文档库 最新最全的文档下载
当前位置:文档库 › 高中数学复习专题矩阵与行列式

高中数学复习专题矩阵与行列式

高中数学复习专题矩阵与行列式
高中数学复习专题矩阵与行列式

专题八、矩阵与行列式

1.矩阵:n m ?个实数n j m i a ij ,,2,1;,,2,1,ΛΛ==排成m 行n 列的矩形数表

??

??

?

?

?

??=mn n m n n a a a a a a a a a A ΛM

M ΛΛ212221211211叫做矩阵。记作n m A ?,n m ?叫做矩阵的维数。 矩形数表叫做矩阵,矩阵中的每个数叫做矩阵的元素。

2.线性方程组的系数矩阵、方程组的增广矩阵、行向量、列向量、单位矩阵。

??

?=+=+222

1

11c y b x a c y b x a 3.线性方程组矩阵的三种变换: ①互换矩阵的两行;

②把某一行同乘(除)以一个非零的数; ③某一行乘以一个数加到另一行。

变换的目的是将线性方程阻系数矩阵变为单位矩阵,其扩充矩阵的最后一列就是方程组的解。 4.矩阵运算:加法、减法及乘法

(1)矩阵的和(差):记作:A+B (A -B ).

运算律:加法交换律:A+B=B+A ;加法结合律:(A+B )+C=A+(B+C )

(2)矩阵与实数的积:设α为任意实数,把矩阵A 的所有元素与α相乘得到的矩阵叫做矩阵A 与实数

α的乘积矩阵,记作:αA.

运算律:分配律:()B A B A γγγ+=+;A A A λγλγ+=+)(; 结合律:()()()A A A γλλγγλ==;

(3)矩阵的乘积:设A 是k m ?阶矩阵,B 是n k ?阶矩阵,设C 为n m ?矩阵。如果矩阵C 中第i 行第j 列元素ij C 是矩阵A 第i 个行向量与矩阵B 的第j 个列向量的数量积,那么C 矩阵叫做A 与B 的乘积,记作:C m ×n =A m ×k B k ×n .

运算律:分配律:AC AB C B A +=+)(,CA BA A C B +=+)(; 结合律:()()()B A B A AB γγγ==,()()BC A C AB =; 注意:矩阵的乘积不满足交换律,即BA AB ≠。 5.二阶行列式的有关概念及二元一次方程组的解法:

设二元一次方程组(*)???=+=+222

1

11c y b x a c y b x a (其中y x ,是未知数,2121,,,b b a a 是未知数的系数

且不全为零,21,c c 是常数项) 用加减消元法解方程组(*):

当01221≠-b a b a 时,方程组(*)有唯一解:???

?

???

--=--=1221122

112211221b a b a c a c a y b a b a b c b c x ,

引入记号

2

1a a

2

1b b 表示算式1221b a b a -,即

2

1a a

2

1b b 1221b a b a -=.

从而引出行列式的相关概念,包括行列式、二阶行列式、行列式的展开式、行列式的值、行列式的元素、对角线法则等。 记=

D 2

1a a

2

1b b ,=

x D 2

1c c

2

1b b ,=

y D 2

1a a

2

1c c ,则:

①当=

D 2

1a a

2

1b b =01221≠-b a b a 时,方程组(*)有唯一解,

可用二阶行列式表示为???

?

??

?

==D

D y D D x y x

. ②当D =0时,0x y D D ==,方程组(*)无穷组解; ③当D =0时,0,0x y D or D ≠≠,方程组(*)无解。 系数行列式112

2

a b D a b =也为二元一次方程组解的判别式。

6.三阶行列式

(1)三阶行列式的展开方法: ①对角线方式展开:

②按某一行(或列)展开法:

33

32

31

23222113

1211a a a a a a a a a =112233122331132132112332122133132231a a a a a a a a a a a a a a a a a a ++--- =11

a 3332

2322a a a a -12

a 33

31

2321a a a a +13

a 32

31

2221a a a a

记32

2211a a M =

33

23a a ,111

111)1(M A +-=,31

2112a a M =

33

23a a ,

=12A 1221)1(M +-,31

2113a a M =

32

22a a ,133

113)

1(M A +-=,

称j M 1为元素j a 1的余子式,即将元素j a 1所在的第一行、第j 列划去后剩下的元素按原来顺序组成的二阶行列式(类似可以定义其它元素的余子式);称j A 1为元素j a 1的代数余子式,

j j j M A 111)1(+-=()3,2,1=j 。

则三阶行列式就可以写成D =33

32

31

232221

13

1211

a a a a a a a a a =131312121111A a A a A a ++,

这就是说,一个三阶行列式可以表示为它的第一行的元素分别与它们的代数余子式乘积的和。上式称为三阶行列式按第一行展开的展开式。类似地,若将D 按别的行或列的元素整理,同样可得行列式按任一行(列)展开式。 (2)三阶行列式的性质:

