文档库 最新最全的文档下载
当前位置:文档库 › 高中数学第一讲相似三角形的判定及有关性质四直角三角形的射影定理互动课堂学案新人教A版选修4_1

高中数学第一讲相似三角形的判定及有关性质四直角三角形的射影定理互动课堂学案新人教A版选修4_1

高中数学第一讲相似三角形的判定及有关性质四直角三角形的射影定理互动课堂学案新人教A版选修4_1
高中数学第一讲相似三角形的判定及有关性质四直角三角形的射影定理互动课堂学案新人教A版选修4_1

四 直角三角形的射影定理

互动课堂

重难突破

一、射影

所谓射影,就是正投影.其中,从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影.一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这条直线上的正投影.如图1-4-1,AB 在AC 上的射影是线段AC ;BC 在AC 上的射影是点C ;AC 、BC 在AB 上的射影分别是AD 、BD ,这样,Rt△ABC 中的六条线段就都有了名称,它们分别是:两条直角边(AC 、BC ),斜边(AB ),斜边上的高(CD ),两条直角边在斜边上的射影(AD 、BD ).

图1-4-1

二、直角三角形的射影定理

由于角的关系,图1-4-1中,三个直角三角形具有相似关系,于是Rt △ABC 的六条线段之间存在着比例关系.

△ACD ∽△C BD ,有

CD AD =BD

CD ,转化为等积式即CD 2=AD ·BD ; △ACD ∽△ABC ,有AB AC =AC

AD ,转化为等积式即AC 2=AB ·AD ; △BCD ∽△BAC ,有BA BC =BC BD ,转化为等积式即BC 2=BA ·BD . 用语言来表述,就是在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项;每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.

这一结论常作为工具用于证明和求值.如图1-4-2,在Rt△ABC 中,∠A CB =90°,CD

是AB 上的高.已知AD =4,BD =9,就可以求CD 、AC .由射影定理,得CD 2=AD ·BD =4×9=

36.因为边长为正值,所以CD =6,AC 2=AD ·AB =4×(4+9)=52.所以AC =213.

我们还可以求出BC 、AB ,以及△ABC 的面积等.

图1-4-2

三、刨根问底

问题1 在直角三角形中,我们已经学过三边之间的一个重要关系式,如图1-4-2,在

Rt△ABC 中,∠ACB =90°,那么AC 2+BC 2=AB 2,这一结论被称作勾股定理,同样是在直角

三角形中,勾股定理和射影定理有什么联系?如何说明这种联系?

探究:如图1-4-2,在Rt△A BC 中,∠ACB =90°,CD 是AB 上的高.应用射影定理,可以得到AC 2+BC 2=AD ·AB +BD ·AB =(AD +BD )·AB =AB 2.由此可见,利用射影定理可以证明勾股定理.过去我们是用面积割补的方法证明勾股定理的,现在我们又用射影定理证明了勾股定理,而且这种方法简洁明快,比面积法要方便得多.将两者结合起来,在直角三角形的六条线段中,应用射影定理、勾股定理,就可从任意给出的两条线段中,求出其余四条线段的长度.

问题2 几何图形是最富于变化的,直角三角形更是如此,但不管怎样变化,其基本图

形体现的规律却是相同的,如射影定理的基本图形,这时,从复杂图形中分离出基本图形,就成为解决问题的关键.那么从复杂图形中分离出基本图形有什么窍门吗?能举例说明吗?

探究:在图形的变化中熟悉并掌握射影定理的使用方法,有助于快速发现解题思路,这当中的关键就是把握基本图形,从所给图形中分离出基本图形.如:

(1)在图1-4-3(c)中,求证:CF ·CA =CG ·CB .

(2)在图1-4-3(a)中,求证:FG ·BC =CE ·BG .

(3)在图1-4-3(d)中,求证:①CD 3=AF ·BG ·AB ; ②BC 2∶AC 2=CF ∶FA ;

③BC 3∶AC 3=BG ∶AE .

就可以这样来思考:

在第(1)题中,观察图形则发现分别使用CD 2=CF ·CA 和CD 2=CG ·CB 即可得到证明.

第(2)题可用综合分析法探求解题的思路:欲证FG ·BC =CE ·BG ,只需证BG FC =BC

CE ,而这四条线段分别属于△BFG 和△BEC ,能发现这两个三角形存在公共角∠EBC ,可选用“两角对应相等”或“两边对应成比例,夹角相等”来证明相似.

图1-4-3

或者在图1-4-3(a)中可分解出两个射影定理的基本图形:“Rt△BDE 中DG ⊥BE ”及

“ Rt△BDC 中DF ⊥BC ”,在两个三角形中分别使用射影定理中的BD 2进行代换,得到BG ·BE

=BF ·BC ,化成比例式后,可用“两边对应成比例,夹角相等”来证明含有公共角∠EBC 的△BFG 和△BEC 相似.

你可以来尝试分析第(3)小题.

活学巧用

【例1】直角三角形两直角边在斜边上的射影长分别为5和3,则两条直角边的长分别为

( )

A.3和5

B.9和25

C.40和24

D.102和62

思路解析:直角三角形两直角边在斜边上的射影长分别为5和3,直接应用“射影定理”可求出两直角边的长分别为102和62.

答案:D

【例2】如图1-4-4(a)中,CD 垂直平分AB ,点E 在CD 上,DF ⊥AC ,DG ⊥BE ,F 、G 分别为

垂足.求证:AF ·AC =BG ·BE .

思路解析:将图1-4-4(a)分解出两个基本图形1-4-4(b)和(c),再观察结论,就会发现,

所要证的等积式的左、右两边分别满足图1-4-4(b)和(c)中的射影定理:AF ·AC =AD 2,

BG ·BE =DB 2,通过代换线段的平方(AD 2=DB 2)就可以证明所要的结论.

