文档库 最新最全的文档下载
当前位置:文档库 › 矩阵行列式的概念与运算标准答案

矩阵行列式的概念与运算标准答案

矩阵行列式的概念与运算标准答案
矩阵行列式的概念与运算标准答案

矩阵、行列式的概念与运算

知识点总结:

一、矩阵的概念与运算

1、 矩阵111213212223a a a a a a ??

???

中的行向量是()111213a a a a =,()212223b a a a =;

2、 如:111213111211122122

2321222122,,c c c a a b b A B C c c c a a b b ??

????

===

? ? ???????

,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++????

+== ? ?

++????,

11111221

11121222111312232111222121122222

21132223a c a c

a c a c a c a c AC a c a c a c a c a c a c +++??

= ?+++??

矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有:

,()()A B B A A B C A B C +=+++=++。

同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。

矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC =

3、 矩阵乘法不满足交换率,如1

11

11

11

122222222.a b c d c d a b a b c d c d a b ????????≠

??? ???????????

矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号

2

2

11b a b a 表示算式1221b a b a -,即2

2

11b a b a =1221b a b a -,其中

2

2

11b a b a 叫做

二阶行列式;算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线

2

2

11b a b a 可把二阶行式写成

它的展开式,这种方法叫做二阶行列式展开的对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解

二元一次方程组???=+=+222

1

11c y b x a c y b x a (其中2121,,,b b a a 不全为零);记

2

211b a b a 叫做方程

组的系数行列式;记=

x D 2

2

11b c b c ,2

2

11c a c a D y =

即用常数项分别替换行列式D

中x 的系数或y 的系数后得到的.

(1) 若D ,0≠则方程组有唯一一组解,D

D y D D x y x

==, ; (2) 若0=D ,且y x D D ,中至少有一个不为零,则方程组无解;

(3) 若0===y x D D D ,则方程组有无穷多解.

3。三阶行列式及对角线法则

3

3

3

222111

c b a c b a c b a 表示算式;其结果是

231312123213132321c b a c b a c b a c b a c b a c b a ---++.

我们把

3

3

3

222111c b a c b a c b a 叫做三阶行列式;

231312123213132321c b a c b a c b a c b a c b a c b a ---++叫做三阶行列式的展开式.其计算

结果叫做行列式的值;i i i c b a ,,(3,2,1=i )都叫做三阶行列式的元素.

4. 三阶行列式按一行(或一列)展开

把行列式中某一元素所在的行和列去后,剩下的元素保持原来的位置关系组成的二阶行列式叫做该元素的余子式;余子式前添上相应的正负号叫做该元素的代数余子式;其中第i 行与第j 列的代数余子式的符号为j i +-)1(.

三阶行列式可以按其一行或一列)展开成该行(或该列)元素与其对应的代数余子式的乘积之和.三阶行列式有有两种展开方式:(1)按对角线法则展开,(2)按一行(或一列)展开. 5.三元一次方程组的解

三元一次方程组???

??=++=++=++3333

22221111d

z c y b x a d z c y b x a d z c y b x a );)3,2,1(,,((不全为零其中=i c b a i i i

3

33

222

111

c b a c b a c b a D =为方程组的系数行列式;记

33

3222

1

11

c b

d c b d c b d D x =,3

3

3

222111

c d a c d a c d a D y =

3

3

3

222

1

11

d b a d b a d b a D z =,即用常数项分别替换行列式D 中z y x 或或的系数后得到的. (1) 当0≠D 时,方程组有惟一解????

?

????==

=D

D z D D y D D x z y x

(2) 当0=D 时,方程组有无穷多组解或无解.

举例应用:

一、填空题:

1、已知

314012212.341241211A B ???? ? ?=--=- ? ?

? ?-????

,则

3A B -= ;

解:3A B -=92103758112??

?

-- ? ???

; 2、已知1223,2131A B -????

== ? ?????

,则AB = ;BA =

解:122381213175AB --??????==

??? ?-??????;4157BA -??

= ???

3、已知1558534,,10672246A B C ?????? ?

=== ? ? ????? ?

??,则()AB C = ;()A BC =

解:155********()()10;6722412926AB C ??

??????

?== ??? ? ???????

???

155********()(10)6722412926A BC ??

??????

?== ? ? ? ???????

???

4。矩阵的一种运算,???

?

??++=???? ??????? ??dy cx by ax y x d c b a 该运算的几何意义为平面上的点

),(y x 在矩阵?

??

? ??d c b a 的作用下变换成点124),,(2

2=++++y xy x dy cx by ax 若曲线在矩阵?

??

?

??11b a 的作用下变换成曲线b a y x +=-则,122

2的值为 . 解:由题意11a x x ay b y bx y +??????=

? ? ?

+??????,代入22

21x y -=,整理可得令''

x ay x bx y y +=??+=?,22()2()1x ay bx y ∴+-+=, 2222(12)2(2)(2)1b x a b xy a y ∴-+-+-=,用待定系数

法22121

22(2)42022

b a a b a b b a ?-==??

-=??+=??

=??-=?

二、选择题

5、给出下列三个式子:

(1)11121112111211122122212221222122a a b b b b a a a a b b b b a a ????????= ??? ???????????

(2)()111112

132111111221133131b a a a b a b a b a b b ?? ?

=++ ? ???

(3)()()11111112

132111

12

13213131.b b a a a b a a a b b b λλλ??

??

?? ? ?

?+=+ ? ? ? ? ? ??????

?

其中正确的式子的个数是( ) 个 个 个 个

解:由于上面各命题都不对,所以选择(A ) 6.下面给出矩阵的一些性质中正确的是( )

=BA B.若AB=(0),则A=(0)或B=(0) C.若AB=AC,则B=C D.(AB)C=A(BC)

解:根据矩阵的性质,知道(A ),(B ),(C )都不对,所以选取(D ) 7、已知34,,211x y A B y x +-????