①行、列依次对调,行列式的值不变,即

②两行(或两列)对调,行列式的值变号,如

③某行(或列)所有元素乘以数k ,所得行列式的值等于原行列式值的k 倍,如

④某两行(或两列)的元素对应成比例,行列式的值为零。

⑤某行(或列)的元素都是二项式,该行列式可分解为两个行列式的和,如

⑥某行(或列)的所有元素乘以同一个数,加到另行(或列)的对应元素上,行列式的值不变,如

性质:如果将三阶行列式的某一行(或一列)的元素与另一行(或一列)的元素的代数余子式对应相乘,那么它们的乘积之和等于零。7.用三阶行列式求三角形的面积:若ABC ?三个顶点坐标分别为),(11y x 、),(22y x 、),(33y x ,则,所以、、三点共线的充分必要条件为. 8.三元一次方程组的解法:

设三元一次方程组 (﹡),其中z y x ,,是未知数,

)3,2,1(=i c b a i i i 、、、是未知数的系数,且不全为零,)3,2,1(=i d i 是常数项。 下面用加减消元法解方程组(﹡):

我们把方程组(﹡)的系数行列式记为=D ,用D 的元素321a a a 、、的代数余子式

321A A A 、、依次乘以方程组(﹡)的各方程,得

11111111A d z A c y A b x A a =++

22222222A d z A c y A b x A a =++, 33333333A d z A c y A b x A a =++

将这三个式子相加,得:

332211332211332211332211)()()(A d A d A d z A c A c A c y A b A b A b x A a A a x A a ++=++++++++①

其中①式中x 的系数恰为(﹡)的系数行列式D 。

由于z y 与的系数分别是D 的第一列元素的代数余子式的乘积之和,因此z y

的系数①都为零。

1

12

23311121ABC

x y S x y x y ?=A B C 11223

31101

x y x y x y =???

??=++=++=++3333

22221

111d

z c y b x a d z c y b x a d z c y b x a 1

11

2

223

3

3

a b c a b c a b c

①式的常数项可表示为 1

11

2

223

3

3

x d b c D d b c d b c =,于是①式可化简为D?x=D x 。 类似地,用D 的元素1b 、2b 、3b 的代数余子式1B 、2B 、3B 依次乘以方程组(*)的各方程,可推得D?y=D y ;用D 的元素1c 、2c 、3c 的代数余子式1C 、2C 、3C 依次乘以方程组(*)的各方程,可推D?z=D z ,其中

1

112

223

3

3y a d c D a d c a d c =,1112223

3

3

z a b d D a b a a b d = 由方程组x

y z D x D D y D D z D

?=??

?=???=?

,可见, 对于三元一次方程组(*),其系数行列式为D ,则:

(i )当0D ≠时,方程组(*)有唯一解x y z D x D D y D D z D

?

=???

=

???=??

.

(ii )当D =0,0≠z y x D D D 时,方程组(*)无解;

(iii )当D =0,0===z y x D D D 时,方程组(*)有无穷多解。 例1.已知1223,2131A B -????

== ? ?????

,则AB = ;BA =

例2.若三阶行列式按第二行展开为a

c c

b b

a c

b b

a a

c +

+

,求该三阶行列式。

例3.求关于x 、y 、z 的方程组21mx y z x my z m x y mz m ?++=?

++=??++=?有唯一解的条件,并把在这个条件下的解求出来。

变式训练:

(1)若线性方程组的增广矩阵为???? ??212332c c ,解为?

??==12

y x ,则c 1–c 2=

(2)若三条直线03=++y ax ,02=++y x 和012=+-y x 相交于一点,则行列式

1

1221

1

3

1-a 的值为____________

(3)已知,0,>t ω函数x

x x f ωωcos 1

sin 3)(=

的最小正周期为π2,将)(x f 的图像向左平移t 个

单位,所得图像对应的函数为偶函数,则t 的最小值为 (4)把

22111133

33

22

2

4

x y x y x y x y x y x y +-表示成一个三阶行列式________________

(5)若ABC ?的三个顶点坐标为(1,2),(2,3),(4,5)A B C ----,其面积为_____

(6)若,,a b c 表示ABC ?的三边长,且满足02

22

=++++++c

b a

c c

c b a b b

c

b a a a ,则ABC ?是( ) A. 等腰三角形 B. 直角三角形 C. 等腰直角三角形 D. 等边三角形 (7)若复数满足

,则的值为_________________________

(8)设△的内角,,所对的边长分别为,,, 若30a b c a b

a b c

++=+-,则角_______

z 01

4=-z

z z ABC A B C a b c C =

(9)若三阶行列式130

212

41

21

n m m

n -+---中第1行第2列的元素3的代数余子式的值是15-,则|i |n m +(其中i 是虚数单位,R m n ∈、)的值是

(10)已知数列{}n a 的通项公式2,n a n n N *

=∈,则

52

3123

42012

2013

4345620142015

a a a a a a a a a a a a a a a a +

+++=L L (11)已知1101A ??= ???,定义1A A =,1

n n A A A -=.

(I )求23,A A 的值; (II )求(2,)n A n n N *≥∈.

