文档库 最新最全的文档下载
当前位置:文档库 › 水热法生长红宝石技术

水热法生长红宝石技术

水热法生长红宝石技术
水热法生长红宝石技术

第三章 提拉法合成宝石及其鉴定方法

第三章提拉法及其合成宝石的鉴定 要点: ?晶体提拉法的原理方法 ?提拉法合成宝石的鉴定 提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。这种方法能够生长无色蓝宝石、红宝石、钇铝榴石、钆镓榴石、变石和尖晶石等重要的宝石晶体。2O世纪60年代,提拉法进一步发展为一种更为先进的定型晶体生长方法——熔体导模法。它是控制晶体形状的提拉法,即直接从熔体中拉制出具有各种截面形状晶体的生长技术。它不仅免除了工业生产中对人造晶体所带来的繁重的机械加工,还有效的节约了原料,降低了生产成本。 第一节提拉法 一、提拉法的基本原理 提拉法是将构成晶体的原料放在坩埚中加热熔化,在熔体表面接籽晶提拉熔体,在受控条件下,使籽晶和熔体的交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出单晶体。 图 3-1 提拉法合成装置 (点击可进入多媒体演示) 二、提拉法的生长工艺

首先将待生长的晶体的原料放在耐高温的坩埚中加热熔化,调整炉内温度场,使熔体上部处于过冷状态;然后在籽晶杆上安放一粒籽晶,让籽晶接触熔体表面,待籽晶表面稍熔后,提拉并转动籽晶杆,使熔体处于过冷状态而结晶于籽晶上,在不断提拉和旋转过程中,生长出圆柱状晶体。 1.晶体提拉法的装置 晶体提拉法的装置由五部分组成: (1)加热系统 加热系统由加热、保温、控温三部分构成。最常用的加热装置分为电阻加热和高频线圈加热两大类。采用电阻加热,方法简单,容易控制。保温装置通常采用金属材料以及耐高温材料等做成的热屏蔽罩和保温隔热层,如用电阻炉生长钇铝榴石、刚玉时就采用该保温装置。控温装置主要由传感器、控制器等精密仪器进行操作和控制。 (2)坩埚和籽晶夹 作坩埚的材料要求化学性质稳定、纯度高,高温下机械强度高,熔点要高于原料的熔点200℃左右。常用的坩埚材料为铂、铱、钼、石墨、二氧化硅或其它高熔点氧化物。其中铂、铱和钼主要用于生长氧化物类晶体。 籽晶用籽晶夹来装夹。籽晶要求选用无位错或位错密度低的相应宝石单晶。 (3)传动系统 为了获得稳定的旋转和升降,传动系统由籽晶杆、坩埚轴和升降系统组成。 (4)气氛控制系统 不同晶体常需要在各种不同的气氛里进行生长。如钇铝榴石和刚玉晶体需要在氩气气氛中进行生长。该系统由真空装置和充气装置组成。 (5)后加热器 后热器可用高熔点氧化物如氧化铝、陶瓷或多层金属反射器如钼片、铂片等制成。通常放在坩埚的上部,生长的晶体逐渐进入后热器,生长完毕后就在后热器中冷却至室温。后热器的主要作用是调节晶体和熔体之间的温度梯度,控制晶体的直径,避免组分过冷现象引起晶体破裂。 2.晶体提拉法生长要点 (1)温度控制 在晶体提拉法生长过程中,熔体的温度控制是关键。要求熔体中温度的分布在固液界面处保持熔点温度,保证籽晶周围的熔体有一定的过冷度,熔体的其余部分保持过热。这样,才可保证熔体中不产生其它晶核,在界面上原子或分子按籽晶的结构排列成单晶。为了保持一定的过冷度,