==

? ?--????

若A=2B,则x,y 的值分别为( ).

,2 B.32,2

,1 D.不存在

解:由2

3438222321121222

x x y x y A B y x y x y =?+-+=-??????

=?=?∴?

? ? ?---=-=??????? 8、下列说法正确的是( ). A.任意两个矩阵都可以相加 B.任意两个矩阵都可以相乘

C.一个m k ?阶矩阵与一个k n ?阶矩阵相乘得到一个m n ?阶矩阵

D.一个k m ?阶矩阵与一个n k ?阶矩阵相乘得到一个m n ?阶矩阵 解:根据矩阵的乘法性质,得到(C )成立。

三、解答题

9、已知矩阵305211,214221A B -????

==

? ?-????,求矩阵X ,使23A X B -=

解:设111213212223a

a

a X a a a ??

= ???,则1112

132122

2363310323432383a

a

a A X a a a ---??

-=

?----??

由23A X B -=,得11111212131321212222

232383

6321

31813310313334327220323208317

3a a a a a a X a a a a a a ?

=?-=-??-??-==??

??- ??-=??=?∴=

???--= ???=--

????

?

-==??-=????=

?

。 10.给出方程组23

2610ax y x y -=-??++=?

有唯一解的充要条件

解:由23261

ax y x y -=-??

+=-?

即对应823230232326123082308a a a

a a a ?

?-------???? ???+ ? ? ?-+ ?????+?? 即82323(23)8

a y a a x ?

-=--?+??+=?,所以当且仅当2

2303

a a +≠∴≠-时有唯一解。

11.(1)求2

3

1111,0101????

? ?????

的值;

(2)求11(2,)01n

n n N *

??≥∈ ???

解:(1)2

3

11121113;;01010101????????

== ? ? ? ?????????

(2)由此猜想:1110101n

n ????

= ? ?????

,下面用数学归纳法加以证明

证明:(1)当2n =时,等式成立:

(2)当(2,)n k k k N *=≥∈时,等式成立,即1110101k

k ????= ? ?????,

那么1

11111111111010101010101k k

k k ++??

??????????=?=?= ?

? ? ? ? ???

??????????

则当1n k =+时,等式成立。

根据(1)、(2)的证明知等式对2,n n N *≥∈都成立。

12、某电器商场销售的彩电、U 盘和MP3播放器三种产品。该商场的供货渠道主要是甲、乙两个品牌的二级代理商。今年9月份,该商场从每个代理商处各购得彩电100台、U 盘52个、MP3播放器180台。而10月份,该商场从每个代理商处购得的产品数量都是9月份的倍。现知甲、乙两个代理商给出的产品单价(元)入下表所示:

(1) 计算()100521801.5??

???

,并指出结果的实际意义;

(2)

用矩阵求该商场在这两个月中分别支付给两个代理商的购货费用。

解:(1) 1005218015078270??

???

,第一行表示9月份该商场从两个代理商处购得的彩电、U 盘、MP3播放器的数量,第二行表示10月份该商场从两个代理商处购得的彩电、U 盘、播放器的数量。

(2)2350210010052180432400383840120092015078270648600575760750700??

????

?= ? ? ????? ???

即9月份付给甲代理商的购货费为432400元,付给乙代理商的购货费为383840元;10月份付给甲代理商的购货费为648600元,付给乙代理商的购

货费为575760元。

13.关于y x ,的二元方程组20

1x my m mx y m +-=??+-=?

,并讨论解的情况.

:

)1)(1(111

2

m m m m m

D +-=-==

,)1()1(2112m m m m m m m

m

D x -=+-=+=,

)1)(12(211

212m m m m m m m D y -+=-+=+=

(1) 当,0≠D 即,1≠m 且1-≠m 时,方程组有唯一解??

??

?++=

+=1121m m y m m x (2) 当1=m 时,0===y x D D D ,方程组有无穷多组解,此时方程组可化为

??

?=-+=-+0

20

2y x y x , 令)(R t t x ∈=,则原方程组的解可表示为??

?-==t

y t

x 2.

(3) 当1-=m 时,,0=D 但02≠-=x D ,方程组无解。

14.已知函数x

x x e

ae e x f 21

)(-+= (1)

当2-=a 时,解不等式7)(≤x f ;

(2) 求a 的取值范围,使得)(x f 在[]1,1-上是单调函数。 解(1):原不等式即为7)12(2)(2≤+-+x x e e ,解得5ln ≤x ;

(2)2222)(22)()(a a e ae e x f x x x -++=++=,且,,1??????∈e e e x 当,e a -≤或e a 1

-

≥时,)(x f 在[]1,1-上是单调函数。

15.解方程组:21

ax y z x ay z a x y az a ++=??

++=??++=?

()R a ∈

解:2211

1132(1)(2)11a D a a a a a a

==-+=-+

),1()1(111

1122

+--==a a a

a a a

D x 22222

11

11(1),111

1(1)(1),

11y z a D a

a a a

a D a

a a a a ==-==-+

(1) 当1≠a 且2-≠a 时,方程组有唯一解????

?

????++=+=++-=2)1(21212

a a z a y a a x

(2) 当2a =-时,原方程组为??

?

??=-+-=+-=++-4

2221

2z y x z y x z y x 消去x 得???=-=-31z y z y ,所以方程组无

解.

(3) 当1=a 时,原方程组为??

?

??=++=++=++111z y x z y x z y x ,所以方程组有无穷多解.

16.已知行列式1

11

ab c ac b bc a

(1)写成元素bc 的余子式,代数余子式B ;(2)将该行列式按第二列展开;

(3)求证:b

c a c a b ab c ac b bc a ---=

00001

11

(4)若c b a ,,为整数,试判断该行列式的值能否被b a -整除;

解:(1)bc 的余子式为

1

1c b ,代数余子式1

11c b B -

=.