(12)已知行列式:367

861254

-,计算该行列式第一行的各元素与第三行对应元素的代数余子

式的乘积,即计算131313a A b B c C ++的值为________________

行列式跟矩阵的关系

行列式跟矩阵的关系 行列式是若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。 矩阵由数组成,或更一般的,由某元素组成。就是m×n 矩阵就是mn个数排成m个横行n个竖列的阵式。n×n矩阵的行列式是通过一个定义,得到跟这个矩阵对应的一个数,具体定义可以去看书。注意,矩阵是一个阵式,方阵的行列式是跟一个方阵对应一个数。行列式的值是按下述方式可能求得的所有不同的积的代数和,即是一个实数求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负决定于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是奇数。 也可以这样解释:行列式是矩阵的所有不同行且不同列的元素之积的代数和,和式中每一项的符号由积的各元素的行指标与列指标的逆序数之和决定:若逆序数之和为偶数,则该项为正;若逆序数之和为奇数,则该项为负。 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。

高中数学复习专题矩阵与行列式

专题八、矩阵与行列式 1.矩阵:n m ?个实数n j m i a ij ,,2,1;,,2,1,ΛΛ==排成m 行n 列的矩形数表 ?? ?? ? ? ? ??=mn n m n n a a a a a a a a a A ΛM M ΛΛ212221211211叫做矩阵。记作n m A ?,n m ?叫做矩阵的维数。 矩形数表叫做矩阵,矩阵中的每个数叫做矩阵的元素。 2.线性方程组的系数矩阵、方程组的增广矩阵、行向量、列向量、单位矩阵。 ?? ?=+=+222 1 11c y b x a c y b x a 3.线性方程组矩阵的三种变换: ①互换矩阵的两行; ②把某一行同乘(除)以一个非零的数; ③某一行乘以一个数加到另一行。 变换的目的是将线性方程阻系数矩阵变为单位矩阵,其扩充矩阵的最后一列就是方程组的解。 4.矩阵运算:加法、减法及乘法 (1)矩阵的和(差):记作:A+B (A -B ). 运算律:加法交换律:A+B=B+A ;加法结合律:(A+B )+C=A+(B+C ) (2)矩阵与实数的积:设α为任意实数,把矩阵A 的所有元素与α相乘得到的矩阵叫做矩阵A 与实数 α的乘积矩阵,记作:αA.

运算律:分配律:()B A B A γγγ+=+;A A A λγλγ+=+)(; 结合律:()()()A A A γλλγγλ==; (3)矩阵的乘积:设A 是k m ?阶矩阵,B 是n k ?阶矩阵,设C 为n m ?矩阵。如果矩阵C 中第i 行第j 列元素ij C 是矩阵A 第i 个行向量与矩阵B 的第j 个列向量的数量积,那么C 矩阵叫做A 与B 的乘积,记作:C m ×n =A m ×k B k ×n . 运算律:分配律:AC AB C B A +=+)(,CA BA A C B +=+)(; 结合律:()()()B A B A AB γγγ==,()()BC A C AB =; 注意:矩阵的乘积不满足交换律,即BA AB ≠。 5.二阶行列式的有关概念及二元一次方程组的解法: 设二元一次方程组(*)???=+=+222 1 11c y b x a c y b x a (其中y x ,是未知数,2121,,,b b a a 是未知数的系数 且不全为零,21,c c 是常数项) 用加减消元法解方程组(*): 当01221≠-b a b a 时,方程组(*)有唯一解:??? ? ??? --=--=1221122 112211221b a b a c a c a y b a b a b c b c x , 引入记号 2 1a a 2 1b b 表示算式1221b a b a -,即 2 1a a 2 1b b 1221b a b a -=. 从而引出行列式的相关概念,包括行列式、二阶行列式、行列式的展开式、行列式的值、行列式的元素、对角线法则等。 记= D 2 1a a 2 1b b ,= x D 2 1c c 2 1b b ,= y D 2 1a a 2 1c c ,则: ①当= D 2 1a a 2 1b b =01221≠-b a b a 时,方程组(*)有唯一解, 可用二阶行列式表示为??? ? ?? ? ==D D y D D x y x . ②当D =0时,0x y D D ==,方程组(*)无穷组解; ③当D =0时,0,0x y D or D ≠≠,方程组(*)无解。 系数行列式112 2 a b D a b =也为二元一次方程组解的判别式。

矩阵行列式的概念与运算

知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:1112131112111221222321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ??????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如111 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列 式;算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式 展开的对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解 二元一次方程组???=+=+222 1 11c y b x a c y b x a (其中2121,,,b b a a 不全为零);记 2 211b a b a 叫做方程组的系数

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

上海版教材 矩阵与行列式习题(有问题详解)

矩阵、行列式和算法(20131224) 成绩 一、填空题 1.行列式 cos sin 3 6 sin cos 3 6 π π π π 的值是 . 2.行列式 a b c d (,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 . 3.将方程组203253x y z x y =?? +=??+=? 写成系数矩阵形式为 . 4.若由命题A :“ 2 2031x x ”能推出命题B :“x a >”,则a 的取值围是 . 5.若方程组111 222a x b y c a x b y c +=??+=?的解为2,1==y x ,则方程组 ?? ?=++=++03520 352222 111c y a x b c y a x b 的解为x = ,y = . 6.方程21 24 1 013 9 x x ≤-的解集为 . 7.把 22111133 33 22 2 4 x y x y x y x y x y x y +- 表示成一个三阶行列式为 . 8.若ABC ?的三个顶点坐标为(1,2),(2,3),(4,5)A B C ----, 其面积为 .