图1-4-4

证明:∵CD 垂直平分AB ,

∴△ACD 和△BDE 均为直角三角形,并且AD =BD .

又∵DF ⊥AC ,DG ⊥BE ,

∴AF ·AC =AD 2,BG ·BE =DB 2.

∵AD 2=DB 2,

∴AF ·AC =BG ·BE .

【例3】如图1-4-5,在△ABC 中,CD ⊥AB 于D ,DE ⊥AC 于E ,DF ⊥BC 于F ,求证:△CEF ∽△CBA .

图1-4-5

思路解析:要证明△CEF ∽△CBA ,题设已具备了∠BCA =∠ECF ,再找出一对角相等变得不容易,因此,考虑证明∠BCA 与∠ECF 的夹边成比例,即CB CE =CA

CF ,即证CE ·CA =C F ·CB ,再从已知出发考虑问题,在Rt△ADC 中,DE ⊥AC ,根据定理能推出CD 2=CE ·CA ,

同理可得CD 2=CF ·CB ,这样,CE ·CA =CF ·CB 就能得证.

证明:∵△ADC 是直角三角形,DE ⊥AC ,

∴CD 2=CE ·CA .

同理可得CD 2=CF ·CB .

∴CE ·CA =CF ·CB ,即CB CE =CA

CF . 又∵∠BCA =∠ECF ,

∴△CEF ∽△CBA .

【例4】如图1-4-6,已知Rt△ABC 中,∠ACB =90°,CD ⊥AB 于D ,DE ⊥AC 于E ,DF ⊥BC 于

F .求证:AE ·BF ·AB =CD 3.

图1-4-6

思路解析:分别在三个直角三角形Rt△ABC 、Rt△A DC 、Rt△BDC 中运用射影定理,再将

线段进行代换,就可以实现等积式的证明.

证明:∵Rt△ABC 中,∠ACB =90°,CD ⊥AB ,

∴CD 2=AD ·BD .

∴CD 4=AD 2·BD 2.

又∵Rt△ADC 中,DE ⊥AC ,

Rt△BDC 中,DF ⊥BC ,

∴AD 2=AE ·AC ,BD 2=BF ·BC .

∴CD 4=AE ·BF ·AC ·BC .

又∵AC ·BC =AB ·CD ,

∴CD 4=AE ·BF ·AB ·CD.

∴AE ·BF ·AB =CD 3.

【例5】如图,已知AD 为△ABC 的高,垂足为D ,DE ⊥AB 于E ,DF ⊥AC 于F ,求证:AC AB =AE

AF .

图1-4-7

思路解析:要证

AC AB =AE AF ,只要证AB ·AE =AF ·AC 即可,考虑题目的条件,应用射影定理得AD 2=AE ·AB ,AD 2=AF ·AC ,从而达到证明的目的.

证明:在Rt△ADB 中,∠ADB =90°,DE ⊥AB ,

∴AD 2=AE·AB.

同理可证AD 2=AF ·AC .

∴AE ·AB =AF ·AC ,即AC AB =AE AF .

(完整版)相似三角形的判定方法

(一)相似三角形 1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形. ①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; ②相似三角形的特征:形状一样,但大小不一定相等; ③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例. 2、相似三角形对应边的比叫做相似比. ①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例. ②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽ △ABC的相似比,当它们全等时,才有k=k′=1. ③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出. 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形. 4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似. ①定理的基本图形有三种情况,如图其符号语言: ∵DE∥BC,∴△ABC∽△ADE; (双A型) ②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”; ③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”. (二)相似三角形的判定 1、相似三角形的判定: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可简单说成:两角对应相等,两三角形相似。 例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.

相似三角形之射影定理

相似三角形之射影定理 1、已知直角三角形ABC 中,斜边AB=5cm,BC=2cm ,D 为AC 上的一点,DE AB ⊥交AB 于E ,且AD=3.2cm ,则DE= ( ) A 、1.24cm B 、1.26cm C 、1.28cm D 、1.3cm 2、如图1-1,在Rt ABC 中,CD 是斜别AB 上的高,在图中六条线段中,你认为只要知道( )线段的长,就可以求其他线段的长 A 、1 B 、2 C 、3 D 、4 3、在Rt ABC 中,90BAC ∠= ,AD BC ⊥于点D ,若34AC AB =,则BD CD =( ) A 、34 B 、43 C 、169 D 、9 16 4、如图1-2,在矩形ABCD 中,1 ,3DE AC ADE CDE ⊥∠=∠,则EDB ∠=( ) A 、22.5 B 、30 C 、45 D 、60 【填空题】 5、ABC 中,90A ∠= ,AD BC ⊥于点D ,AD=6,BD=12,则CD= ,AC= , 22:AB AC = 。 6、如图2-1,在Rt ABC 中,90ACB ∠= ,CD AB ⊥, AC=6,AD=3.6,则BC= .

【解答题】 7、已知CD 是ABC 的高,,DE CA DF CB ⊥⊥,如图3-1,求证:CEF CBA ∽ 8、已知90CAB ∠= ,AD CB ⊥,ACE ,ABF 是正三角形,求证:DE DF ⊥ 9、如图3-2,矩形ABCD 中,AB=a ,BC=b ,M 是BC 的中点,DE AM ⊥,E 是垂足,求证: DE =

参考答案 1、C 2、B 3、C 4、C 5 、3,4:1 6、 8 7、证明:在Rt ADC 中,由射影定律得, 2CD CE AC = ,在R t B C 中, 2C D C F B C = ,CE BC CE AC CF BC CF AC ∴=∴ = 又ECF BCA ∠=∠ ,CEF CBA ∴ 8、证明:如图所示,在Rt BAC 中, 22,AC CD CB AB BD BC == AC CD AD AB AD BD ∴===== ,,AE AD AC AE AB AF BF BD ==∴ = 60,60,FBD ABD EAD CAD ABD CAD ∠=+∠∠=+∠∠=∠ 又 FBD EAD ∴∠=∠,,EAD FBD BDF ADE ∴ ∴∠=∠ 90FDE FDA ADE FDA BDF ∴∠=∠+∠=∠+∠= DE DF ∴⊥ 9、证明:在Rt AMB 和Rt ADE 中,AMB DAE ∠=∠,90ABM AED ∠=∠= 所以Rt AMB ~Rt ADE 所以AB AM DE AD = ,因为AB=a ,BC=b ,