(2)按第二列展开为1

1

1111111

b a ab

c a ac c b bc ab c ac b bc a -+-= 1

1

11111

11b a ab c a ac c b bc ab c ac b bc a -+-==)()()(b a ab c a ac c b bc ---+-- =a

b a b a

b b

c a c a b ---=---0

0000))()((

(4) =1

11

ab c ac b bc a ))()((b c a c a b ---,又c b a ,,为整数,所以b c a c --,也为整数,该

行列式的值能被b a -整除.

17.顶点为),(),,(),,(332211y x C y x B y x A 的ABC ?的面积等于行列式1

1133

22

11

y x y x y x D =的值的绝对值的一半。试用此结论求:

(1)

求以)7,4(),2,5(),4,3(),1,1(--为顶点的四边形的面积;

(2)

已知01

34156

1

41

=-,若)5,6(),4,1(和)3,4(-所对应的点分别为R Q P ,,,

你能得出什么结论

解:作图可知四边形ABCD 由两个三角形ABC 与CDA 组成。由已知可得:

1251431

1

1

21-=

?ABC S 的绝对值=[])26()2(621

-+--的绝对值=9。

1

251741

1121--=

?CDA S 的绝对值[]27)1()5(21+---=的绝对值223= 所以所求四边形的面积为2

41

2239=

+

=+=??CDA ABC S S S 。 (3)

依题意:1

341561

41

2

1

-=

?PQR S 的绝对值0= 所以PQR ?的面积为0,从而点R Q P ,,三点共线。

18

。已知函数1sin ()0sin sin 20

x

x

f x x

x m =的定义域为0,2π??

????

,最大值为4.试求

函数()sin 2cos g x m x x =+(x R ∈)的最小正周期和最值.

解:2()2sin sin cos f x m x x x =-?2sin(2)6

m x m π

=-++

0,2x π??

∈????

72,666x πππ???+∈????1sin(2),162x π???+∈-????

当m >0时,max ()f x =12()42

m m --+=,

解得2m =

,从而,()2sin 2cos )4

g x x x x π

=+=+ ()x R ∈,

T=2π

,最大值为

-;

当m <0时,max ()f x =214m m -?+=, 解得4m =-,

从而,1()4sin 2cos arctan 2

g x x x x ??

=-+=- ??

?

T=2π

,最大值为

-

第一章行列式的基本计算和线性代数的基本概念

第一章 行列式 §1. 1 二阶、三阶行列式 一、二元线性方程组与二阶行列式 用消元法解二元线性方程组)2() 1( 2 2221211212111???=+=+b x a x a b x a x a , 方程(2)?a 11-方程(1)?a 21得 (a 11a 22-a 12a 21) x 2= a 11b 2-b 1a 21, 于是 21 1222112 122211a a a a b a a b x --= ; 类似地有 (a 11a 22-a 12a 21) x 1= b 1a 22-a 12b 2, 21 12221121 12112a a a a a b b a x --= . 我们把a 11a 22-a 12a 21称为二阶行列式, 并记为 22 2112 11a a a a , 即 21 122211222112 11a a a a a a a a -=. 在二阶行列式 22 2112 11a a a a 中, 横排称为行, 竖排称为列. a ij 称为行列式的元素, 它是行列式中第i 行第j 列的元素. 从左上角元素到右下角元素的实联线称为主对角线, 从右上角元素到左下角元素的虚联线称为副对角线. 于是二阶行列式是主对角线上两元素之积减去的副对角线上二元素之积所得的差, 这一计算法则称为对角线法则. 按对角线法则可得 22212 1212221a b a b b a a b = -, 2 211 11211211b a b a a b b a = -.

若记22211211a a a a D = , 2221211a b a b D =, 2 211112b a b a D =, 则线性方程组的解可表为 22 21 12 11 222 12 1 11a a a a a b a b D D x ==, 22 21 12112 2111122a a a a b a b a D D x = =. 例1 求解二元线性方程组???=+=-.12, 12232 121x x x x 解 由于 07)4(31223≠=--=-=D , 14)2(12112121=--=-=D , 21243121232-=-==D , 因此 27 1411=== D D x , 372122-=-==D D x . 二 、三阶行列式 用消元法解三元线性方程组??? ??=++=++=++2 33323213123232221211313212111b x a x a x a b x a x a x a b x a x a x a , 可得 31 22133321123223113221133123123322113 221333212322313221332312332211a a a a a a a a a a a a a a a a a a b a a a b a a a b a b a b a a a a b x ---+----+-= x 2=? ? ?, x 3=? ? ?. 我们把表达式 a 11a 22a 33+a 12a 23a 31+a 13a 21a 32-a 11a 23a 32-a 12a 21a 33-a 13a 22a 31 称为三阶行列式, 记为 33 323123222113 1211a a a a a a a a a ,

矩阵行列式的概念与运算

知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:1112131112111221222321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ??????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如111 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列 式;算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式 展开的对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解 二元一次方程组???=+=+222 1 11c y b x a c y b x a (其中2121,,,b b a a 不全为零);记 2 211b a b a 叫做方程组的系数

矩阵的定义及其运算规则

矩阵的定义及其运算规则 1、矩阵的定义 一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。 矩阵通常是用大写字母 A 、B …来表示。例如一个m 行n 列的矩阵可以简记为: ,或 。即: (2-3) 我们称(2-3)式中的为矩阵A的元素,a的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。 当m=n时,则称为n阶方阵,并用表示。当矩阵(a ij)的元素仅有一行或一列时,则称它为行矩阵或列矩阵。设两个矩阵,有相同的行数和相同的列数,而且它们的对应元素一一相等,即,则称该两矩阵相等,记为A=B。 2、三角形矩阵 由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。 如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都是三角形矩阵: ,,,。 3、单位矩阵与零矩阵 在方阵中,如果只有的元素不等于零,而其他元素全为零,如: 则称为对角矩阵,可记为。如果在对角矩阵中所有的彼此