水热法在低维人工晶体生长中的应用与发展_张勇

水热法在低维人工晶体生长中的应用与发展 张 勇 王友法 闫玉华 (武汉理工大学生物中心,武汉 430070) 摘 要 水热法是人工晶体生长技术中比较重要的一种方法,是利用高温、高压水溶液使得通常 难溶或者不溶的物质溶解和重结晶。随着科学技术的发展,人工晶体越来越向低维化方向发展,本文在介绍水热法晶体生长特点和基本生长设备的基础上,重点介绍了一下水热法在生长纳米晶粒及针状晶体等低维化人工晶体的应用与发展。 关键词 水热法 人工晶体 针状晶体 纳米晶粒 作者简介:张勇(1977~),男,硕士研究生.主要从事生物医用材料的研究. 1 前言 当今,在高新技术材料领域中,人工晶体作为一种特种功能材料,在材料、光学、光电子、医疗生物领域有着广泛的应用。而且凝固态物理的发展以及高温高压技术的进步有力地推动了人工合成晶体生长技术和理论的全面发展。用于人工晶体生长的方法有多种,如:物理气相沉积、水热法、低温溶液生长、籽晶提拉、坩埚下降等。其中水热法晶体生长可以使晶体在非受限的条件下充分生长,可以生长出形态各异、结晶完好的晶体而受到广泛的应用。因此,水热法可用于生长各种大的人工晶体,制备超细、无团聚或少团聚、结晶完好的微晶[1]。随着研究和应用技术的发展,目前,大的三维块状晶体已远远不能满足高新技术对材料的要求,人工晶体不断向纤维化和纳米化发展。大量的SiC ,Al 2O 3晶须用于材料增韧,纳米SrTiO 3,ZnO ,PZT ,BaTiO 3用于电子、半导体器件制造[2,3],羟基磷灰石晶须及纳米粉用于人工替代材料的增韧及显影[4,5],以及这二年光电子通信的高速发展对大量晶体纤维的需求都很大程度上促进了人工晶体低维化的发展。本文在介绍水热法晶体生长的特点及生长设备的基础上,重点介绍了近几年水热法用于纳米晶粒及晶体纤维的研究进展。 2 水热法晶体生长的特点及其生长 设备 2.1 水热法及其晶体生长特点 水热法,又称热液法。晶体的热液生长是一种在高温高压下过饱和溶液中进行结晶的方法。在世界范围内,一些科学技术先进的国家已采用这种方法进行工业化批量生产水晶。该方法还可以生长刚玉、方解石、磷酸铝、磷酸钛氧钾以及一系列硅酸盐、钨酸盐晶体。由于水热法晶体生长主要是利用釜内上下部分的溶液之间存在着温度差,使釜内溶液产生强烈对流,从而将高温区的饱和溶液带到放有籽晶的低温区,形成过饱和溶液。因此,根据经典的晶体生长理论,水热条件下晶体生长包括以下步骤:①营养料在水热介质里溶解,以离子、分子团的形式进入溶液(溶解阶段);②由于体系中存在十分有效的热对流及溶解区和生长之间的浓度差,这些离子、分子或离子团被输运到生长区(输运阶段);③离子、分子或离子团在生长界面上的吸附、分解与脱附;④吸附物质在界面上的运动;⑤结晶(③,④,⑤统称为结晶阶段)。同时,利用水热法生长人工晶体时,由于采用的主要是溶解-再结晶机理,因此,用于晶体生长的各种化合物在水溶液中的溶解度是采用水热法进行晶体生长时必须首先考虑的。 22  硅酸盐通报 2002年第3期综合评述 DOI :10.16552/j .cn ki .issn 1001-1625.2002.03.006

合成宝石

宝石的合成、仿制品及优化处理 要求: 1.合成品、仿制品的有关概念 2.★合成宝石的方法:合成方法和原理,合成材料名称、性质及特征 3.★优化处理:各种优化处理方法、原理和名称 一、基本概念 ?人工宝石artificial products ?定义:完全或部分由人工生产或制造用作首饰及装饰品的材料统称为人工宝石。包括合成宝石、 人造宝石、拼合宝石和再造宝石。 ?合成宝石synthetic stones ?定义:完全或部分由人工制造且自然界有已知对应物的晶质或非晶质体,其物理性质,化学成分 和晶体结构与所对应的天然珠宝玉石基本相同。 ?例如,合成红宝石具有与天然红宝石基本相似的物理性质(颜色、RI、DR等)、化学成分(Al2O3) 及晶体结构。 二、发展简史 ?1902 维尔纳叶法合成红宝石的商业生产 ?1920 维尔纳叶法合成尖晶石 ?1928 助熔剂法合成祖母绿 ?1943 水热法合成水晶 ?1955 合成工业级钻石出现 ?1960 水热法合成祖母绿 ?1970 合成宝石级钻石 ?1976 合成立方氧化锆 ?1995 合成SiC(莫伊桑石) (一)、焰熔法合成宝石及鉴定 ?焰熔法(flame fusion technique)——19世纪(1877)由E.弗雷米发明,19世纪末(1890)由 其助手维尔纳叶推向市场,故又称维尔纳叶法(V erneuil furnace)。 ?该方法可以生产各种品种的刚玉、尖晶石、金红石、钛酸锶、白钨矿等宝石晶体。 ?基本原理: 从熔体中生长单晶体的方法。原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落的过程中冷却并在籽晶上固结逐渐生长形成晶体。 合成装置由供料系统、燃烧系统和生长系统组成,合成过程是在维尔纳叶炉 中进行的