《相似三角形的性质》教案

《相似三角形的性质》教案 课标要求 了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方. 教学目标 知识与技能:1.了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方;2.能够运用相似三角形的性质定理解决相关问题.过程与方法:通过操作、观察、猜想、类比等活动,进一步提高学生的思维能力和推理论证能力. 情感、态度与价值观:通过对性质的发现和论证,提高学习热情,增强探究意识. 教学重点 相似三角形性质定理的理解与运用. 教学难点 探究相似三角形面积的性质,并运用相似三角形的性质定理解决问题. 教学流程 一、情境引入 三角形中有各种各样的几何量,如三条边的长度,三个内角的度数,高、中线、角平分线的长度,以及周长、面积等等. 问题:如果两个三角形相似,那么它们的这些几何量之间有什么关系呢? 引出课题:今天,我们就来研究相似三角形的这些几何量之间的关系. 二、探究归纳 回顾:从相似三角形的定义出发,能够得到相似三角形的什么性质? 相似三角形的对应角相等,对应边成比例. 问题:相似三角形的其他几何量可能具有哪些性质? 探究:如图1,△ABC∽△A′B′C′,相似比为k,它们对应高、对应中线、对应角平分线的比各是多少. 图1

图2 问题1:如图2,△ABC ∽△A ′B ′C ′,相似比为k ,分别作△ABC 和△A ′B ′C ′对应高AD 和A ′D ′.AD 和A ′D ′的比是多少? 追问:对应高在哪两个三角形中,它们相似吗?如何证明? 解:∵△ABC ∽△A ′B ′C ′ ∴∠B =∠B ′ ∵△ABD 和△A ′B ′D ′都是直角三角形 ∴△ABD ∽△A ′B ′D ′ ∴==''''AD AB k A D A B 问题2:它们的对应中线、角平分线的比是否也等于相似k ? 结论:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比. 问题3:如果△ABC ∽△A ′B ′C ′,相似比为k ,对应线段的比呢? 推广:相似三角形对应线段的比等于相似比. 问题4:如果△ABC ∽△A ′B ′C ′,相似比为k ,它们的周长有什么关系? 结论:相似三角形的周长比等于相似比. 思考:相似三角形面积比与相似比有什么关系? 如图,△ABC ∽△A ′B ′C ′,相似比为k ,分别作△ABC 和△A ′B ′C ′对应高AD 和A ′D ′. 2122 ABC A B C BC AD S BC AD k k k S B C A D B C A D ?'''??==?=?=''''''''? 结论:相似三角形面积比等于相似比的平方. 三、应用提高 例:如图,在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D .若△ABC 的边

(完整版)相似三角形中的射影定理

相似三角形 ——相似直角三角形及射影定理 【知识要点】 1、直角三角形的性质: (1)直角三角形的两个锐角 (2)Rt△ABC中,∠C=90o,则2+ 2= 2 (3)直角三角形的斜边上的中线长等于 (4)等腰直角三角形的两个锐角都是,且三边长的比值为 (5)有一个锐角为30o的直角三角形,30o所对的直角边长等于,且三边长的比值为 2、直角三角形相似的判定定理(只能用于选择填空题) 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。 3、双垂直型: Rt△ABC中,∠C=90o,CD⊥AB于D,则 ①∽∽ ②射影定理: CD2= ·AC2= ·BC2= · 【常规题型】 1、已知:如图,△ABC中,∠ACB=90°,CD⊥AB于D,S△ABC=20,AB=10。求AD、BD的长. 2、已知,△ABC中,∠ACB=90°,CD⊥AB于D。(1)若AD=8,BD=2,求AC的长。(2)若AC=12,BC=16,求CD、AD的长。 B A

【典型例题】 例1.如图所示,在△ABC 中,∠ACB=90°,AM 是BC 边的中线,CN ⊥AM 于N 点,连接BN ,求证:BM 2=MN ·AM 。 例2.已知:如图,在四边形ABCD 中,∠ABC=∠ADC=90o,DF ⊥AC 于E ,且与AB 的延长线相交于F ,与BC 相交于G 。求证:AD 2=AB ·AF 例3.(1)已知ABC ?中,?=∠90ACB ,AB CD ⊥,垂足为D ,DE 、DF 分别是BDC ADC ??和的 高,这时CAB DEF ??和是否相似? 【拓展练习】 1、已知:如图,AD 是△ABC 的高,BE ⊥AB ,AE 交BC 于点F ,AB ·AC=AD ·AE 。求证:△BEF ∽△ACF A B A B C N D C

初三数学《相似三角形》知识点归纳

初三数学《相似三角形》知识提纲 (何老师归纳) 一:比例的性质及平行线分线段成比例定理 (一)相关概念:1.两条线段的比:两条线段的比就是两条线段长度的比 在同一长度单位下两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段 的比是,或写成a :b=m :n ; 其中 a 叫做比的前项,b 叫做比的后项 2:比例尺= 图上距离/实际距离 3:成比例线段:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,记作:c d a b =(或a :b=c :d ) ① 线段a ,d 叫做比例外项,线段b ,c 叫做比例内项, ② 线段a 叫首项,d 叫a ,b ,c 的第四比例项。 ③ 比例中项:若 c a b c a b c b b a ,,2是则即?==的比例中项. (二)比例式的性质 1.比例的基本性质:b c a d d c b a =?= 2. 合比:若 ,则或a b c d a b b c d d a b a c d c =±=±±=± 3. 等比:若 ……(若……)a b c d e f m n k b d f n =====++++≠0 4、黄金分割: 把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=2 1 5-AB ≈0.618AB , (三)平行线分线段成比例定理 1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 如图:当AD∥BE∥CF 时,都可得到 = . = , = , 语言描述如下: = , = , = . (4)上述结论也适合下列情况的图形: n m b a =