都相等且均为1,如:,则称为单位矩阵。单位矩阵常用E来表示,即: 当矩阵中所有的元素都等于零时,叫做零矩阵,并用符号“0”来表示。 4、矩阵的加法 矩阵A=(a ij)m×n和B=(b ij)m×n相加时,必须要有相同的行数和列数。如以C=(c ij)表示矩阵A及B的和,则有: m ×n 式中:。即矩阵C的元素等于矩阵A和B的对应元素之和。 由上述定义可知,矩阵的加法具有下列性质(设A、B、C都是m×n矩阵): (1)交换律:A+B=B+A (2)结合律:(A+B)+C=A+(B+C) 5、数与矩阵的乘法 我们定义用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中的所有元素都乘上k之后所得的矩阵。如: 由上述定义可知,数与矩阵相乘具有下列性质:设A、B都是m×n矩阵,k、h为任意常数,则: (1)k(A+B)=kA+kB (2)(k+h)A=kA+hA (3)k(hA)=khA

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

第一讲 矩阵的概念、运算

第一讲 Ⅰ 授课题目(章节): §2.1 矩阵的概念; §2.2 矩阵的计算 Ⅱ 教学目的与要求: 理解矩阵概念; 掌握矩阵的线性运算、乘法、转置及其运算规律。 Ⅲ 教学重点与难点: 矩阵的乘法 Ⅳ 讲授内容: §2.1 矩阵 定义2.1 由n m ?个数),,2,,1;,,2,1(n j m a ij =排成的m 行n 列的数表 mn m m n n a a a a a a a a a 21222 21112 11 称为m 行n 列矩阵,简称n m ?矩阵.为表示它是一个整体,总是加一个括弧,并用大写黑体字母表示它,记作 ??????? ??=?mn m m n n n m a a a a a a a a a A 212222111211 两个矩阵B A ,,如果都是m 行n 列的,称它们是同型矩阵。否则,称它们是不同型的。 n 行n 列的矩阵n n A ?称为n 阶矩阵(或n 阶方阵) ,简记为n A 。 只有一行的矩阵)(21n a a a A =称为行矩阵,又称行向量.只有一列的矩阵 ?????? ? ??=n b b b B 21 称为列矩阵,又称列向量. 定义2.2 如果)()(ij ij b B a A ==与是同型矩阵,并且它的对应元素相等 ,即

),,2,1;,,2,1(,n j m i b a ij ij === 那么就称矩阵A 与B 相等,记作B A =. 元素都是零的m 行n 列矩阵称为零矩阵,记作n m O ?,简记为O .不同型的零矩阵是 不同的. ??????? ??=100010001 n I 称为n 阶单位矩阵,简记作I .这个矩阵的特点是:从左上角到右下角的直线(叫做主对角线)上的元素都是1,其它元素都是0. §2.2 矩阵的运算 1. 矩阵的加法 定义2.3 设有两个n m ?矩阵)(),(ij ij b B a A ==,那么矩阵A 与B 的和记作A +B , 规定为 n m ij ij b a B A ?+=+)( 设矩阵)(),(ij ij a A a A -=-=记,A -称为矩阵A 的负矩阵.显然有 0)(=-+A A . 规定矩阵的减法为)(B A B A -+=-. 2. 数与矩阵相乘: 定义2.4 数λ与矩阵)(ij a A =的乘积记作A λ,规定为n m ij a A ?=)(λλ 数乘矩阵满足下列运算规律(设B A ,为同型矩阵,μλ,为数): )(i )()(A A μλλμ= )(ii A A A μλμλ+=+)( )(iii B A B A λλλ+=+)( 3. 矩阵与矩阵相乘: 定义 2.5 设)(ij a A =是一个s m ?矩阵,)(ij b B =是一个n s ?矩阵,那么规定矩阵

矩阵的各种运算详解

一、矩阵的线性运算 定义1 设有两个矩阵和,矩阵与的和记作, 规定为 注:只有两个矩阵是同型矩阵时,才能进行矩阵的加法运算. 两个同型矩阵的和,即为两个矩阵对应位置元素相加得到的矩阵. 设矩阵记 , 称为矩阵的负矩阵, 显然有 . 由此规定矩阵的减法为 . 定义2 数与矩阵A的乘积记作或, 规定为 数与矩阵的乘积运算称为数乘运算. 矩阵的加法与矩阵的数乘两种运算统称为矩阵的线性运算. 它满足下列运算规律: 设都是同型矩阵,是常数,则 (1) (2) ; (3) (4) (5) (6) (7) (8) 注:在数学中,把满足上述八条规律的运算称为线性运算. 二、矩阵的相乘 定义3设 矩阵与矩阵的乘积记作, 规定为

其中,( 记号常读作左乘或右乘. 注: 只有当左边矩阵的列数等于右边矩阵的行数时, 两个矩阵才能进行乘法运算. 若,则矩阵的元素即为矩阵的第行元素与矩阵的第列对应元素乘积的和. 即 . 矩阵的乘法满足下列运算规律(假定运算都是可行的): (1) (2) (3) (4) 注: 矩阵的乘法一般不满足交换律, 即 例如, 设则 而 于是且 从上例还可看出: 两个非零矩阵相乘, 可能是零矩阵, 故不能从必然推出 或 此外, 矩阵乘法一般也不满足消去律,即不能从必然推出例如, 设 则 但 定义4如果两矩阵相乘, 有 则称矩阵A与矩阵B可交换.简称A与B可换. 注:对于单位矩阵, 容易证明 或简写成 可见单位矩阵在矩阵的乘法中的作用类似于数1. 更进一步我们有