9.在函数()211 1 2 x f x x x x x -=--中3x 的系数是 . 10.若执行如图1所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 . 11.矩阵的一种运算,???? ??++=???? ??????? ??dy cx by ax y x d c b a 该运算的几何意义为平面上的点),(y x 在矩阵??? ? ??d c b a 的作用下 变换成点(,)ax by cx dy ++,若曲线10x y +-=在矩阵??? ? ??11b a 的作用下变换成曲线10x y --=,则a b +的值为 . 12.在集合{}1,2,3,4,5中任取一个偶数a 和奇数b 构成以原点为起点的向量(),a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n = 二.选择题 13.系数行列式0D =是三元一次方程组无解的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充分必要条件 D. 既非充分也非必 要条件 14.下列选项中错误的是( ). A. b d a c d b c a - = B. a b c d d b c a = C. d c d b c a 33++ d c b a = D. d c b a d b c a ----- =

第一章行列式与矩阵的计算的练习(含答案)

行列式及矩阵的计算(课堂练习) 、填空 1 ?已知三阶方阵A 的行列式为3,贝U 2A = -24 1 2 ,g(x) 0 1 3 .设, ,为3维列向量, 记矩阵 A ( , , ),B ( A 3, 则B 3 = ,,丨 6 1 1 1 4?行列式 1 1 x 的展开式中,X 的系数是 2 . 1 1 1 1 0 1 0 5.设A 则A k 。(k 为正整数). 2 1 2k 1 7.已知四阶行列式D 中第三列元素分别为1 , 3 , 别为3, 2, 1 , 1,则行列式D =二3 24 4 (1) 1 , 2, 3, 2 16m n 2.设A 则 g(A )= n ,则 1 , 2, 3,2 1 2 16m n 2, 2,它们对应的余子式分

(X ) 解:D = 1 X 3+ 3X(— 2) + (— 2)X 1 + 2X 1 = — 3 二、判断题 1. 设A 、B 均为n 阶方阵, |AB | [AB AB A|B. (V ) 二、行列式计算 3 3 3 3 4 3 3 4 (1) D n 3 3 4 3 3 3 3 4 3n 1 3 Cl C 2 3n 1 4 解: Ci C 3 D n 3n 1 3 G C n 3n 1 3 1 1 1 1 1 2 3 1 (2 D 1 4 9 1 1 8 27 1 2. 设A 、B 均为n 阶方阵, 解:(范得蒙行列式)=(— 3 3 3 1 =3n 1 1 0 0 0 1 3 3 3n 1 3 3 D n 0 「3 A 4 3 ——0 3 4 r n r 1 ax 1 X 2 X 3 2 五、 a 为何值时, 线性方程组: X 1 ax 2 X 3 2 有唯一解? X 1 X 2 ax 3 3 a a 1 1 解: det A 1 a 1 (a 2)(a 1)2 a 2且a 1时,有唯一解 1 1 a 1)=— 240 1 — 3) (— 1 + 2) (— 1— 1) (3+ 2) ( 3— 1) ( — 2—

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

矩阵与行列式的相似与不同

矩阵与行列式的相似与不同 学校:长江大学 院系:信息与数学学院 专业:信息与计算科学 姓名:郑洲 辅导老师:谢老师

【摘要】:本文中主要讨论了高等代数中矩阵和行列式的概念,并且从概念,性质以及运算几个方面阐述了行列式与矩阵的相似与不同。 【关键词】:矩阵.行列式.相似与区别 矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。数学上,一个m×n的矩阵是一个由m行n列元素排列成的矩形阵列.矩阵里的元素可以是数字、符号或数学式。其重要的作用是解线性方程组和表示线性变换。 行列式在数学中,是由解线性方程组产生的一种算式,是由若干数字组成的一个类似于矩阵的方阵。行列式是一个函数,值是一个标量。其值是按下述方式可能求得的所有不同的积的代数和,即是一个实数求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负取决于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是基数。 我们先看看矩阵和行列式有哪些相似。 1.形式上比较相似:矩阵和行列式看上去比较相似,主要表现在:它们中的元素都有顺序的排成行列表,表面上看起来很相似,导致很多初学者容易把行列式和矩阵弄混淆;其次,它们中的表示方法一致,比如说行列式和 矩阵中第i行第j列的元素都用a ij表示;并且,它们对行列的称呼一致,从 上到下依次称作第一行,第二行…第n行,记作r1,r2,…r n;从左到右依次称为第一列,第二列,…第n列,记作c1,c2…c n。 2.性质上有相同点:在一个不等于0的数乘行列式或矩阵的某一行或某一列时,等于该数乘以此行或此列的每一个元素;行列式和矩阵中把一个不为0的数乘行列式或矩阵的某一行或列后可以加到另一行或列对应的元素上,即某一行(列)的k倍可以加到另一行(列)上。 3.运算上具有相同点:(1)行列式和矩阵都满足叫法交换率和结合律。可以表示为 D1+D2=D2+D1(D1+D2)+D3=D1+(D2+D3) A+B = B+A (A+B)+C = A+(B+C) (2)行列式和矩阵满足乘法结合律,即 D1D2D3=(D1D2)D3 A(BC)=(AB)C (3)行列式适合乘法分配率,矩阵适合乘法左分配率和右分配率,也就是说 D1(D2+D3)=D1D2+D1D3(D2+D3)D1=D2D1+D3D1 A(B + C) = AB + AC (B + C)A=BA + CA 矩阵和行列式虽然说有很多相同点,但它们始终是两个不同的概念,那么矩阵和行列式有什么区别呢。 1.先从概念上可以看出:(1)n阶行列式D n是n2个数按一定顺序排列成的n行n列的方阵,其实际上是一个数,行列式在数表两端加||;而矩阵是m ×n个数按一定方式排列的m行n列数表,归根结底是一个数表,矩阵在数表两端加()或[]。行列式是方形数表中定义,对不上方形的数表,不能讨论任何行列式的问题,而矩阵无此限制(2)行列式和矩阵行列之间存在差

