗略地讲,分组密码是用一个固定的变换对一个比较大的明文数组进行操作。 2. 分组密码算法发展 分组密码即对明文进行加密时,首先需要对明文进行分组,每组的长度都不相同,然后对每组明文分别加密得到等长的密文。分组加密算法的特点是加密密钥与解密密钥相同。分组加密算法主要有DES (数据加密标准),AES (高级加密标准)。 2.1 DES 数据加密算法

DES 算法是由IBM 公司的W. TuChMan 和 C. Meyer 开发,并由美国国家标准局于1977年1月15日正式发布实施的数据加密标准。[1] DES 利用56比特串长度的密钥K 来加密长度为64位的明文,得到长度为64位的密文。其主要流程如图1:

AES算法加解密原理及安全性分析(DOC)

AES算法加解密原理及安全性分析 刘帅卿 一、AES算法简介 AES算法是高级加密标准算法的简称,其英文名称为Advanced Encryption Standard。该加密标准的出现是因为随着对称密码的发展,以前使用的DES(Data Encryption Standard数据加密标准)算法由于密钥长度较小(56位),已经不适应当今数据加密安全性的要求,因此后来由Joan Daeman和Vincent Rijmen提交的Rijndael算法被提议为AES的最终算法。 AES是一个迭代的、对称密钥分组的密码,它可以使用128、192和256位密钥,并且用128位(16字节)分组加密和解密数据。与公共密钥密码使用密钥对不同,对称密钥密码使用相同的密钥加密和解密数据。通过分组密码返回的加密数据的位数与输入数据相同。迭代加密使用一个循环结构,在该循环中重复置换(permutations)和替换(substitutions)输入数据。加之算法本身复杂的加密过程使得该算法成为数据加密领域的主流。 二、AES算法的基本概念 1、有限域(GF) 由于AES算法中的所有运算都是在有限域当中进行的,所以在理解和实现该算法之前先得打好有限域这一基石才行。通常的数学运算都是在实数域中进行,而AES算法则是在有限域中进行,我们可以将有限域看成是有确定边界范围的正整数集合,在该集合当中,任意两个元素之间的运算结果都仍然落在该集合当中,也即满足运算封闭性。 那么如何才能保证这样的“有限性”(也即封闭性)呢? GF(2w)被称之为伽罗华域,是有限域的典型代表。随着w(=4,8,16,…)的取值不同所形成的有限域范围也不同。AES算法中引入了GF域当中对数学运算的基本定义:将两数的加减法定义为两者的异或运算;将两数的乘法定义为多

国产密码算法及应用

国产密码算法及应用 商用密码,是指能够实现商用密码算法的加密、解密和认证等功能的技术。(包括密码算法编程技术和密码算法芯片、加密卡等的实现技术)。商用密码技术是商用密码的核心,国家将商用密码技术列入国家秘密,任何单位和个人都有责任和义务保护商用密码技术的秘密。 商用密码的应用领域十分广泛,主要用于对不涉及国家秘密内容但又具有敏感性的内部信息、行政事务信息、经济信息等进行加密保护。比如各种安全认证、网上银行、数字签名等。 为了保障商用密码安全,国家商用密码管理办公室制定了一系列密码标准,包括SSF33、SM1(SCB2)、SM2、SM3、SM4、SM7、SM9、祖冲之密码算法等等。其中SSF33、SM1、SM4、SM7、祖冲之密码 是对称算法;SM2、SM9是非对称算法;SM3是哈希算法。 目前已经公布算法文本的包括SM2椭圆曲线公钥密码算法、SM3密码杂凑算法、SM4分组密码算法等。 一、国密算法简介 1.SM1对称密码 国密SM1算法是由国家密码管理局编制的一种商用密码分组标准对称算法,分组长度为128位,密钥长度都为128比特,算法安全

保密强度及相关软硬件实现性能与AES相当,算法不公开,仅以IP 核的形式存在于芯片中。 采用该算法已经研制了系列芯片、智能IC卡、智能密码钥匙、加密卡、加密机等安全产品,广泛应用于电子政务、电子商务及国民经济的各个应用领域(包括国家政务通、警务通等重要领域)。 2.SM2椭圆曲线公钥密码算法 SM2算法就是ECC椭圆曲线密码机制,但在签名、密钥交换方面不同于ECDSA、ECDH等国际标准,而是采取了更为安全的机制。国密SM2算法标准包括4个部分,第1部分为总则,主要介绍了ECC基本的算法描述,包括素数域和二元扩域两种算法描述,第2部分为数字签名算法,这个算法不同于ECDSA算法,其计算量大,也比ECDSA复杂些,也许这样会更安全吧,第3部分为密钥交换协议,与ECDH功能相同,但复杂性高,计算量加大,第4部分为公钥加密算法,使用ECC公钥进行加密和ECC私钥进行加密算法,其实现上是在ECDH上分散出流密钥,之后与明文或者是密文进行异或运算,并没有采用第3部分的密钥交换协议产生的密钥。对于SM2算法的总体感觉,应该是国家发明,其计算上比国际上公布的ECC算法复杂,相对来说算法速度可能慢,但可能是更安全一点。 设需要发送的消息为比特串M,len为M的比特长度。为了对明文M进行加密,作为加密者的用户应实现以下运算步骤: 步骤1:用随机数发生器产生随机数k∈[1,n -1];