命题1设是一个n阶矩阵,则是一个数量矩阵的充分必要条件是与任何n阶矩阵可换。 命题2设均为n阶矩阵,则下列命题等价:

(完整版)三阶行列式的计算

三阶行列式 称左式的左边为三阶行列式,右边的式子为三阶行列式的展开式。 目录 1 基本概念 2 计算方法 1 基本概念 2 计算方法 1 基本概念 对于三元线性方程组,如上图利用加减消元法,为了容易记住其求解公式,但要记住这个求解公式是很困难的,因此引入三阶行列式的概念。 记称上式的左边为三阶行列式,右边的式子为三阶行列式的展开式。 2 计算方法 标准方法是在已给行列式的右边添加已给行列式的第一列、第二列。我们把行列式的左上角到右下角的对角线称为主对角线,把右上角到左下角的对角线称为次对角线。这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的三个对角线上的数的积的和减去次对角线的三个数的积与和次对角线平行的对角线上三个数的积的和的差。 例如 a1 a2 a3 b1 b2 b3 c1 c2 c3 结果为a1·b2·c3+b1·c2·a3+c1·a2·b3-a3·b2·c1-b3·c2·a1-c3·a2·b1(注意对角线就容易记住了)这里一共是六项相加减,整理下可以这么记: a1(b2·c3-b3·c2) + a2(b3·c1-b1·c3) + a3(b1·c2-b2·c1) 此时可以记住为: a1*a1的代数余子式+a2*a2的代数余子式+a3*+a3的代数余子式 某个数的代数余子式是指删去那个数所在的行和列后剩下的行列式。 行列式的每一项要求:不同行不同列的数字相乘 如选了a1则与其相乘的数只能在2,3行2,3列中找,(即在b2 b3 中找) c2 c3 而a1(b2·c3-b3·c2)+a2(b1·c3-b3·c1)+a3(b1·c2-b2·c1)是用了行列式展开运算:即行列式等于它每行的每一个数乘以它的代数余子式之和某个数的代数余子式是指删去那个数所在的行和列后剩下的行列式。

高中数学(矩阵行列式)综合练习含解析

高中数学(矩阵行列式)综合练习含解析 1.定义运算?? ????++=?????????????df ce bf ae f e d c b a ,如??? ???=?????????????1514543021.已知πβα=+, 2 π βα=-,则=? ? ? ???????? ??ββααααsin cos sin cos cos sin ( ). A. 00?? ???? B. 01?????? C. 10?????? D. 11?????? 2.定义运算 a b ad bc c d =-,则符合条件 120 121z i i i +=--的复数z 对应的点在 ( ) A.第四象限 B.第三象限 C.第二象限 D.第一象限 3.矩阵E =??? ? ??1001的特征值为( ) A. 1 B. 2 C. 3 D. 任意实数 4. 若行列式21 24 1 013 9x x =-,则=x . 5.若2021310x y -??????= ??? ?-?????? ,则x y += . 6.已知一个关于y x ,的二元一次方程组的增广矩阵为112012-?? ??? ,则 x y -=_______. 7.矩阵1141?? ???? 的特征值为 . 8.已知变换100M b ?? =? ??? ,点(2,1)A -在变换M 下变换为点(,1)A a ',则a b += 9.配制某种注射用药剂,每瓶需要加入葡萄糖的量在10ml 到110ml 之间,用0.618 法寻找最佳加入量时,若第一试点是差点,第二试点是好点,则第三次试验时葡萄糖的加入量可以是 ; 10.已知 , ,则y= . 11.若2211 x x x y y y =--,则______x y +=

行列式的定义及性质

行列式的定义及性质 (张俊敏) ● 教学目标与要求 通过学习,使学生理解n 阶行列式的定义,熟练掌握二、三阶行列式性质,能运用性质求行列式的值。 ● 教学重点与难点 教学重点:n 阶行列式的定义及性质。 教学难点:n 阶行列式定义的理解。 ● 教学方法与建议 通过复习高中时所学过的二阶与三阶行列式,了解行列式及其应用,在此基础上引出一般意义上的n 阶行列式定义。要特别指出:行列式是一种运算,其结果是一个数;其意义在于在由数组成的形式(方阵)与数域之间建立了一种联系,使得我们可以通过数来研究形式的东西,同时可以通过形式的东西来研究与数有关的问题。 ● 教学过程设计 1.问题的提出 求解二、三元线性方程组 (二元线性方程组???=+=+22221 211 212111b x a x a b x a x a ,当021122211≠-a a a a 时,可用消元法求得解为: 22 21 1211 222121********* 122211a a a a a b a b a a a a b a a b x = --= 二阶、三阶行列式

22 212 1122 211112112221121 12112a b a a a a b a a a a a a b b a x = --= )二阶与三阶行列式 1. 二阶行列式:(回顾高中时的二阶与三阶行列式) 1112 112212212122 det()a a A a a a a a a = =-,其中A 为方程组的系数矩阵。 2. 三阶行列式: 32 3122 21133331232112333223221133 32 31 23222113 1211 a a a a a a a a a a a a a a a a a a a a a a a a +-= 注:(1)这是把三阶行列式转化为比它低一阶的二阶行列式进行的计算。三阶行列式算出来也是一个数。 (2)三阶行列式 也是方形矩阵上定义的一种运算。 2. n 阶行列式的定义: 1112122 23 221 23 22122211 12 23 1 3 1 2 21 22 2,1 111 2 ,1 (1)n n n n n n nn n n nn n n nn n n n n n n n a a a a a a a a a a a a D a a a a a a a a a a a a a a a a a a -+-= =-+ +- n 阶行列式中去掉元素ij a 所在行所在列的元素后,得到的 1n -阶行列式叫做ij a 的余子式,记作ij M ,即11 1,11,111,11,11,11,1,11,11,11,1 ,1 ,1 j j n i i j i j n n ij i i j i j i n n n j n j nn a a a a a a a a M a a a a a a a a -+----+-++-+++-+= 并称(1)i j ij ij D M +=-为ij a 的代数余子式。引入这两个记号则可将(2.4)式简记为 111111********* det (1)(1)k n n n n k k k A a M a M a M a M ++==-+ +-=-∑ (2.5)