高中数学(矩阵行列式)综合练习含解析

高中数学(矩阵行列式)综合练习含解析 1.定义运算?? ????++=?????????????df ce bf ae f e d c b a ,如??? ???=?????????????1514543021.已知πβα=+, 2 π βα=-,则=? ? ? ???????? ??ββααααsin cos sin cos cos sin ( ). A. 00?? ???? B. 01?????? C. 10?????? D. 11?????? 2.定义运算 a b ad bc c d =-,则符合条件 120 121z i i i +=--的复数z 对应的点在 ( ) A.第四象限 B.第三象限 C.第二象限 D.第一象限 3.矩阵E =??? ? ??1001的特征值为( ) A. 1 B. 2 C. 3 D. 任意实数 4. 若行列式21 24 1 013 9x x =-,则=x . 5.若2021310x y -??????= ??? ?-?????? ,则x y += . 6.已知一个关于y x ,的二元一次方程组的增广矩阵为112012-?? ??? ,则 x y -=_______. 7.矩阵1141?? ???? 的特征值为 . 8.已知变换100M b ?? =? ??? ,点(2,1)A -在变换M 下变换为点(,1)A a ',则a b += 9.配制某种注射用药剂,每瓶需要加入葡萄糖的量在10ml 到110ml 之间,用0.618 法寻找最佳加入量时,若第一试点是差点,第二试点是好点,则第三次试验时葡萄糖的加入量可以是 ; 10.已知 , ,则y= . 11.若2211 x x x y y y =--,则______x y +=

矩阵与行列式知识梳理

矩阵与行列式知识梳理 一、矩阵的概念 1 将mn 个实数),,2,1;,,2,1(n j m i a ij ==排成m 行n 列的矩形数表(通常用圆括号把数表括起来): ?? ? ? ? ? ? ??=mn m m n n a a a a a a a a a A 2 1 22221 11211称为一个m 行n 列的矩阵,简称n m ?矩阵,用______表示. 简记为_____.数ij a 称为矩阵的元素. 几种特殊类型的矩阵:行矩阵、列矩阵、方阵、单位矩阵、零矩阵. 2 对于关于y x ,的线性方程组?? ?=+=+222111c y b x a c y b x a ,则矩阵??? ? ??2211 b a b a 称为该线性方程组的系数矩阵. 矩阵??? ? ??22 2 111 c b a c b a 称为该线性方程组的增广矩阵. 3 矩阵的三种变换: (1) (2) (3) 4 矩阵变换的目的是将线性方程组的系数矩阵变成单位矩阵,其增广矩阵的最后一列就是方程组的解. 二、二阶行列式 1 定义:我们用记号 2 2 11b a b a 表示算式1221b a b a -,即 12212 2 11b a b a b a b a -=,记号 2 2 11b a b a 叫做行列式,因为它只有两行两列,所以把它叫做二阶行列式. 1221b a b a -叫做行列式 2 2 11b a b a 的展开式,其计算结果叫做 2 2 11b a b a 的值.1a 、2a 、1b 、2b 都叫做行列式 2 2 11b a b a 的元素. 2 对角线法则:二阶行列式的展开式是主对角线上的两个数的乘积减去副对角线上的两个数的乘积. 3作为判别式的二阶行列式:关于x 、y 的二元一次方程组???=+=+222 1 11c y b x a c y b x a ①其中1a 、2a 、 1b 、2b 不全为零,行列式2 2 11b a b a D = 叫做方程组①的系数行列式. 设2 2 11b c b c D x = ,

矩阵和行列式复习知识点(完整资料).doc

【最新整理,下载后即可编辑】 矩阵和行列式复习 知识梳理 9.1矩阵的概念: 矩阵:像[27],[ 4202],[945 354 ]的矩形数字(或字母)阵列称为矩阵.通常用大写字母A 、B 、C…表示 三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵; ① 矩阵行的个数在前。 ② 矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。 行向量、列向量 单位矩阵的定义:主对角线元素为1,其余元素均为0的矩阵 增广矩阵的含义及意义:在系数矩阵的右边添上线性方程组等号右边的值的矩阵。通过矩阵变换,解决多元一次方程的解。 9.2矩阵的运算 【矩阵加法】 不同阶的矩阵不可以相加; 记11122122A A A A A =?? ????,11122122B B B B B =??????,那么 ??? ???++++=+22222121 12121111B A B A B A B A B A , 【矩阵乘法】, [A 1A 2]×[A 1A 2]=11122122A B A B A B A B ?????? ; ?? ? ? ??++++=2222122121 2211212212121121 121111B A B A B A B A B A B A B A B A AB 【矩阵的数乘】().ij kA Ak ka == 【矩阵变换】