加密算法

加密算法介绍 褚庆东 一.密码学简介 据记载,公元前400年,古希腊人发明了置换密码。1881年世界上的第一个电话保密专利出现。在第二次世界大战期间,德国军方启用“恩尼格玛”密码机,密码学在战争中起着非常重要的作用。 随着信息化和数字化社会的发展,人们对信息安全和保密的重要性认识不断提高,于是在1997年,美国国家标准局公布实施了“美国数据加密标准(DES)”,民间力量开始全面介入密码学的研究和应用中,采用的加密算法有DES、RSA、SHA等。随着对加密强度需求的不断提高,近期又出现了AES、ECC等。 使用密码学可以达到以下目的: 保密性:防止用户的标识或数据被读取。 数据完整性:防止数据被更改。 身份验证:确保数据发自特定的一方。 二.加密算法介绍 根据密钥类型不同将现代密码技术分为两类:对称加密算法(秘密钥匙加密)和非对称加密算法(公开密钥加密)。 对称钥匙加密系统是加密和解密均采用同一把秘密钥匙,而且通信双方都必须获得这把钥匙,并保持钥匙的秘密。 非对称密钥加密系统采用的加密钥匙(公钥)和解密钥匙(私钥)是不同的。 对称加密算法 对称加密算法用来对敏感数据等信息进行加密,常用的算法包括: DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。 3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。 AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高;

AES 2000年10月,NIST(美国国家标准和技术协会)宣布通过从15种侯选算法中选出的 一项新的密匙加密标准。Rijndael被选中成为将来的AES。Rijndael是在 1999 年下半年,由研究员 Joan Daemen和 Vincent Rijmen 创建的。AES 正日益成为加密各种形式的电子 数据的实际标准。 美国标准与技术研究院 (NIST) 于 2002 年 5 月 26 日制定了新的高级加密标 准 (AES) 规范。 算法原理 AES 算法基于排列和置换运算。排列是对数据重新进行安排,置换是将一个数据单元替换为另一个。AES 使用几种不同的方法来执行排列和置换运算。 AES 是一个迭代的、对称密钥分组的密码,它可以使用128、192 和 256 位密钥,并 且用 128位(16字节)分组加密和解密数据。与公共密钥密码使用密钥对不同,对称密钥密码使用相同的密钥加密和解密数据。通过分组密码返回的加密数据的位数与输入数据相同。迭代加密使用一个循环结构,在该循环中重复置换和替换输入数据。 非对称算法 常见的非对称加密算法如下: RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的; DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准); ECC(Elliptic Curves Cryptography):椭圆曲线密码编码学。 ECC

量子密码术研究进展(论文的格式)

量子密码术研究进展 摘要:量子通信是经典通信和量子力学相结合的一门新兴交叉学科。量子密码学这种新思想起因于量子世界的不确定性,物理法则为保密通信提供了可靠的安全保证。它克服了传统密码学与公钥密码学固有的弱点。本文讲述了量子密码术的原理和基本思想,并分别介绍了有关理论及实验进展,同时详细分析了它的安全协议——BB84协议。其发展前景极为广阔。 关键词:量子信息;量子密码术;量子不确定性原理;安全协议 Progress of Quantum Cryptography Research Abstract: Quantum information is a new field of science and technology, Quantum cryptography is a new method based on the uncertainty of the quanta world; the Law of Nature offers the ultimate security assurance for the secret communication. It can overcome the drawbacks possessed by the conventional cryptography and the public key cryptography. This paper introduces the principle of quantum cryptography, and describes progress both on theory and experiment, and analyses its security protocol of the BB84 protocol in detail. It has the vast developing prospective. Key words: Quantum information; Quantum cryptography; Quantum uncertainty principle; Security protocol

椭圆曲线加密算法代码

椭圆曲线加密算法代码及解析

在椭圆曲线加密中,利用了某种特殊形式的椭圆曲线,即定义在有限域上的椭圆曲线。其方程如下: y2=x3+ax+b(mod p) 这里p是素数,a和b为两个小于p的非负整数,它们满足: 4a3+27b2(mod p)≠0 其中,x,y,a,b ∈Fp,则满足式(2)的点(x,y)和一个无穷点O就组成了椭圆曲线E。 椭圆曲线离散对数问题ECDLP定义如下:给定素数p和椭圆曲线E,对 Q=kP,在已知P,Q的情况下求出小于p的正整数k。 现在我们描述一个利用椭圆曲线进行加密通信的过程: 1、用户A选定一条椭圆曲线Ep(a,b),并取椭圆曲线上一点,作为基点G。 2、用户A选择一个私有密钥k,并生成公开密钥K=kG。 3、用户A将Ep(a,b)和点K,G传给用户B。 4、用户B接到信息后,将待传输的明文编码到Ep(a,b)上一点M(将M转化为十进制整数m,然后令椭圆曲线中点的横坐标为m,根据曲线方程计算出纵坐标,便得到了一个点。),并产生一个随机整数r(r using namespace std; //求两数的最小公倍数 int f1(int a, int b) { int c=a; while( c%a!=0 || c%b!=0) c++;