矩阵的概念和运算

1。4 矩阵的概念和运算 教学要求 : (1) 掌握矩阵的加减、数与矩阵相乘的运算。 (2) 会矩阵相乘运算掌握其算法规则 ( 以便演示算法规则及行列间的对应关系〉 教学内容: 前面介绍了利用行列式求解线性方程组,即Cramer 法则。但是Cramer 法则有它的局限性: 1.0 2. D ≠?? ?所解的线性方程组存在系数行列式(行数=列数) 同学们接下来要学习的还是关于解线性方程组,即Cramer 法则无法用上的-――用“矩阵”的方法解线性方程组。本节课主要学习矩阵的概念。 一.矩阵的概念 123123123 23124621x x x x x x x x x -+=?? -+-=-??+-=? 它的系数行列式 1 232 4601 1 1 D -=--=- 此时Cramer 法则失效,我们可换一种形式来表示: 123124621111A ?-? ?=--- ? ?-?? 这正是“换汤不换药”, 以上线性方程组可用这张“数表”来表示,二者之间互相翻译。 这种数表一般用圆括号或中括号括起来,排成一个长方形阵式,《孙子兵法》中说道:长方形阵为矩阵。 123246111A -?? ?=-- ? ?-?? 这也是矩阵,是由以上线性方程组的系数按照原来顺序排列而成,称为“系数矩阵” 而“A ”多了一列常数列,称为以上方程组的“增广矩阵”。 注意:虽然D 和A 很相像,但是区别很大。D 是行列式,实质上是一个数,而A 是一张表格,“数是数,表是表,数不是表,表也不是数”,这是本质意义上不同。况且,行列式行数必须与列数相同,矩阵则未必。 关于以上线性方程组我们后面将介绍。 更一般地,对于线性方程组:

上海版教材 矩阵与行列式习题(有问题详解)

矩阵、行列式和算法(20131224) 成绩 一、填空题 1.行列式 cos sin 3 6 sin cos 3 6 π π π π 的值是 . 2.行列式 a b c d (,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 . 3.将方程组203253x y z x y =?? +=??+=? 写成系数矩阵形式为 . 4.若由命题A :“ 2 2031x x ”能推出命题B :“x a >”,则a 的取值围是 . 5.若方程组111 222a x b y c a x b y c +=??+=?的解为2,1==y x ,则方程组 ?? ?=++=++03520 352222 111c y a x b c y a x b 的解为x = ,y = . 6.方程21 24 1 013 9 x x ≤-的解集为 . 7.把 22111133 33 22 2 4 x y x y x y x y x y x y +- 表示成一个三阶行列式为 . 8.若ABC ?的三个顶点坐标为(1,2),(2,3),(4,5)A B C ----, 其面积为 .

9.在函数()211 1 2 x f x x x x x -=--中3x 的系数是 . 10.若执行如图1所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 . 11.矩阵的一种运算,???? ??++=???? ??????? ??dy cx by ax y x d c b a 该运算的几何意义为平面上的点),(y x 在矩阵??? ? ??d c b a 的作用下 变换成点(,)ax by cx dy ++,若曲线10x y +-=在矩阵??? ? ??11b a 的作用下变换成曲线10x y --=,则a b +的值为 . 12.在集合{}1,2,3,4,5中任取一个偶数a 和奇数b 构成以原点为起点的向量(),a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n = 二.选择题 13.系数行列式0D =是三元一次方程组无解的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充分必要条件 D. 既非充分也非必 要条件 14.下列选项中错误的是( ). A. b d a c d b c a - = B. a b c d d b c a = C. d c d b c a 33++ d c b a = D. d c b a d b c a ----- =