相似三角形的性质 (2)教学设计

相似三角形的性质 【教学目标】 1.初步掌握相似三角形的周长比、面积比与相似比的关系以及关于它们之间关系的两条定理的证明方法,并会运用定理进行有关简单的计算。 2.在动手参与解决身边实际问题的过程中,增强主动探索、发现数学知识的意识,提高观察、归纳能力,应用数学知识解决生活中实际问题的能力。 3.在学习过程中,进一步改善独立思考、合作学习、自主评价等学习品质。 【教学重难点】 重点:相似三角形的周长比、面积比与相似比的关系的探究与证明。 难点:相似三角形的周长比、面积比与相似比的关系的应用。 【教学过程】 一、设计龟免赛跑故事导入新课 有一只极速乌龟和骄傲的兔子在规定的两块相似四边形的场地上进行比赛,谁先跑完一圈谁为胜,已知:免子的速度是乌龟的4倍,结果乌龟跑完一圈只用了一个小时,兔子说,我睡上半个小时再跑,也能比你先跑完一圈;你认为兔子的说的话对吗?你能猜到比赛的最后结果吗? (以“龟兔赛跑”精典故事开头,引起同学对这堂课的兴趣。) 二、自主探究,发现新知 1.分组猜想探究活动,完成下列实验报告单

(学生经历动手实验 - 观察-思考-归纳-发现的学习过程,分别总结两个相似三角形的周长比与相似比的关系,面积比与相似比的关系。注重学生动手实验、探索过程,并利用小组合作方式,培养学生的合作意识。)

猜测得到命题:相似三角形的周长比等于相似比。相似三角形的面积比等于相似比的平方。2.验证猜想,得出结论(小组讨论) 探究:如果两个三角形相似,它们的周长比是否等于相似比呢?两个相似多边形呢? 如果△ABC∽△A'B'C',相似比为k,那么 ?AB BC CA k A B B C C A === '''''' ?AB=kA′B',BC=kB'C',CA=kC'A' ? AB BC CA kA B kB C kC A k A B B C C A A B B C C A ++''+''+'' == ''+''+''''+''+'' 可以得到相似三角形周长的比等于相似比 类似的方法还可以得出相似多边形周长的比等于相似 延伸问题: 探究: (1)如图27.2-11(1),?ABC∽? A'B'C',相似比为k1,它们的面积比呢? 图27.2-11(1) 分析:如图27.2-11,分别作出?ABC和? A'B'C'的高AD和A'D'。 ∵∠ADB=∠A'D'B'=900又∠B=∠B' ∴?ABD∽?A'B'D' ∴1 '''' AD AB k A D A B ==(在此得出相似三角形对应高的比等于相似比)1111111 1 2 1 2 ABC A B C BC AD S S B C A D ? ? ? = ? = ()() 1111 2 1111 1 2 1 2 kB C kA D k B C A D = ? 可以得到:相似三角形面积比等于相似比的平方 相似三角形对应中线的比,对应角平分线的比都等于相似比吗?

最新相似三角形常见题型解法归纳.优选

A字形,A’形,8字形,蝴蝶形,双垂直,旋转形 双垂直结论:射影定理:①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项 ⑴△ACD∽△CDB→AD:CD=CD:BD→CD 2=AD?BD ⑵△ACD∽△ABC→AC:AB=AD:AC→AC2=AD?AB ⑶△CDB∽△ABC→BC:AC=BD:BC→BC2=BD?AB 结论:⑵÷⑶得AC2:BC2=AD:BD 结论:面积法得AB?CD=AC?BC→比例式证明等积式(比例式)策略 1、直接法:找同一三角形两条边变化:等号同侧两边同一三角形三点定形法 2、间接法:⑴3种代换①等线段代换;②等比代换;③等积代换; ⑵创造条件①添加平行线——创造“A”字型、“8”字型 ②先证其它三角形相似——创造边、角条件 相似判定条件:两边成比夹角等、两角对应三边比 相似终极策略: 遇等积,化比例,同侧三点找相似; 四共线,无等边,射影平行用等比; 四共线,有等边,必有一条可转换; 两共线,上下比,过端平行条件边。 彼相似,我角等,两边成比边代换。 (3)等比代换:若d c b a, , ,是四条线段,欲证 d c b a =,可先证得 f e b a =(f e,是两条线段)然 后证 d c f e =,这里把 f e 叫做中间比。 ①∠ABC=∠ADE.求证:AB·AE=AC·AD ②△ABC中,AB=AC,△DEF是等边三角形,求证:BD?CN=BM?CE. ③等边三角形ABC中,P为BC上任一点,AP的垂直平分线交AB、AC于M、N两点。 求证:BP?PC=BM?CN D C A word.