相似变换的变换矩阵特点:k [10 01]等 轴对称变换的变换矩阵:[?1001]、[100?1]、[01 10]等 旋转变换的变换矩阵:[0?1 10 ]等 9.3二阶行列式 【行列式】行列式是由解线性方程组产生的一种算式; 行列式是若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。 行列式行数、列数一定相等;矩阵行数、列数不一定相等。 二阶行列式的值a d D ac bd b c = =- 展开式ac - bd 【二元线性方程组】 对于二元一次方程组111 222 a x b y c a x b y c +=?? +=?,通过加减消元法转化为方程组 x y D x D D y D ?=??? ?=?? 其中1 11 11 1 2 22 222 ,,x y a b c b a c D D D a b c b a c = == 方程的解为{A = A A A A = A A A 用行列式来讨论二元一次方程组解的情况。 (I )0D ≠,方程组(*)有唯一解; (II )0D = ○1 ,x y D D 中至少有一个不为零,方程组(*)无解; ○2 0x y D D ==,方程组(*)有无穷多解。 系数行列式1122 a b D a b =也为二元一次方程组解的判别式。 9.4三阶行列式

高二数学基本概念——第9章 矩阵和行列式初步

第9章 矩阵和行列式初步 一、 矩阵 9.1 矩阵的概念 矩阵及其相关的概念 1、矩形数表叫做矩阵 矩阵中的每个数叫做矩阵的元素 由个数排成的行列的数表 n m ?m n ()n j m i a ij ,,2,1;,,2,1 ==mn m m n n a a a a a a a a a 21 2222111211称为矩阵. n m ?记作?? ?? ? ? ? ??=mn m m n n a a a a a a a a a A 2122221 11211n m ij a ?=)( 2、矩阵叫做方程组的系数矩阵。? ?? ? ??-1321它是2行2列的矩阵,记为 2 2?A ,矩阵 可简记为A n m A ?注意: 矩阵的符号,是“()”,不能是“| |”. 列元素。 行第称为矩阵的第其中j i a ij 一般的记为大写字母A 、B 、C 、…等。 。 等,或者必要时可记为n m ij n m n m a B A ???)(,

说明: 通过对线性方程组的增广矩阵的变换可以得到线性方程组的解,这里所用的矩阵变换有 下列三种: (1)互换矩阵的两行 (2)把某一行同乘以(除以)一个非零常数 (3)某行乘以一个数加到另一行 通过上述三种矩阵变换,使线性方程组系数矩阵变成单位矩阵时,其增广矩阵的最后一个列向量给出了方程组的解。

9.2 矩阵的运算 矩阵 列的矩形表,称为一个行排列成一个个数由n m n m n j m i a n m ij ?==?) ,,2,1;,2,1( 11 12121 2221 2 .....................n n m m mn a a a a a a a a a ?? ? ? ? ? ??? 记为列元素。 行第称为矩阵的第其中j i a ij 一般的记为大写字母A 、B 、C 、…等。 ,()m n m n ij A B a ??必要时可记为等,或者A=。 0m n O O ?所有元素均为的矩阵,称为零矩阵,记作或定义1一、复习 定义2若两个矩阵A ,B 有相同的行数与相同的列数,并且对 应的位置上的元素相等,则称矩阵A 与矩阵B 相等。记为:A=B n m ij n m ij b B a A ??==)(,)(即如果,(1,2,...,;1,2,...,) ij ij a b i m j n ===且则A=B 。 ...)3,2,1,...;3,2,1(===j i b a ij ij 二、矩阵的运算 (一)矩阵的加(减)法和数与矩阵的乘法 3(),()ij ij m n A a B b m n A B ==定义两个行列矩阵对应位置元素相加(或相减)得到的行列矩阵,称为矩阵与矩阵的和(差)。A-B A B +记为或()。 A B ±即 ()()ij m n ij m n a b ??=±()ij ij m n a b ?=± 定义4以实数乘矩阵A 中的每一个元素所得到的矩阵,称为实数与矩阵A 的乘积矩阵.记做A A α即 ()ij m n a α?=()ij m n a α?=的负矩阵的元素变号,称为的乘积使与A A A 1-A -记作n m ij a A ?-=-)(即 α)(ij a =αα1A 1A A 2A B A B αααααα=+=+注意:()矩阵与实数相乘满足如下交换率和分配律:()()()