水热法生长晶体前沿技术

水热法生长晶体新发展 姓名:孙帆学号:041 摘要:在本篇论文中讲述了水热法晶体生长的基本原理以及水热法应用的最新发展。水热法在发展中出现了许多新方法,有微波水热法、水热晶化法、水热沉淀法以及其他的一些方法,并且利用这些方法,一些研究者做了一系列的实验并取得了一些成果。 关键词:水热法微波水热法水热晶化法水热沉淀法 在现在的高科技领域中,人工晶体作为一种功能材料被广泛用于光学、医疗生物、光电子等领域。而用于生长晶体的方法多种多样,例如水热法,这是在高温高压下从饱和热水溶液中培养晶体的方法;还有提拉法,是一种直接从熔体中拉出单晶的方法;焰熔法也是晶体生长的一种方法,它是用氢氧火焰熔化粉料并使之结净的方法。此外还有物理气相沉淀、低温溶液生长、坩埚下降等各种方法,都能够使得晶体生长。其中水热法晶体生长可以使晶体在非受限的条件下充分生长,能够长出各种形态的、结晶完好的晶体,从而水热法得到了广泛的应用。 1 水热法晶体生长的基本原理 水热法又称为水热反应法,它是以水为反应介质,在高压釜内高温高压条件下进行化学反应来制备所需要的晶体的一种方法。用水热法得到的晶体位错密度较低,可以生长出极少缺陷、去想好、完美的晶体,并且能够合成与开发一系列特种介稳结构、特种凝聚态的新合成产物,此外,水热法晶体具体有较快的生长速率等等优点。 水热法的实质就是一种相变过程,也就是说生长基元从周围环境中不断的通过界面而进入晶格座位的过程,水热条件下的晶体生长是在密闭很好的高温高压水溶液中进行的。利用釜内上下部分的溶液之间存在的温度差,使釜内溶液产生强烈对流,从而将高温区的饱和溶液放入带有籽晶的低温区,形成过饱和溶液。水热条件下晶体生长包括以下几个步骤:(1)营养料在水热介质中溶解,以离子、分子团的形式进入溶液(溶解阶段);(2)由于体系中存在十分有效的热对流及溶解区和生长区之间的浓度差,这些离子、分子或离子团被输运到生长区(输运阶段);(3)离子、分子或离子团在生长界面上的吸附、分解与脱附;(4)吸附物质在界面上的运动;(5)结晶((3),(4),(5)统称为结晶

宝石合成方法及原理汇总

宝石合成原理与方法(汇总) 第一章绪论 要点 人造宝石材料的重要性 人造宝石材料的发展 基本概念 晶体生长基本理论 一、人造宝石材料的重要性 随着科学技术的发展,人民生活水平不断提高,人类对宝石的需求也逐渐增加。然而天然宝石材料的资源毕竟是有限的,而人工宝石材料能够大批量生产,且价格低廉,故人工宝石材料在市场上占有较大的份额。随着科学技术的发展,人工宝石材料的品种日益繁多,合成宝石的特性也越来越接近天然品种。宝石学家不断面临鉴别新的人造宝石材料的挑战。 某些人工的晶体材料也用于工业产品及设备的制造及生产中。例如,人造钇铝榴石被广泛用于激光工业,合成水晶是用作控制和稳定无线电频率的振荡片和有线电话多路通讯滤波元件及雷达、声纳发射元件等最理想的材料。 二、人造宝石材料的发展 人工制造宝石的历史可追溯到1500年埃及人用玻璃模仿祖母绿、青金石和绿松石等。人工合成宝石始于18世纪中期和19世纪,由于矿物学研究的发展以及化学分析方法取得的进展,使人们逐渐掌握了宝石的化学成分及性质,加上化学工业的发展以及对结晶过程的认识,人工合成宝石才变为现实。1892年出现了闻名的“日内瓦红宝石”,这是用氢氧火焰使品质差的红宝石粉末及添加的致色剂铬熔融,再重结晶形成优质红宝石的方法。随后,这种方法经改进并得以商业化。1890年,助熔剂法合成红宝石获得成功;1900年助熔剂法合成祖母绿成功。从此,宝石合成业飞速地发展起来。合成尖晶石、蓝宝石、金红石、钛酸锶等逐渐面市。1953年合成工业级钻石、1960年水热法合成祖母绿及1970年宝石级合成钻石也相继获得成功。我国的人工宝石材料的生产起步较晚。五十年代末,为了发展我国的精密仪器仪表工业,从原苏联引进了焰熔法合成刚玉的设备和技术,六十年代投产后,主要用于手表轴承材料的生产。后来发展到有20多家焰熔法合成宝石的工厂,能生长出各种品种的刚玉宝石、尖晶石、金红石和钛酸锶等。我国进行水热法生长水晶的研究工作,始于1958年。目前几乎全国各省都建立了合成水晶厂。我国的彩色石英从1992年开始生产,现在市场上能见到的各种颜色品种的合成石英。 七十年代,由于工业和军事的需要,尤其是激光研究的需要,我国先后用提拉法生产了人造钇铝榴石(YAG)和钆镓榴石(GGG)晶体,它们曾一度被用于仿钻石。 1982年,我国开始研究合成立方氧化锆的生产技术,1983年投产。由于合成立方氧化锆的折射率高、硬度高、产量大、成本低,很快取代了其它仿钻石的晶体材料。广西宝石研究所1993年成功生产水热法合成祖母绿,现已能生产水热法合成其它颜色的绿柱石及红、蓝宝石。合成工业用钻石在我国是l963年投