相似射影定理及角平分线定理打印稿

相似三角形(二)(射影定理及角平分线的性质) 射影定理: 【知识要点】 1、直角三角形的性质: (1)直角三角形的两个锐角 (2)Rt △ABC 中,∠C=90o,则 2 + 2 = 2 (3)直角三角形的斜边上的中线长等于 (4)等腰直角三角形的两个锐角都是 ,且三边长的比值为 (5)有一个锐角为30o的直角三角形,30o所对的直角边长等于 ,且三边长的比值为 2、直角三角形相似的判定定理: 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。 3、双垂直型: Rt △ABC 中,∠C=90o,CD ⊥AB 于D ,则 ① ∽ ∽ ②S △ABC = 2 2 ③射影定理: CD 2 = · AC 2= · BC 2= · 【常规题型】 1、已知:如图,△ABC 中,∠ACB=90°,CD⊥AB 于D , S△ABC=20,AB=10。求AD 、BD 的长. B A

2、已知,△ABC 中,∠ACB=90°,CD⊥AB 于D 。(1)若AD=8,BD=2,求AC 的长。(2)若AC=12,BC=16,求CD 、AD 的长。 【典型例题】 例1.已知:如图,在四边形ABCD 中,∠ABC=∠ADC=90o,DF ⊥AC 于E ,且与AB 的延长线相交于F ,与BC 相交于G 。求证:AD 2=AB ·AF 例2.如图所示,在△ABC 中,∠ACB=90°,AM 是BC 边的中线,CN ⊥AM 于N 点,连接BN ,求证:BM 2=MN ·AM 。 例3.已知:如图,Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,DE ⊥AC 于E ,DF ⊥BC 于F 。 求证:AE ·BF ·AB =CD 3 A M C D C

相似三角形的判定定理2

A B C A 1 B 1 C 1 A B C D O 1、 相似三角形判定定理2 如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 可简述为:两边对应成比例且夹角相等,两个三角形相似. 如图,在ABC ?与111A B C ?中,1A A ∠=∠,1111 AB AC A B AC = ,那么ABC ?∽111A B C ?. 【例1】 如图,四边形ABCD 的对角线AC 与BD 相交于点O , 2OA =,3OB =,6OC =,4OD =. 求证:OAD ?与OBC ?是相似三角形. 相似三角形判定定理2 知识精讲

A B C D A B C D E 【例2】 如图,点D 是ABC ?的边AB 上的一点,且2AC AD AB =g . 求证:ACD ?∽ABC ?. 【例3】 如图,在ABC ?与AED ?中, AB AC AE AD = ,BAD CAE ∠=∠. 求证:ABC ?∽AED ?. 【例4】 下列说法一定正确的是( ) A .有两边对应成比例且一角相等的两个三角形相似 B .对应角相等的两个三角形不一定相似 C .有两边对应成比例且夹角相等的两个三角形相似 D .一条直线截三角形两边所得的三角形与原三角形相似 【例5】 在ABC ?和DEF ?中,由下列条件不能推出ABC ?∽DEF ?的是( ) A .A B A C DE DF = ,B E ∠=∠ B .AB AC =,DE DF =,B E ∠=∠ C .AB AC DE DF = ,A D ∠=∠ D .AB AC =,DE DF =,C F ∠=∠

初三数学相似三角形知识点归纳

初三数学相似三角形知 识点归纳 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

初三数学《相似三角形》知识提纲 (孟老师归纳) 一:比例的性质及平行线分线段成比例定理 (一)相关概念:1.两条线段的比:两条线段的比就是两条线段长度的比 在同一长度单位下两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段 的比是,或写成a :b=m :n ; 其中 a 叫做比的前项,b 叫做比的后项 2:比例尺= 图上距离/实际距离 3:成比例线段:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,记作: c d a b =(或a :b=c :d ) ① 线段a ,d 叫做比例外项,线段b ,c 叫做比例内项, ② 线段a 叫首项,d 叫a ,b ,c 的第四比例项。 ③ 比例中项:若 c a b c a b c b b a ,,2是则即?==的比例中项. (二)比例式的性质 1.比例的基本性质: bc ad d c b a =?= 2. 合比:若 ,则或a b c d a b b c d d a b a c d c =±=±±=± 3. 等比:若 ……(若……)a b c d e f m n k b d f n =====++++≠0 4、黄金分割: n m b a =

把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC= 2 1 5-≈, (三)平行线分线段成比例定理 1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 如图:当AD∥BE∥CF 时,都可得到 = . = ,= , 语言描述如下: = , = , = . (4)上述结论也适合下列情况的图形: 图(2) 图(3) 图(4) 图(5) 2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. A 型 X 型 由DE ∥BC 可得: AC AE AB AD EA EC AD BD EC AE DB AD = ==或或.

相似三角形中的射影定理

相似三角形中的射影定 理 -CAL-FENGHAI.-(YICAI)-Company One1

相似三角形 ——相似直角三角形及射影定理 【知识要点】 1、直角三角形的性质: (1)直角三角形的两个锐角 (2)Rt△ABC中,∠C=90o,则2+ 2= 2 (3)直角三角形的斜边上的中线长等于 (4)等腰直角三角形的两个锐角都是,且三边长的比值为 (5)有一个锐角为30o的直角三角形,30o所对的直角边长等于,且三边长的比值为 2、直角三角形相似的判定定理(只能用于选择填空题) 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。 3、双垂直型: Rt△ABC中,∠C=90o,CD⊥AB于D,则 ①∽∽ ②射影定理: CD2= · AC2= · BC2= · 【常规题型】 1、已知:如图,△ABC中,∠ACB=90°,CD⊥AB于D,S△ABC=20,AB=10。求AD、BD 的长. 2、已知,△ABC中,∠ACB=90°,CD⊥AB于D。(1)若AD=8,BD=2,求AC的长。(2)若AC=12,BC=16,求CD、AD的长。B A

【典型例题】 例1.如图所示,在△ABC 中,∠ACB=90°,AM 是BC 边的中线,CN ⊥AM 于N 点,连接BN ,求证:BM 2=MN ·AM 。 例2.已知:如图,在四边形ABCD 中,∠ABC=∠ADC=90o ,DF ⊥AC 于E ,且与AB 的延长线相交于F ,与BC 相交于G 。求证:AD 2=AB ·AF A B M C N D C