线性代数第一章行列式试题及答案

如何复习线形代数 线性代数这门课的特点主要有两个:一是试题的计算量偏大,无论是行列式、矩阵、线性方程组的求解,还是特征值、特征向量和二次型的讨论都涉及到大量的数值运算,稍有不慎,即会出错;二是前后内容紧密相连,纵横交织,既相对独立又密不可分,形成了一个完整、独特的知识体系. 在掌握好基本概念、基本原理和基本方法的前提下,下面谈谈在复习过程中应注意的一些问题. 一、加强计算能力训练,切实提高计算的准确性 二、扩展公式结论蕴涵,努力探索灵活解题途径 三、注重前后知识联系,努力培养综合思维能力 线性代数不仅概念多,公式结论多,而且前后知识联系紧密,环环相扣,几乎从任何一个知识点都可切入将前后知识联系起来考查 四、加强综合题型训练,全面系统地掌握好知识 计算能力的提高不是一朝一夕的事,除了要不断归纳总结一些重要公式和结论并加以巧妙、适当的应用外,还要靠平时的积累,要养成踏踏实实、有始有终将最后结果计算出来的习惯,只要持之以恒、坚持练习,计算准确性的提高并不是一件困难的事. 而对整个知识的融会贯通、综合应用也有赖于适当地多做这方面的练习, 第一章行列式 一.概念复习 1. 形式和意义 形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式: a11 a12 (1) a21 a22 (2) ………. a n1 a n2…a nn 如果行列式的列向量组为1,2, …,n,则此行列式可表示为|1,2, …,n|. 意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值. 请注意行列式和矩阵在形式上和意义上的区别. 当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.) 每个n阶矩阵A对应一个n阶行列式,记作|A|. 行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0. 2. 定义(完全展开式) 一般地,一个n阶行列式 a11 a12 (1) a21 a22 (2) ……… a n1 a n2…a nn 的值是许多项的代数和,每一项都是取自不同行,不同列的n个元素的乘积,其一般形式为: n nj j j a a a 2 1 2 1 ,这里把相乘的n个元素的行标按自然顺序排列,它们的列标j1j2…j n构成1,2, …,n的一个全排列(称为一个n元排列), 一个n元排列的总项数共有n!个,因此n阶行列式的值是n!项的代数和。 所谓代数和是在求总和时每项先要乘+1或-1.规定(j1j2…j n)为全排列j1j2…j n的逆序数,全排列的逆序数即小数排列在大数右面的现象出现的个数. 逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数: 2 3 2 3 215 6 3 4,(436512)=3+2+3+2+0+0=10. 则项 n nj j j a a a 2 1 2 1 所乘的是. )1 () (2 1n j j j τ -即逆序数是偶数时,该项为正;逆序数是奇数时,该项为负;在一个n元排列的n!项中,奇排列和偶排列各有n!/2个。至此我们可以写出n阶行列式的值: a11 a12 (1) a21 a22…a2n =. )1 ( 2 1 2 1 2 1 2 1 ) ( n n n nj j j j j j j j j a a a τ - ∑ ……… a n1 a n2…a nn

第一章行列式与矩阵计算练习(含答案)

行列式及矩阵的计算(课堂练习) 一、填空 1.已知三阶方阵A 的行列式为3,则 2A -= -24 2. 设12,01A -?? = ???1()32x g x x -= -+,则()g A =0800-?? ??? 3.设,,αβγ为3维列向量,记矩阵(,,),(,,)A B αβγαββγγα==+++,若 3,A B =则=,,,,6αβγ βγα+= 4.行列式1 1 1 11 1 11 ---x 的展开式中,x 的系数是 2 . 5.设???? ??=1201A 则=k A 1021k ?? ??? 。(k 为正整数). 6.设321,,ααα,21,ββ都是四维列向量,且四阶行列式1123,,,m αααβ=, 1232,,,n αααβ=,则12312,,,2αααββ-=16m n + 解:11231232,,,2,,,D αααβαααβ=+- 14412312322,,,(1),,,16m n αααβαααβ=+-=+ 7. 已知四阶行列式D 中第三列元素分别为1,3,-2,2,它们对应的余子式分 别为3,-2,1,1,则行列式D =-3 .

解:D =1×3+3×(-2)+(-2)×1+2×1=-3 二、判断题 1.设A 、B 均为n 阶方阵,则A B A B =. ( × ) 2.设A 、B 均为n 阶方阵,则AB A B =. (√ ) 三、行列式计算 (1)4 3 3 3 34333 343 3334 Λ ΛΛΛΛΛΛ ΛΛ=n D 解: n D n c c c c c c +++13121M 4 3 3 1 334313334133331 3Λ ΛΛΛΛΛΛΛΛ++++n n n n 1 1312r r r r r r n ---M 1 01000 0103 3313Λ ΛΛΛΛΛΛΛΛ+n =13+n (2)11111231 149118271 D --=-- 解:(范得蒙行列式)=(-1-3)(-1+2)(-1-1)(3+2)(3-1)(-2- 1)=-240 五、a 为何值时,线性方程组:??? ??-=++=++=++a ax x x x ax x x x x a 322321 321321有唯一解? 解:2 )1)(2(11111 1det -+==a a a a a A ,2-≠a 且1≠a 时,有唯一解.

矩阵行列式的概念与运算(标准答案)

矩阵、行列式的概念与运算 知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:111213111211122122 2321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ? ?????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如1 11 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列式; 算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式展开的 对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解

关于行列式的一般定义和计算方法

关于行列式的一般定义和计算方法 n 阶行列式的定义 n 阶行列式 nn n n n n a a a a a a a a a 2 122221112 11=∑ -n n n j j j nj j j j j j a a a 212 1 2121) () 1(τ 2 N 阶行列式是 N ! 项的代数和; 3、N 阶行列式的每项都是位于不同行、不同列N 个元素的乘积; 特点:(1)(项数)它是3!项的代数和; (2)(项的构成)展开式中的每一项都是取自行列式不同行不同列的三个元素之积.其一般项为: (3)(符号规律)三个正项的列标构成的排列为123,231,312. 它们都是偶排列; 三个负项的列标构成的排列为321,213,132, 它们都是奇排列. § 行列式的性质 性质1:行列式和它的转置行列式的值相同。 即nn n n n n a a a a a a a a a 2 122221112 11=nn n n n n a a a a a a a a a 2122212121 11; 行列式对行满足的性质对列也同样满足。 性质2 互换行列式的两行(列),行列式的值变号. 如: D= d c b a =ad-b c , b a d c =bc-ad= -D 以r i 表第i 行,C j 表第j 列。交换 i ,j 两行记为r j i r ?,交换i,j 两列记作 C i ? C j 。 32 2311332112312213a a a a a a a a a ---3221133123123322113332 31 232221 13 1211 a a a a a a a a a a a a a a a a a a D ++==(1