水热法研究进展

水热法研究进展 吉军义 (哈尔滨工业大学,黑龙江,哈尔滨 150001) 摘要:随着材料科学发展的不断深入,人们越来越重视粉体合成新工艺和材料制备新技术的研究和开发,而水热法是近年来发展起来的一种很有潜力的液相制备技术,在制备压电、铁电、陶瓷粉体和氧化物薄膜等领域内的研究很活跃。本文介绍了水热法的特点,总结影响反应的主要因素,包括温度、压力、处理时间、pH值等;综述了水热法的特点和应用现状,并对其今后的发展趋势进行展望。 关键词:水热法;纳米合成;薄膜制备 1.引言 长期以来人们一直在探寻一种污染小、易操作、产品性能优良且生产成本低的材料合成方法。无机粉体材料的合成方法主要有固相法、液相法和气相法。其中液相法中的共沉淀法制成的粉体粒径难以控制,团聚严重,由于要求各种组分具有相同或相近的水解或沉淀条件,因此,不适宜合成复杂的多组分粉体;溶胶-凝胶法能较好地控制反应过程、产物的均匀程度以及粒度,且煅烧温度低于固相法,但需消耗大量昂贵的有机酸和醇盐,成本较高,反应时间长,不适于大规模工业化生产[1]。而水热法(也叫热液法)是近年来研究比较多的一种制备方法,也是公认的比较有发展前途的方法之一。 水热法是在特制的密闭反应容器(高压釜)里,采用水溶液作为反应介质,通过对反应容器加热,创造一个高温、高压反应环境,使得通常难溶或不溶的物质溶解并且重结晶[2]。它通常的含义有:水热技术、水热合成或水热处理[3]。“水热”一词最早是在1849年英国地质学家Murhciisn R在研究地壳热液演化时使用的,至今约有140多年了。系统的水热研究是Mroey G . W . 和他的同事于1900年在华盛顿地球物理实验室进行的相平衡研究。他们表征了水合成理论,并研究了众多的矿物系统现在单。晶体生长和陶瓷粉体制备都是在这一基础上建立起来的。受到耐高压和耐腐蚀材料的限制,水热研究存在一定的困难。但是,由于近来耐压材料和耐腐蚀材料的研究,使得水热又引起了研究人员的关注。所以本文将对水热法进行研究。 2.水热法的特点 水热法是制备结晶良好、无团聚的超细陶瓷粉体的优选方法之一。与其它化学方法相比,水热法具有以下特点[2, 4]: (1)水热法可直接得到结晶良好的粉体 水热过程不需作高温灼烧处理,避免了此过程中可能形成的粉体硬团聚。例如以ZrOCl2加氨水制得Zr(OH)4胶体为前驱体,水热反应后得到结晶性好且分散性好的ZrO2晶粒。 (2)粉体晶粒物相和形貌与水热条件有关 粉体晶粒物相和形貌与水热条件有关,例如,以ZrOCl2加氨水制得的Zr(OH)4胶体为前驱体,,在酸性和强碱性溶液里,水热反应制得的为单斜相ZrO2,晶粒。在中性介质里可得到四方/立方相的ZrO2晶粒。此外,所用的反应介质也会对其形貌有影响。

合成宝石

班级姓名成绩 一、名词解释。(3×5=15分) 人造宝石助熔剂法临界晶核装满度籽晶 二、填空题。(0.5×30=15分) 1、合成宝石指其加工的全部或部分工艺过程是由人工控制进行的它们的、和 与它们所对应的天然宝石基本相同。 2、紫晶用法合成后,还需要经处理。 3、合成蓝宝石的主要方法有、、。 4、CZ的中文名称应当是。 5、助熔剂法合成祖母绿的特征包裹体常为、、。 6、冷坩埚法合成立方氧化锆所需的热来自。 7、焰熔法合成尖晶石的密度常为,折射率值常为,往往比天然的宝石级尖晶石的 密度及折射率。 8、红、蓝、黄色、变色合成刚玉中的致色元素分别是、、、。 9、水热法合成宝石晶体的四个阶段、、、。 10、水热法合成水晶的温度,压力。 11、焰熔法合成宝石的主要设备有、、、。 三、判断改错题。(2×5=10分,对者打“√”,错者打“×”并改正) 1、助熔剂法合成宝石中的水滴状包裹体是捕掳来的原生液体。() 2、用气相沉淀法合成的镀膜钻石,外观常显云雾状、粉状等特征。() 3、由于刚玉的熔点很高,焰熔法合成红宝石是采用铂坩埚。() 4、白色的合成立方氧化锆在贸易中作为钻石的代用品使用时,应称为仿钻石。() 5、区分祖母绿与合成祖母绿时,有无弧形生长纹是一项重要判别依据。() 四、简述题。(简明扼要,重点突出。6×5=30分) 1、绘图说明熔体中晶核形成与晶体生长的关系。 2、水热法合成的宝石通常具有什么特征? 3、人工宝石中不参与定名的因素有哪些? 4、高温高压合成钻石的鉴定特征。 5、简述冷坩埚法生长宝石晶体的原理。 五、论述题。(详细论述,全面分析。2×15=30分) 1、玻璃作为宝石仿制品的鉴定特征。 2、如何鉴别合成红宝石。