初中数学相似三角形的判定定理

相似三角形的判定 教学目标1.知道相似三角形的定义及有关概念,知道相似比为1的相似三角形是全等三角形;会读、会用“∽”符号;能准确写出相似三角形的对应角与对应边的比例式; 2、掌握相似三角形判定的预备定理及相似三角形的判定定理1; 3、综合运用所学两个定理,来判定三角形相似,计算相似三角形的边长. 4、了解判定定理1的证题方法与思路,应用判定定理l. 一、复习 1.什么叫做全等三角形?它在形状上、大小上有何特征? 2.两个全等三角形的对应边和对应角有什么关系? 3、复习平行线分线段成比例定理(文字表述及基本图形) 本节学习相似三角形的定义及相关判定定理. 二、学习新课 相似三角形的概念:我们把对应角相等、对应边成比例的两个三角形,叫做相似三角形. 相似三角形的概念作为相似三角形的判定方法之一. [说明]相似三角形的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.两个三角形形状相同,就是他们的对应角相等,对应边成比例. 相似比的概念:相似三角形对应边的比,叫做相似比(或相似系数). [说明]①两个相似三角形的相似比具有顺序性.②全等三角形的相似比为1,这也说明了全等三角形是相似三角形的特殊情形. 注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上. 类似地,如果两个边数相等的多边形的对应角相等、对应 边成比例,那么这两个多边形叫做相似多边形.相似多边形的 对应边的比,叫做相似比. 如图,是相似三角形,则 相似可记作∽.由于,则与 的相似比,则与的相似比.

猜测两个三角形全等与相似的区别与联系:当两个相似三角形的相似比时,这两个相似三角形就成为全等三角形,因此全等三角形是相似三角形的特例. 想一想:如果∽,∽那么与相似吗? 利用相似三角形的定义说理.得到相似三角形具有传递性(性质)如果两个三角形分别与同一个三角形相似,那么这两个三角形也相似. 思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么? (2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么? 练习一:选择题 下列四组图形,必是相似形的是() A、有一个角为的两个等腰三角形;B、有一个角为的两个等腰梯形; C、邻边之比都为2:3的两个平行四边形;D、有一个角为的两个等腰三角形. 新授2:相似三角形的预备定理 课本通过探讨的方法,根据题设中有平行线的条件,结合定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是: (1)本定理的导出不仅复习了相似三角形的定义,而且为后面的证明打下了基础。 (2)由本定理的题设所构成的三角形有三种可能,基本图形在“平行线分线段成比例”出现过. (3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,做题时务必要认真仔细,如本定理的比例式,防止出现错误 (4)根据两个三角形相似写对应边的比例式时,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.

相似三角形中的射影定理知识讲解

相似三角形 ――相似直角三角形及射影定理 【知识要点】 1直角三角形的性质: (1) 直角三角形的两个锐角 _____________ (2) Rt A ABC 中,/ C=90o ,贝U 2 + (3) 直角三角形的斜边上的中线长等于 2、已知,△ ABC 中,/ ACB=90 ° , CD 丄 AB 于 D 。( 1)若 AD=8 , BD=2,求 AC 的长。(2)若 AC=12 , BC=16,求 CD 、AD 的长。 精品文档 (4)等腰直角三角形的两个锐角都是 ,且三边长的比值为 (5)有一个锐角为30o 的直角三角形,30o 所对的直角边长等于 ,且三边长的比值为 2、直角三角形相似的判定定理 (只能用于选择填空题) 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那 么这两个直角三角形相似。 3、双垂直型: Rt A ABC 中,/ C=90o , CD 丄 AB 于 D ,则 ① S s ②射影定理: CD 2= ______ 【常规题型】 AC 2= _____ BC 2= ____ 1 已知:如图,△ ABC 中,/ ACB=90

【典型例题】 例1.如图所示,在厶ABC 中,/ ACB=90 BM 2=MN ? AM 。 例2.已知:如图,在四边形 ABCD 中,/ ABC= / ADC=90 o , DF 丄AC 于E ,且与 AB 的延长线相交 于F ,与BC 相交于G 。求证:AD 2=AB ? AF 【拓展练习】 1、已知:如图, AD 是厶ABC 的高,BE 丄AB , AE 交BC 于点F , AB ? AC=AD ? AE 。求证:△ BEF ACF ,AM 是BC 边的中线,CN 丄AM 于N 点,连接BN ,求证: 例 3. (1)已知 ABC 中, ACB 90 , CD 高,这时 DEF 和 CAB 是否相似? AB ,垂足为D , DE 、DF 分别是 ADC 和 BDC 的 C B C F D

相似三角形---射影定理的运用

相似三角形------射影定理的推广及应用 射影定理是平面几何中一个很重要的性质定理,尽管义务教材中没有列入,但在几何证明及计算中应用很广泛,若能很好地掌握并灵活地运用它,常可取到事半功倍的效果。一般地,若将定理中的直角三角形条件非直角化,亦可得到类似的结论(这里暂且称之为射影定理的推广),而此结论又可作为证明其它命题的预备定理及联想思路,熟练地掌握并巧妙地运用,定会在几何证明及计算“山穷水尽疑无路”时,“柳暗花明又一村”地迎刃而解。下面结合例子从它的变式推广上谈谈其应用。 一、射影定理 射影定理直角三角形斜边上的高是它分斜边所得两条线段的比例中项;且每条直角边都是它在斜边上的射影和斜边的比例中项。 如图(1):Rt△ABC中,若CD为高, 则有CD2=BD?A D、 BC2=BD?AB或 AC2=AD?AB。(证明略) 二、变式推广 1.逆用如图(1):若△ABC中,CD为高,且有DC2=BD ?AD或AC2=AD?AB或BC2=BD?AB,则有∠DCB=∠A或∠ACD=∠B,均可等到△ABC为直角三角形。 (证明略) 2.一般化,若△ABC不为直角三角形,当点D满足一定条件时,类似地仍有部分结论成立。(后文简称:射影定理变式(2)) 如图(2):△ABC中,D为AB上一点,若∠CDB=∠ACB,或∠ DCB=∠A,则有△CDB∽△ACB,可得BC2=BD?A B;反之,若△ ABC中,D为AB上一点,且有BC2=BD?AB,则有△CDB∽△ACB, 可得到∠CDB=∠ACB,或∠DCB=∠A。 (证明略) 三、应用 例1如图(3),已知:等腰三角形ABC中,AB=AC,高AD、BE交于点H, 求证:4DH?DA=BC2 分析:易证∠BAD=∠CAD=900-∠C=∠H B D,联想到射影定理变式 (2),可得BD2=DH?DA,又BC=2BD,故有结论成立。 (证明略)