矩阵的概念及其线性运算

第二章 矩阵 §2.1 矩阵的概念及其线性运算 学习本节内容,特别要注意与行列式的有关概念、运算相区别。 一.矩阵的概念 矩阵是一张简化了的表格,一般地 ?????? ? ??mn m m n n a a a a a a a a a 212222111211 称为n m ?矩阵,它有m 行、n 列,共n m ?个元素,其中第i 行、第j 列的元素 用j i a 表示。通常我们用大写黑体字母A 、B 、C ……表示矩阵。为了标明矩阵的行数m 和列数n ,可用n m ?A 或() i j m n a ?表示。矩阵既然是一张表,就不能象行 列式那样算出一个数来。 所有元素均为0的矩阵,称为零矩阵,记作O 。 两个矩阵A 、B 相等,意味着不仅它们的行、列数相同,而且所有对应元素都相同。记作B A =。 如果矩阵A 的行、列数都是n ,则称A 为n 阶矩阵,或称为n 阶方阵。n 阶矩阵有一条从左上角到右下角的主对角线。n 阶矩阵A 的元素按原次序构成的n 阶行列式,称为矩阵A 的行列式,记作A 。 在n 阶矩阵中,若主对角线左下侧的元素全为零,则称之为上三角矩阵;若主对角线右上侧的元素全为零,则称之为下三角矩阵;若主对角线两侧的元素全为零,则称之为对角矩阵。主对角线上元素全为1的对角矩阵,叫做单位矩阵,记为E ,即 ???? ?? ? ??=100010001 E n ?1矩阵(只有一行)又称为n 维行向量;1?n 矩阵(只有一列)又称为n 维列向量。行向量、列向量统称为向量。向量通常用小写黑体字母a ,b ,x ,y …… 表示。向量中的元素又称为向量的分量。11?矩阵因只有一个元素,故视之为数量,即()a a =。 二.矩阵的加、减运算 如果矩阵A 、B 的行数和列数都相同,那么它们可以相加、相减,记为B A +、B A -。分别称为矩阵A 、B 的和与差。B A ±表示将A 、B 中所有对应位置的元素相加、减得到的矩阵。例如

矩阵的定义及其运算规则

矩阵的定义及其运算规则

矩阵的定义及其运算规则 1、矩阵的定义 一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。 矩阵通常是用大写字母A 、B …来表示。例如一个m 行n 列的矩阵可以简记为:,或 。即: (2-3)我们称(2-3)式中的为矩阵A的元素,a 的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。 当m=n时,则称为n阶方阵,并用 表示。当矩阵(a ij)的元素仅有一行或一列时,则称它为行矩阵或列矩阵。设两个矩阵,有相同的行数和相同的列数,而且它们的对应元素一一相等,即,则称该两矩阵相等,记为A=

B。 2、三角形矩阵 由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。 如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都是三角形矩阵: ,,,。 3、单位矩阵与零矩阵 在方阵中,如果只有的元素不等于零,而其他元素全为零,如: 则称为对角矩阵,可记为。如果在对角矩阵中所有的彼此都相等且均为1,

如:,则称为单位矩阵。单位矩阵常用E来表示,即: 当矩阵中所有的元素都等于零时,叫做零矩 阵,并用符号“0”来表示。 4、矩阵的加法 矩阵A=(a ij)m×n和B=(b ij)m×n相加时,必须要有相同的行数和列数。如以C=(c ij)m ×n 表示矩阵A及B的和,则有: 式中:。即矩阵C的元素等于矩阵A和B 的对应元素之和。 由上述定义可知,矩阵的加法具有下列性质(设A、B、C都是m×n矩阵): (1)交换律:A+B=B+A

行列式的计算技巧总结

行列式的若干计算技巧与方法 目录 摘要 (1) 关键字 (1) 1.行列式的概念及性质 (2) 1.1 n阶行列式的定义 (2) 1.2 行列式的性质 (2) 2.行列式计算的几种常见技巧和方法 (4) 2.1 定义法 (4) 2.2 利用行列式的性质 (5) 2.3 降阶法 (7) 2.4 升阶法(加边法) (9) 2.5 数学归纳法 (11) 2.6 递推法 (12) 3. 行列式计算的几种特殊技巧和方法 (14) 3.1 拆行(列)法 (14) 3.2 构造法 (17) 3.3 特征值法 (18) 4. 几类特殊行列式的计算技巧和方法 (19) 4.1 三角形行列式 (19) 4.2 “爪”字型行列式 (19) 4.3 “么”字型行列式 (21) 4.4 “两线”型行列式 (22)

4.5 “三对角”型行列式 (23) 4.6 范德蒙德行列式 (25) 5. 行列式的计算方法的综合运用 (26) 5.1 降阶法和递推法 (27) 5.2 逐行相加减和套用范德蒙德行列式 (27) 5.3 构造法和套用范德蒙德行列式 (28) 小结 (29) 参考文献 (30) 学习体会与建议 (31)

摘要:行列式是高等代数的一个基本概念,求解行列式是在高等代数的学习中遇到的基本问题,每一种复杂的高阶行列式都有其独特的求解方法.本文主要介绍了求行列式值的一些常用方法和一些特殊的行列式的求值方法.如:化三角形法、降阶法和数学归纳法等多种计算方法以及Vandermonde 行列式、“两线型”行列式和“爪”字型行列式等多种特殊行列式.并对相应例题进行了分析和归纳,总结了与每种方法相适应的行列式的特征. 关键词:行列式 计算方法 1.行列式的概念及性质 1.1 n 阶行列式的定义 我们知道,二、三阶行列式的定义如下: 22 21 1211a a a a =21122211a a a a -, =33 32 31 232221131211a a a a a a a a a . 312213332112322311322113312312332211a a a a a a a a a a a a a a a a a a ---++ 从二、三阶行列式的内在规律引出n 阶行列式的定义. 设有2n 个数,排成n 行n 列的数表 nn n n n n a a a a a a a a a Λ M M M M ΛΛ212222111211, 即n 阶行列式.这个行列式等于所有取自不同行不同列的n 个元素的乘积

相关文档
相关文档 最新文档