水热法

高质量氧化锌晶体的水热法合成及其光电性能研究 目前尺寸较大的ZnO单晶的生长方法主要有助溶剂法、水热法、气相生长法和柑锅下降法。 1、助溶剂法 助溶剂法是利用助溶剂使晶体形成温度较低的饱和熔体,通过缓慢冷却或在恒定温度下通过蒸发溶剂,使熔体过饱和而结晶的方法。 2、气相法 气相法是利用蒸汽压较大的材料,在适当的条件下,使蒸汽凝结成晶体的方法,气相法适合于生长板状晶体。 3、坩埚下降法 坩埚下降法是让熔体在柑锅中冷却而凝固,凝固过程从钳锅的一端开始逐渐扩散到整个熔体。 4、水热法 水热法又称高温溶液法,其中包括温差法、降温法(或升温法)及等温法。为了提高晶体的生长速度,水热法一般采用双温区高压反应釜,主要依靠容器内的溶液维持温差对流形成过饱和状态(通过隔板和加热来调整温差)。 水热法需要选择合适的矿化剂,并控制好矿化剂浓度,溶解区和生长区的温度和温度差、填充度(控制生长压力)、生长区的预饱和、合理的元素掺杂、升温恒温程序、籽晶的质量以及营养料的纯度等工艺要素,优化各个工艺条件。 微波辅助加热法制备纳米材料研究进展 一、微波及其特征 与常规加热不同,微波加热是以体加热的方式进行,反应物对微波能量的吸收与分子的极性有关。微波加热是通过微波与物质相互作用而转变的。在电磁场的作用下,物质中微观粒子能产生极化。极性介质在微波场作用下随其高速旋转从而被均匀地加热;对于许多不能直接明显地吸收微波的物质,可选用适当的能强烈吸收微波的催化剂,通过在其表面形成比周围温度更高的“热点”(hotsPot)而加速反应。利用微波加热,许多反应的速度往往是常规加热的数十倍,甚至数千倍。微波能在很短的时间内均匀加热,大大消除了温度梯度,使沉淀相瞬间成核,从而获得均匀的超细粉体。微波辅助加热对化学反应非常复杂的,除了具有热效应外(tharmal effects),还存在一种不是由温度引起的非热效应(加nontharmal effects),它能改变反应的动力学性质,降低反应的活化能,即微波对化学反应存在着选择性加热的影响(物质分子结构与微波频率的匹配关系),存在着某些特定的非热效应的影响。不同的材料对微波的吸收能力不同,目前的一些实验研究也揭示了这一现象,即微波选择性加热。大家普遍认为,微波辅助加热存在两种效应:热效应和非热效应。正是这些效应导致不同形态和尺寸的纳米结构的合成。 微波辅助加热法又可以分为微波水溶液法、微波辅助多元醇法、微波辅助离子液体法、微波层状前驱物转化法制备纳米片、微波液相同步法制备聚合物基无机纳米复合材料、微波一水热/溶剂热法。

合成宝石毕业论文

百度文库- 让每个人平等地提升自我 2013—2014学年第二学期 《合成宝石》课程期末大作业(论文) 班级:11工商(珠宝鉴定)本 学号: 姓名:李晶 任课教师:张晓晖 分数:____________________ 评语:____________________ __________________________ __________________________ __________________________ __________________________

教师签名:_______________ 批阅日期:__________ 我看合成红宝石工艺及鉴别 摘要:合成红宝石的方法多种多样,常见的有助溶剂法、水热法和提拉法,但在生产中广泛采用的是焰熔法。 关键词:合成红宝石助溶剂生长法水热法焰熔法提拉法 前言合成红宝石(Synthetic ruby)通常呈现鲜亮的红色,与天然红宝石区别甚小,物理性质也相同。除像天然红宝石一样被加工成椭圆形、圆形或梨形的混合刻面琢型以及腰圆型外,有时还被加工成—些特殊琢型,如上部为中凸的弧形面,而下部为刻面的长方形或椭圆形混合琢型;或者上部为中凸的弧形面和刻面,而下部为刻面的长方形混合琢型。这些特殊琢型是合成红宝石特有的,其粒重多在5~15克拉。也有用合成红宝石加工珠形项链和手镯的。合成红宝石是按工业规模生产的第一种合成宝石。 一、合成红宝石的技术与方法 (一)助溶剂生长法合成红宝石 助溶剂生长法合成红宝石晶体[1]是在自发成核缓冷法合成无色蓝宝石晶体的基础上发展而来。无色合成蓝宝石晶体的助溶剂生长法首次由德国人实现于1837年,方法较简单,是用PbF?-PbO作助溶剂,Al?O?作原料,将其混合后放入铂金坩埚中,加热至1350℃,经数小时后,使Al?O?完全熔融,之后按照1℃/h的冷却速度冷却至900-1000℃,倒出残余助溶剂熔融液,冷却至室温后,用硝酸溶液溶去助溶剂,由此得到无色蓝宝石晶体位错密度较低。1969年,市场上出现了“卡善”助溶剂法合成的红宝石,该合成的红宝石内部不但添加了铬元素,而且还添加了铁元素作为致色元素,使其与天然红宝石难以辨别。另外,美国的C·卡塔姆也用助溶剂法合成了红宝石和蓝宝石晶体,而拉马拉(Ramaura)公司在用助溶剂法合成的红宝石中添加了一种可以发荧光的成分,使得这种合成红宝石很容易被鉴别。而我国在1990年后由国家建材局人工晶体研究所采用助溶剂法成功合成出红宝石晶体。此次晶体生长使用了籽晶,但合成的红宝石晶体没有进行商业化生产。助溶剂法合成红宝石晶体的具体工艺步骤如下:

水热法制备纳米材料研究进展

水热法制备纳米材料研究 张自强 (华中农业大学理学院武汉430070) 摘要:水热法由于设备简单、操作简便、产物产率高、结晶良好,在合成纳米材料方面表现出了良好的多样性,从而得到越来越多的应用。水热法合成过程中依然存在着很多需要解决的问题。本文对近年来利用水热法合成纳米材料的实验进行了整理,并探讨了其研究进展。 关键字:水热法纳米材料合成产物控制研究进展 正文: 水热法生长晶体是19世纪中叶地质学家模拟自然界成矿作用而开始研究的,水热法属于液相反应的范畴,是指在特定的密闭反应器中,采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法,在水热条件下可以使反应得以实现,在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进,水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度(100-240℃);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。 1.水热法合成SnO2 2005年,韦志仁等采用水热法,以SnCl4·5H2O为前驱物,NaOH为矿化剂,在180℃,填充度为68% ,通过加入不同量的NaOH,调节溶液pH值分别为2、4、11,合成了三种具有不同形态的金红相SnO2纳米晶体。在研究过程中合成了一维定向生长SnO2纳米柱晶体,通过调节反应溶液的酸碱度,可以控制晶体的形貌,在较强的酸性或碱性条件下(pH为2或11时)获得了100~200nm长,直径约为10~20nm的棒状晶体。而当pH为4时,所获得SnO2金红相晶体没有较清晰的形貌特征。 2.水热法制备氧化锌 2006年,付三玲等人水热法制备纳米ZnO材料研究现状,研究了其制备特点及制备机理,从纳米ZnO晶体、阵列或薄膜、粉体三个方面制备实例研究了水热制备方法,最后探讨了纳米ZnO 材料发展前景。2010年,郑兴芳在研究纳米氧化锌的过程中发现,对于水热法制备纳米氧化锌,原料的选择、反应物的浓度、反应温度、反应时间和添加剂等都影响着产物的尺寸、形貌和性能。未来的工作应该对反应过程中的影响因素进行系统的研究,各种影响因素相互制约,要综合考虑所有可能影响晶体生长的因素,通过调整反应条件或参数,可以实现ZnO 纳米材料的可控合成。 3.水热法制备二氧化钛 2006年,夏金德采用水热法, 使用无水TiCl4 及钛酸四正丁酯为原料在反应温度120 ℃、反应时间5 h 的条件下,分别制备了不同晶相的二氧化钛( 即锐钛矿相和金红石相) 。采用X 射线衍射( XRD) 、透射电子显微镜( TEM) 分析手段对样品的物相、结构、形貌进行了表征和分析。XRD 结果表明,使用TiCl4作为原料,可以得到低温稳定的锐钛矿二氧化钛相;使用钛酸四正丁酯为原料,可以制备高温金红石相二氧化钛。TEM照片清晰地显示了锐钛

水热法及其合成宝石的鉴定

早在1882年人们就开始了水热法合成晶体的研究。最早获得成功的是合成水晶。二十世纪上叶,由于军工产品的需要,水热法合成水晶投入了大批量的生产。随后,水热法合成红宝石于1943年由Laubengayer和Weitz首先获得成功,Ervin和Osborn进一步完善了这一技术。祖母绿的水热法合成是由澳大利亚的Johann Lechleitner在1960年研究成功的。到九十年代,原苏联新西伯利亚合成出了海蓝宝石。随后,红色绿柱石等其它颜色绿柱石及合成刚玉也纷纷面市。 一、水热法的原理、合成装置和方法特点: 1、基本原理 水热法是利用高温高压的水溶液使那些在大气条件下不溶或难溶的的物质溶解,或反应生成该物质的溶解产物,通过控制高压釜内溶液的温差使产生对流以形成过饱和状态而析出生长晶体的方法。 自然界热液成矿就是在一定的温度和压力下,成矿热液中成矿物质从溶液中析出的过程。水热法合成宝石就是模拟自然界热液成矿过程中晶体的生长。 2、合成装置 水热法合成宝石采用的主要装置为高压釜,在高压釜内悬挂种晶,并充填矿化剂。 高压釜为可承高温高压的钢制釜体。水热法采用的高压釜一般可承受11000C的温度和109Pa 的压力,具有可靠的密封系统和防爆装置。因为具潜在的爆炸危险,故又名“炸弹”(bomb)。高压釜的直径与高度比有一定的要求,对内径为100-120mm的高压釜来说,内径与高度比以1:16为宜。高度太小或太大都不便控制温度的分布。由于内部要装酸、碱性的强腐蚀性溶液,当温度和压力较高时,在高压釜内要装有耐腐蚀的贵金属内衬,如铂金或黄金内衬,以防矿化剂与釜体材料发生反应。也可利用在晶体生长过程中釜壁上自然形成的保护层来防止进一步的腐蚀和污染。如合成水晶时,由于溶液中的SiO2与Na2O和釜体中的铁能反应生成一种在该体系内稳定的化合物,即硅酸铁钠(锥辉石NaFeSi2O6 acmite)附着于容器内壁,从而起到保护层的作用。矿化剂指的是水热法生长晶体时采用的溶剂。 矿化剂通常可分为以下五类: 1) 碱金属及铵的卤化物, 2) 碱金属的氢氧化物, 3)弱酸与碱金属形成的盐类, 4)强酸, 5)酸类(一般为无机酸)。 其中碱金属的卤化物及氢氧化物是最为有效且广泛应用的矿化剂。矿化剂的化学性质和浓度影响物质在其中的溶解度与生长速率。合成红宝石时可采用的矿化剂有NaOH,Na2CO3,NaHCO3+KHCO3,K2CO3等多种。Al2O3在NaOH中溶解度很小,而在Na2CO3中生长较慢,采用NaHCO3+KHCO3混合液则效果较好。