相似三角形判定基础 练习

相似三角形的判定① 1、已知两数4和8,试写出第三个数,使这三个数中,其中一个数是其余两数的比例中项,第 三个数是 (只需写出一个即可). 2、在△ABC 中,AB=8,AC=6,点D 在AC 上,且AD=2,若要在AB 上找一点E ,使△ADE 与原三角 形相似,那么AE= 。 3、如图,在△ABC 中,点D 在AB 上,请再添一个适当的条件,使△ADC ∽△ACB ,那么可添加的条件是 4、已知D 、E 分别是ΔABC 的边AB 、AC 上的点,请你添加一个条件, 使ΔABC 与ΔAED 相似. (只需添加一个你认为适当的 条件即可). 5、下列说法:①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有等腰直角三角 形都相似;④所有的直角三角形都相似. 其中正确的是 (把你认为正确的说法的序号都填上). 6、如图,在直角坐标系中有两点A(4,0)、B(0,2),如果点C 在x 轴 上(C 与A 不重合),当点C 的坐标为 或 时,使得由点B 、O 、C 组成的三角形与 ΔAOB 相似(至少写出两个满足条件的点的坐标). 7、下列命题中正确的是 ( ) ①三边对应成比例的两个三角形相似 ②二边对应成比例且一个角对应相等的两个三角形相似 ③一个锐角对应相等的两个直角三角形相似 ④一个角对应相等的两个等腰三角形相似 A 、①③ B 、①④ C 、①②④ D 、①③④ 8、如图,已知D E ∥BC ,E F ∥AB ,则下列比例式中错误的是( ) A AC AE AB AD = B FB EA CF CE = C BD AD BC DE = D CB CF AB EF = 9、如图,D 、E 分别是AB 、AC 上两点,CD 与BE 相交于点O , 下列条件中不能使ΔABE 和ΔACD 相似的是 ( ) A. ∠B=∠C B. ∠ADC=∠AEB C. BE=CD ,AB=AC D. AD ∶AC=AE ∶AB 10、在矩形ABCD 中,E 、F 分别是CD 、BC 上的点,若∠AEF= 90°,则一定有 ( ) A ΔADE ∽ΔAEF B ΔECF ∽ΔAEF C ΔADE ∽ΔECF D ΔAEF ∽ΔABF 11、如图,E 是平行四边形ABCD 的边BC 的延长线上的一点, 连结AE 交CD 于F ,则图中共有相似三角形 ( ) A 1对 B 2对 C 3对 D 4对 12、如图,在大小为4×4的正方形网格中,是相似三角形的是( )

相似三角形的判定定理1

1 / 7 1、 相似三角形的定义 如果一个三角形的三个角与另一个三角形的三个角对应相等,且它们各有的三边对应成比例,那么这两个三角形叫做相似三角形. 如图,DE 是ABC ?的中位线,那么在ADE ?与ABC ?中, A A ∠=∠, ADE B ∠=∠,AED C ∠=∠; 1 2AD DE AE AB BC AC ===.由相似三角形的定义,可知这两个三角形相似.用符号来表示,记作 ADE ?∽ABC ?,其中点A 与点A 、点D 与点B 、点E 与点C 分 别是对应顶点;符号“∽”读作“相似于”. 用符号表示两个相似三角形时,通常把对应顶点的字母分别写在三角形记号“?”后相应的位置上. 根据相似三角形的定义,可以得出: (1)相似三角形的对应角相等,对应边成比例;两个相似三角形的对应边的比,叫做这两个三角形的相似比(或相似系数). (2)如果两个三角形分别与同一个三角形相似,那么这两个三角形也相似. 2、 相似三角形的预备定理 平行于三角形一边的直线截其他两边所在的直线,截得的三角形与原三角形相似. 如图,已知直线l 与ABC ?的两边AB 、AC 所在直线分别交于点D 和点E ,则ADE ?∽ABC ?. 相似三角形判定定理1 A B C D E A B C D E A B C D E D A B C E

2 / 7 A B C A 1 B 1 C 1 3、 相似三角形判定定理1 如果一个三角形的两角与另一个三角形的两角对应相等,那么这两个三角形相似. 可简述为:两角对应相等,两个三角形相似. 如图,在ABC ?与111A B C ?中,如果1A A ∠=∠、1B B ∠=∠,那么ABC ?∽111A B C ?. 常见模型如下:

(完整版)人教版第27章相似三角形知识点总结

第27章相似三角形知识点 知识点1 有关相似形的概念 1、形状相同的图形叫相似图形, 2、如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形. 3、相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念 (1)在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段, 简称比例线段 知识点3 比例的性质(注意性质里的条件:分母不能为0) bc ad d c b a =?=::; a c a b c d b d b d ±±= ?= 知识点4 比例线段的有关定理 1、平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例 已知AD ∥BE ∥CF, 可得 AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF ===== 或或或或等. 知识点5 相似三角形的概念 对应角相等,对应边成比例的三角形,叫做相似三角形. 相似三角形对应边的比叫做相似比(或相似系数). 相似三角形对应角相等,对应边成比例. 知识点6 三角形相似的判定方法 1、平行法: 平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2、只看角法(AA ): 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似. 简述为:两角对应相等,两三角形相似. 3、只看边法 (SSS):如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似. (HL)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似. 4、边角组合法(SAS): 如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似. 简述为:两边对应成比例且夹角相等,两三角形相似 B