上海版矩阵与行列式基础练习题分析

矩阵与行列式习题 本试卷共18题,时间60分钟,满分100分) 班级: 姓名: 一、填空选择题:(每题3分,共36分) 1、已知46x A y ??= ???,13u B v ?? = ??? ,且A B =,那么A+AB= 。 2、设231001252437A B -???? ? ? ==- ? ? ? ?-?? ?? ,则3A –4B 为 。 3、设A 为二阶矩阵,其元素满足,0a a ji ij =+,i=1,2,j=1,2,且2a a 2112=-,那 么矩阵 A= . 4、设2442,1221A B -???? == ? ?-???? 則32A B - = ,=AB , =BA 5、若点A 在矩阵1222-????-?? 对应的变换作用下得到的点为(3,- 4),那么点A 的坐标 为 . 6、若202137x y -?????? = ??? ?-?????? ,则x y +=___________. 7、 121 2 a a b b =1,则 1 2 12 2233b b a a =-- _____ 。 8、(1)行列式z kc c y kb b x ka a = ;(2)211 121__________11 2 -= 9、已知1 242 2 1342 D -=---,则21a 的代数余子式21A = 。 10、已知2 4132 01x x 的代数余子式012=A ,则代数余子式=21A

11、设A 为3阶方阵,且3A =,则2A -=______________ 12、如果方程组???=++=++010 1dy cx by ax 的系数行列式1=d c b a ,那么它的解为 二、简答题(每题8分,共64分) 1、已知? ??? ??-=533201A ? ??? ? ??-=013164245B 求()AB . 2. 已知1011A ??= ??? ,分别计算23A A 、,猜测* (2)n A n n ≥∈N ,; 3. 将下列线性方程组写成矩阵形式,并用矩阵变换的方法求解: ⑴ 32110250x y x y --=??+-=? ; ⑵111612102113x y z ?????? ??? ?-= ??? ? ??? ?-?????? . 4、已知函数f(x)=x a x +1111 1 1 1 ,其中a 是实数,求函数f(x)在区间[2,5]上的最小值。

第一章行列式与矩阵计算练习(含答案)

行列式及矩阵的计算(课堂练习) 一、填空 1.已知三阶方阵A 的行列式为3,则 2A -= -24 2. 设12,01A -?? = ???1()32x g x x -= -+,则()g A =0800-?? ??? 3.设,,αβγ为3维列向量,记矩阵(,,),(,,)A B αβγαββγγα==+++,若 3,A B =则=,,,,6αβγ βγα+= 4.行列式1 1 1 11 1 11 ---x 的展开式中,x 的系数是 2 . 5.设???? ??=1201A 则=k A 1021k ?? ??? 。(k 为正整数). 6.设321,,ααα,21,ββ都是四维列向量,且四阶行列式1123,,,m αααβ=, 1232,,,n αααβ=,则12312,,,2αααββ-=16m n + 解:11231232,,,2,,,D αααβαααβ=+- 14412312322,,,(1),,,16m n αααβαααβ=+-=+ 7. 已知四阶行列式D 中第三列元素分别为1,3,-2,2,它们对应的余子式分 别为3,-2,1,1,则行列式D =-3 .

解:D =1×3+3×(-2)+(-2)×1+2×1=-3 二、判断题 1.设A 、B 均为n 阶方阵,则A B A B =. ( × ) 2.设A 、B 均为n 阶方阵,则AB A B =. (√ ) 三、行列式计算 (1)4 3 3 3 34333 343 3334 Λ ΛΛΛΛΛΛ ΛΛ=n D 解: n D n c c c c c c +++13121M 4 3 3 1 334313334133331 3Λ ΛΛΛΛΛΛΛΛ++++n n n n 1 1312r r r r r r n ---M 1 01000 0103 3313Λ ΛΛΛΛΛΛΛΛ+n =13+n (2)11111231 149118271 D --=-- 解:(范得蒙行列式)=(-1-3)(-1+2)(-1-1)(3+2)(3-1)(-2- 1)=-240 五、a 为何值时,线性方程组:??? ??-=++=++=++a ax x x x ax x x x x a 322321 321321有唯一解? 解:2 )1)(2(11111 1det -+==a a a a a A ,2-≠a 且1≠a 时,有唯一解.

矩阵和行列式知识点

矩阵和行列式复习 知识梳理 9.1矩阵的概念: 矩阵:像 , , 的矩形数字(或字母)阵列称为矩阵.通常用大写字母A 、 B 、C…表示 三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵; ① 矩阵行的个数在前。 ②矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。 行向量、列向量 单位矩阵的定义:主对角线元素为1,其余元素均为0的矩阵 增广矩阵的含义及意义:在系数矩阵的右边添上线性方程组等号右边的值的矩阵。通过矩阵变换,解决多元一次方程的解。 9.2矩阵的运算 【矩阵加法】 不同阶的矩阵不可以相加; 记11 1221 22A A A A A =?? ? ???,11 1221 22B B B B B =?? ???? ,那么 ?? ? ???++++=+22222121121211 11B A B A B A B A B A , 【矩阵乘法】, =11122122A B A B A B A B ?? ???? ; ?? ? ???++++=22221221212211212212121121 1211 11B A B A B A B A B A B A B A B A AB 【矩阵的数乘】().ij kA Ak ka == 【矩阵变换】 相似变换的变换矩阵特点:k 等 轴对称变换的变换矩阵: 、 、 等 旋转变换的变换矩阵: 等 9.3二阶行列式 【行列式】行列式是由解线性方程组产生的一种算式; 行列式是若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。