水热法制备纳米材料

实验名称:水热法制备纳米TiO2 水热法属于液相反应的范畴,是指在特定的密闭反应器中采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法。在水热条件下可以使反应得以实现。在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进。 水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度(100-240℃);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。 一.实验目的 1.了解水热法的基本概念及特点。 2.掌握高温高压下水热法合成纳米材料的方法和操作的注意事项。 3.熟悉XRD操作及纳米材料表征。 4.通过实验方案设计,提高分析问题和解决问题的能力。 二.实验原理 水热法的原理是:水热法制备粉体的化学反应过程是在流体参与的高压容器中进行,高温时,密封容器中有一定填充度的溶媒膨胀,充满整个容器,从而产生很高的压力。为使反应较快和较充分的进行,通常还需要在高压釜中加入各种矿化物。 水热法一般以氧化物或氢氧化物(新配置的凝胶)作为前驱物,他们在加热过程中溶解度随温度的升高而增加,最终导致溶液过饱和并逐步形成更稳定的氧化物新相。反应过程的驱动力是最后可溶的的前驱物或中间产物与稳定氧化物之间的溶解度差。 三.实验器材 实验仪器:10ml量筒;胶头滴管;50ml烧杯;高压反应釜;烘箱;恒温磁力搅拌器。 实验试剂:无水TiCl4;蒸馏水;无水乙醇。 四.实验过程 1.取10mL量筒, 50mL的烧杯洗净并彻底干燥。 2.取适量冰块放入烧杯中,并加入一定的蒸馏水形成20mL的冰水混合物,用恒温磁力搅拌器搅拌,速度适中。 ,缓慢滴加到冰水混合物中。 3.用量筒量取2mL的无水TiCl 4

宝石合成与优化

人工宝石指完全或部分由人工生产或制造的、用于制作首饰及装饰品的材料,分为合成宝石、人造宝石、拼合宝石、再造宝石。合成宝石指部分或完全由人工制造的晶质或非晶质材料,这些材料的物理性质、化学成分及晶体结构和与其对应的天然宝石基本相同。必须在其所对应天然珠宝玉石名称前加“合成”二字,禁止使用生产厂、制造商的名称直接定名,禁止使用易混淆或含混不清的名词定名。人造宝石指由人工制造的晶质或非晶质材料,然而这些材料没有天然对应物。定名必须在材料名称前加“人造”二字,禁止使用生产厂、制造商的名称直接定名。禁止使用易混淆或含混不清的名词定名,不允许用生产方法参与定名。拼合宝石指两种或两种以上材料经人工方法拼合在一起,在外形上给人以整体琢磨印象的宝石。逐层写出组成材料名称,在组成材料名称之后加“拼合石”三字或以顶层材料名称加“拼合石”三字,由同种材料组成的拼合石,在组成材料名称之后加“拼合石”三字,对于分别用天然珍珠、珍珠、欧泊或合成欧泊为主要材料组成的拼合石,分别用拼合天然珍珠、拼合珍珠、拼合欧泊或拼合合成欧泊的名称即可,不必逐层写出材料名称。再造宝石指将一些天然宝石的碎块、碎屑经人工熔结后制成。在所组成天然珠宝玉石名称前加“再造”二字。人工晶体的共性1、颜色均一、内部缺陷少;2、原料和成品均较大;3、常见单相气态包体(水热法产品除外),它们多呈圆形或拉长的水滴形; 4、常见未熔融之熔质包体(水热法产品除外),其常呈不透明的白色面包渣状;5、由Cr致色的任何品种,在紫外线下均呈鲜明的红色荧光;6、绿色品种在查尔斯镜下常呈红色。 合成宝石的研究思路(1)从熔体中结晶的主要有焰熔法、提拉法和冷坩埚法。(2)从溶液中结晶的主要有水热法和助熔剂法。(3)固相生长:高温高压法合成钻石·其它方法: 化学沉淀法合成欧泊、绿松石、孔雀石、青金岩等。 1.为什么焰熔法生长出的宝石晶体要进行退火处理?焰熔法生长宝石因为温度不很稳定,使晶体位错密度较高,为消除热应力带来的晶体缺陷,必须进行高温退火处理 2焰熔法晶体生长过程分哪几个阶段?(1) 接籽晶,用晶种法代替晶芽的自发生长。(2) 扩大放肩,扩大晶种的面积或称扩大晶种的直径。(3) 等径生长,其生长直径虽不完全相同,但基本上最后成为倒梨形,即梨晶。 2.如何鉴别焰熔法生长的刚玉类宝石?合成红、蓝宝石中常可见气泡和未熔粉末出现,一般气泡小而圆,或似蝌蚪状;可单独或成群出现;红宝石中常常为细密的弧形生长纹,类似唱片纹;蓝宝石中色带较粗而不连续;黄色蓝宝石很少含有气泡,也难见色带。天然红宝石和蓝宝石都显示直或角状或六方色带。合成蓝宝石的光谱见不到天然蓝宝石通常可以见到的蓝区的吸收,或450nm的吸收带十分模糊。合成蓝宝石有时显示蓝白色或绿白色荧光,天然的为惰性;合成红宝石通常比天然红宝石的红色荧光明显强。 3.如何鉴别焰熔法生长的尖晶石类宝石?合成尖晶石中气泡和未熔粉末较少出现,偶尔出现的气泡多为异形。合成尖晶石很少显示色带。合成蓝色尖晶石显示典型的钴谱(分别位于540、580、635nm的三条吸收带),天然蓝色尖晶石显示的是蓝区的吸收带,为铁谱。合成蓝色尖晶石为强的红色荧光,而天然的也为惰性 4.焰熔法生长星光宝石时,产生星光效应的关键步骤是什么?过多的氧化铝未熔形成无数细小针状包体导致月光效应,有时甚至形成星光。 水热法固有鉴定特征①生长条纹②特殊包体合成祖母绿中可能形成的硅铍石包体呈针状或钉状,且出现多个时呈平行排列。③晶种片 焰熔法①原始晶形,焰熔法合成的宝石原始晶形都是梨形。而天然宝石的晶体形态为一定的几何多面体。2包裹体3未熔粉末4色带5弧形生长纹(唱片纹)6吸收光谱7荧光 助熔剂法固有鉴定特征①贵金属碎片包体②助熔剂包体 助熔剂法是将组成宝石的原料在高温下溶解于低熔点的助熔剂中,使之形成饱和溶液,然后通过缓慢降温或在恒定温度下蒸发熔剂等方法,使熔融液处于过饱和熔法或熔剂法。