相似三角形的判定定理

24.4(1)相似三角形的判定 教学目标 1.知道相似三角形的定义及有关概念,知道相似比为1的相似三角形是全等三角形;会读、会用 “∽”符号;能准确写出相似三角形的对应角与对应边的比例式; 2、掌握相似三角形判定的预备定理及相似三角形的判定定理1; 3、综合运用所学两个定理,来判定三角形相似,计算相似三角形的边长. 4、了解判定定理1的证题方法与思路,应用判定定理l. 一、复习 1.什么叫做全等三角形?它在形状上、大小上有何特征? 2.两个全等三角形的对应边和对应角有什么关系? 3、复习平行线分线段成比例定理(文字表述及基本图形) 本节学习相似三角形的定义及相关判定定理. 二、学习新课 相似三角形的概念: 我们把对应角相等、对应边成比例的两个三角形,叫做相似三角形. 相似三角形的概念作为相似三角形的判定方法之一. [说明]相似三角形的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.两个三角形形状相同,就是他们的对应角相等,对应边成比例. 相似比的概念 :相似三角形对应边的比k ,叫做相似比(或相似系数). [说明]①两个相似三角形的相似比具有顺序性. ②全等三角形的相似比为1,这也说明了全等三角形是相似三角形的特殊情形. 注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上. 类似地,如果两个边数相等的多边形的对应角相等、对应边成比例,那么这两个多边形叫做相似多边形.相似多边形的对应边的比,叫做相似比. 如图,111,ABC A B C ??是相似三角形,则111,ABC A B C ??相似可记作ABC ?∽111A B C ?.由于 111 2 AB A B =,则ABC ?与111A B C ?的相似比111 2 AB k A B = =,则111A B C ?与ABC ?的相似比,112A B k AB == . C 1 B 1 A 1 C B A

相似三角形射影定理的运用

相似三角形----射影定理的推广及应用 射影定理是平面几何中一个很重要的性质定理,尽管义务教材中没有列入,但在几何证明及计算中 应用很广泛,若能很好地掌握并灵活地运用它,常可取到事半功倍的效果。一般地,若将定理中的直角三 角形条件非直角化,亦可得到类似的结论(这里暂且称之为射影定理的推广) ,而此结论又可作为证明其 它命题的预备定理及联想思路, 熟练地掌握并巧妙地运用,定会在几何证明及计算“山穷水尽疑无路”时, “柳暗花明又一村”地迎刃而解。下面结合例子从它的变式推广上谈谈其应用。 一、 射影定理 射影定理直角三角形斜边上的高是它分斜边所得两条线段的比例中项; 上的射影和斜边的比例中项。 如图(1) : R t △ABC 中,若CD 为高, 则有c D 2=BD ?AD BC 2 = BD ?AB 或 AC 2 = AD ?AB 。(证明略) 二、 变式推广 1 ?逆用 如图(1):若AABC 中,CD 为高,且有DC 2 = AD 或AC 2 =AD ?AB 或BC 2=BD ?AB ,则有ZDCB = ZA 或/ACD = /B ,均可等到AAB C 为直角三角形。 (证明略) 2 ?—般化,若AABC 不为直角三角形,当点D 满足一定条件时,类似地仍有部分结论成立。 文简称:射影定理变式(2)) (证明略) 三、应用 例1 如图(3),已知:等腰三角形ABC 中, AB-AC,高AD 、 BE 交于点H, 求证:4DH ?DA=BC 2 分析: 易证ZBAD = ZCAD =900- / C -Z HBD 联想到射影定理变式(2),可得 BD 2 = DH ? DA,又BC-2BD ,故有结论成立。 (证明略) 例2 如图(4):已知OO 中,D 为弧AC 中点,过点D 的弦BD 被弦AC 分为4和12 两部分, 如图(2) : △ABC 中, D 为 AB 上 一点,若 ZCDB = ZACB ,或/ DCB = ZA ,则有△CDBs^ACB ,可得BC 2 = BD ?AB;反之,若AA BC 中,D 为AB 上 一点,且有BC 2 = BD ?AB,则有△CDBs^ACB, 可得到ZCDB = ZACB ,或ZDCB = ZAo 且每条直角边都是它在斜边 (后 原 1 >

高中数学: 相似三角形的判定及有关性质

相似三角形的判定及有关性质 【学习目标】 1. 了解平行线截割定理,会证明并应用直角三角形射影定理. 2. 理解并掌握相似三角形的判定及性质。 【要点梳理】 要点一、平行截割定理 1。平行线等分线段定理: 如果一组平行线在一条直线上截得的线段相等,那么在其他与这组平行线相交的直线上截得的线段也相等。 推论1:经过三角形一边的中点与另一边平行的直线必平分第三边. 推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰. 2.平行线分线段成比例定理: 三条平行线截两条直线,所得的对应线段成比例. 如右图:l 1∥l 2∥l 3,则 ,,,…AB BC DE EF AB AC DE DF BC AC EF DF === 推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例. 要点诠释: 由上述定理可知:在证明有关比例线段时,辅助线往往作平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比. 要点二、相似三角形 1.定义 对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比值叫做相似比(或相似系数).相似用符号“∽”表示,读作“相似于”。 要点诠释: 关于相似三角形要注意以下几点: ① 对应性:即两个三角形相似时,一定要把表示对应顶点的字母写在对应位置上,这样写比较容易找到 相似三角形的对应角和对应边. ② 顺序性:相似三角形的相似比是有顺序的. ③ 两个三角形形状一样,但大小不一定一样. ④ 全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例. 2.相似三角形的判定定理 ①两角对应相等的两个三角形相似。 ②两边对应成比例且夹角相等的两个三角形相似。 ③三边对应成比例的两个三角形相似。 ④平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 3.相似直角三角形的判定定理

相关文档
相关文档 最新文档