行列式行数、列数一定相等;矩阵行数、列数不一定相等。 二阶行列式的值a d D ac bd b c ==- 展开式ac -bd 【二元线性方程组】 对于二元一次方程组111222a x b y c a x b y c +=??+=?,通过加减消元法转化为方程组x y D x D D y D ?=????=?? 其中1 11 11 12 22222 ,,x y a b c b a c D D D a b c b a c = == 方程的解为 用行列式来讨论二元一次方程组解的情况。 (I )0D ≠,方程组(*)有唯一解; (II )0D = ○ 1,x y D D 中至少有一个不为零,方程组(*)无解; ○ 20x y D D ==,方程组(*)有无穷多解。 系数行列式11 2 2 a b D a b = 也为二元一次方程组解的判别式。 9.4三阶行列式 三阶行列式展开式及化简12 3 1 231232313121 2 3 a a a D b b b a b c a b c a b c c c c ==++321213132() a b c a b c a b c -++(对角线法则) 三阶行列式的几何意义:直角坐标系中A 、B 、C 三点共线的充要条件(沪教P95) 【余子式】把三阶行列式中某个元素所在的行和列划去,将剩下的元素按原来位置关系组成的二阶行列式叫做该元素的余子式;添上符号(-1)i+j 后为代数余子式。

矩阵行列式的概念与运算(标准答案)

矩阵、行列式的概念与运算 知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:111213111211122122 2321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ? ?????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如1 11 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列式; 算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式展开的 对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解

63、矩阵、行列式的运算及性质

第62课矩阵、行列式的运算及性质 【教学目标】 1. 理解矩阵的概念,掌握矩阵的算法,会利用矩阵解线性方程组。 2. 理解行列式的概念,掌握行列式的算法,会利用行列式判断二元(三元)一次方程组解的情况,了解三阶行列式的性质并能运用于计算。 【教学难点】 1. 会利用矩阵解线性方程组 2. 利用行列式判断二元(三元)一次方程组解的情况。 【教学重点】 1.用矩阵表示实际问题中的相关量,运用矩阵的运算解决实际问题。 2.二阶(三阶)行列式的算法, 利用行列式判断二元(三元)一次方程组解的情 况。 【知识整理】 1.矩阵是一个数表,可以用来表示块状数据; 2.矩阵的运算,如:加法、减法、数乘、乘法等; 3.矩阵的基本变换。 4.行列式是表示特定算式的记号,其结果是一个数; 5.对于给定的方程组,能正确找出D 、x D 、y D ,并根据它们的值判断方程组解的情况,或写出方程组的解。 【例题解析】 【属性】高三,矩阵,矩阵,解答题,中,运算 【题目】已知矩阵2 793 1 5A ??= ?--?? ,3 14 026B -?? ?= ? ?-? ?,641 1103C -?? ? = ? ?-? ? ,计算: (1)()A B C +; (2)()B C A +; (3)B A C A +; (4)从上述计算结果中你能得到什么结论? 【解答】(1)11 110()24 13A B C ?? += ?-?? ;(2)15 1842()23 46101311 33B C A ---?? ?+=-- ? ?---? ? ;(3)15 184223 46101311 33BA CA ---?? ?+=-- ? ?---? ? ; (4)矩阵运算不满足交换率,但满足分配率。 【属性】高三,矩阵,矩阵,解答题,中,运算 【题目】一家水果店出售5种水果,它们的单价和利润如表1所示。该家水果店的经理要在计算 每笔生意营业额的同时,计算该笔生意的利润额。假设现有3位顾客购买水果,他们的购买量如表2所示。试计算每笔生意的营业额和利润额。 表1: 表2:

矩阵代数基本知识

附录I 矩阵代数基本知识 矩阵和行列式是研究多元统计分析的重要工具,这里针对本书的需要,对有关矩阵代数的基本知识作回顾性的介绍,其中有些内容是过去教学计划中没有涉及到的。 一、 向量矩阵的定义 将n p ?个实数111212122212,,,,,,,,,,,,p p n n np a a a a a a a a a 排成如下形式的矩形数表,记为A 111212122212p p n n np a a a a a a a a a ?? ??? ?=???????? A 则称A 为n p ?阶矩阵,一般记为()ij n p a ?=A ,称ij a 为矩阵A 的元素。当 n p =时,称A 为n 阶方阵;若1p =,A 只有一列,称其为n 维列向量, 记为 1121 1n a a a ???????????? 若1n =,A 只有一行,称其为 p 维行向量,记为 () 11121,,,p a a a

当A 为n 阶方阵,称1122,,,nn a a a 为A 的对角线元素,其它元素称为非对角元素。若方阵A 的非对角元素全为0,称A 为对角阵,记为 11221122(,,,)nn nn a a diag a a a a ??????==???????? A 进一步,若11221nn a a a ==== ,称A 为n 阶单位阵,记为n I 或 =A I 。 如果将n p ?阶矩阵A 的行与列彼此交换,得到的新矩阵是p n ?的矩阵,记为 112111222212n n p p np a a a a a a a a a ????? ?'=???????? A 称其为矩阵A 的转置矩阵。 若A 是方阵,且'= A A ,则称A 为对称阵; 若方阵()ij n n A a ?=,当 对一切i j <元素0ij a =,则称 112122 12 n n nn a a a a a a ???? ??=??????A 为下三角阵;若'A 为下三角阵,则称A 为上三角阵。

相关文档
相关文档 最新文档