第10章椭圆曲线密码学

10.3椭圆曲线算术 椭圆曲线理论是一个古老而深奥的数学分支,已有100多年的历史,一直作为一门纯理论学科被少数数学家掌握。它被广大科技工作者了解要归功于20世纪80年代的两件重要的工作。第一,Weil应用椭圆曲线理论证明了著名的费尔玛大定理。第二,Neal Koblitz和https://www.wendangku.net/doc/0012808585.html,ler把椭圆曲线群引入公钥密码理论中,提出了基于椭圆曲线的公钥密码体制ECC(Elliptic Curves Cryptosystem),取得了公钥密码理论和应用的突破性进展。 20世纪90年代,最通用的公钥密码体制是RSA公钥密码体制和DH公钥密码交换算法。其密钥长度一般为512比特。1999年8月22日RSA-512被攻破,所以,这些公钥不得不被加长。为了达到对称密钥128比特的安全水平,NIST推荐使用3072比特的RSA密钥。显然这种密钥长度的增长,对本来计算速度缓慢的RSA来说,无疑是雪上加霜。ECC的提出改变了这种状况,实现了密钥效率的重大突破。大有以强大的短密钥优势取代RSA成为新一代公钥标准(事实标准)之势。 ECC的安全性和优势得到了业界的认可和广泛的应用:

(1)1998年ECDSA(椭圆曲线数字签名算法)被确定为ISO/IEC数学签名标准ISO14888-3; (2)1999年2月ECDSA被ANSI确定为数字签名标准ANSI X9.62-1998,ECDH(椭圆曲线 Diffie-Hellman)被确定为ANSI X9.63; (3)2000年2月ECDSA被确定为IEEE标准IEEE1363-2000,同期,NIST确定其为联邦数 字签名标准FIPS186-2。 1.椭圆曲线 椭圆曲线并非椭圆,之所以称为椭圆曲线是因为它的曲线方程与计算椭圆周长的方程类似,一般来计,椭圆曲线的曲线方程是以下形式的三次方程:y2+axy+by=x3+cx2+dx+e (1) 其中a,b,c,d,e是满足某些简单条件的实数。其中包括称为无穷远点的元素。 密码中普遍采用的是有限域上的椭圆曲线,有限域上的椭圆曲线是指曲线方程定义式(1)中,所有系数都是某一有限域GF(p)中的元素(其中p为一大素数)。其中最为常用的是由方程 y2≡x3+ax+b (mod p) 定义的曲线。(a,b∈GF(p), 4a2+27b3≠0 mod p) 椭圆曲线上的加法运算定义如下:

椭圆曲线加密算法

ECC算法的应用 1 数据加密/解密 ECC(Elliptic Curves Cryptography)加密算法是一种公钥加密算法,与主流的RSA算法相比,ECC算法可以使用较短的密钥达到相同的安全程度。ECC 加密算法允许用户选择具有唯一性的身份标识(如Email地址或网络帐号)作为公钥,并通过可信的中央服务器接受到自己的私钥,在安全通信过程不采用数字证书的概念,而直接将安全方案与加密或验证方法联系起来。

图1 加解密过程 ECC加密算法的计算量小并且处理速度快。在一定的相同的计算资源条件下,虽然在RSA中可以通过选取较小的公钥(可以小到3)的方法提高公钥处理速度,即提高加密和签名验证的速度,使其在加密和签名验证速度上与ECC有可比性,但在私钥的处理速度上(解密和签名),ECC远比RSA、DSA快得多。同时ECC系统的密钥生成速度比RSA快百倍以上,以163位的ECC加密算法与1024位的RSA加密算法比较,ECC加密算法的签名时间为3.0ms,密钥对生成时间为3.8ms,但RSA加密算法却分别高达228.4ms和4708.3ms,因此在相同条件下,ECC加密算法则有更高的加密性能。 2数字签名 由于ECC加密算法是建立在公钥加密体系基础上的,所以它不但可以应用于通信加密,而且还可以应用于数字签名领域。 ECC加密算法的带宽要求低,当对长消息进行加解密时,两类密码系统有相同的带宽要求,但应用于短消息时ECC加密算法带宽要求却低得多,而数字签名正是基于短消息的通讯传输,因此基于ECC加密算法的数字签名系统带宽要求比RSA低很多,易于在各种网络环境下推广应用。 3ECC在银行系统中的应用 ECC在我国的产业化正处于起步阶段,我国的商用密码管理政策规定商用核心密码算法和技术必须采用国内自主研究的成果而不得采用国外的,我国应当开发和应用属于自己的商用ECC技术和产品。 ECC加密算法在银行系统可应用于数据加密传输及身份认证。

相关文档