水热法法合成宝石

水热法宝石合成工艺 摘要: 宝石以其炫目美丽、坚硬、稀少而备受世人瞩目。随着社会的发展人们对宝石的喜爱和需求日益增大。宝石除了可以作为钻戒、耳坠、手链等饰品外,工业上是金刚石的最优替代品运用于彩电、手表等电子产品中,然而自然界里的宝石毕竟很有限,价格也昂贵,于是宝石的人工合成就开始兴起,人工合成宝石也开始商业化。怎么样才能找到合适的合成工艺,合成优质且低成本的宝石呢?这就成了人工宝石合成产业的关键所在。目前人们合成宝石的工艺主要有焰熔法、助熔剂法、水热法、提拉法等,以下我将主要介绍一下宝石的合成工艺及其特点、还有它的商业前景。 关键词:人工宝石、宝石合成工艺、水热法、商业前景 一、宝石种类以及人工宝石背景 宝石概念种类: 宝石是岩石中最美丽而贵重的一类石。它们颜色鲜艳,质地晶莹,光泽灿烂,坚硬耐久,同时赋存稀少,是可以制作首饰等用途的天然矿物晶体,如钻石、水晶、祖母绿、红宝石、蓝宝石和金绿宝石(变石、猫眼)等;也有少数是天然单矿物集合体,如冰彩玉髓、欧泊。 还有少数几种有机质材料,如琥珀、珍珠、珊瑚、煤精和象牙,也包括在广义的宝石之内。 广义的概念宝石和玉石不分,泛指宝石,指的是色彩瑰丽、坚硬耐久、稀少,并可琢磨、雕刻成首饰和工艺品的矿物或岩石,包括天然的和人工合成的,也包括部分有机材料。 狭义的概念有宝石和玉石之分,宝石指的是色彩瑰丽、晶莹剔透、坚硬耐久、稀少,并可琢磨成宝石首饰的单晶体或双晶,包括天然的和人工合成的,如钻石、蓝宝石等;而玉石是指色彩瑰丽、坚硬耐久、稀少,并可琢磨、雕刻成首饰和工艺品的矿物集合体或岩石,如翡翠、软玉、独山玉、岫玉等,同样既包括天然的,又包括人工合成的。 石的一些特性: 宝石均为单晶体、颜色具有均匀单一性、多呈透明体、有光泽、密度变化具有很小范围性、良好的导热性、体积相对要小,重量也轻、硬而脆。 人工宝石的合成背景 刚玉是最早合成并进行商业化生产的一类宝石,它发展的同时也带动了其他宝石的发展。 早在1837年Gandin就合成了红宝石,但由于粒度小而为得到真正的发展,直到1902年法国合成了红宝石,1909年合成了无色蓝宝石,到二十世纪初维尔纳叶炉诞生后,合成了红、蓝宝石才算真正成功。 苏联是合成宝石生产大国, 生产的刚玉主要采用水热法合成工艺和设备, 二十世纪五

水热法合成红色绿柱石的光谱特征研究及应用

第39卷,第2期 2 0 19年2月 光谱学与光谱分析 Spectroscopy and Spectral A nalysis V o l.39,No.2,pp517-521 F e b ru a ry,2019 水热法合成红色绿柱石的光谱特征研究及应用 董雪亓利剑2!周征宇2!孙对兄1 1西北师范大学物理与电子工程学院,甘肃兰州730070 2.同济大学海洋与地球科学学院,上海200092 摘要采用常规宝石学测试方法,配合紫外可见光谱技术(U V-V is)及傅里叶变换红外光谱技术(F T I R),对美国犹他州天然红色绿柱石及俄罗斯水热法合成红色绿柱石的宝石学特征、紫外可见吸收光谱特征、中 红外光谱(M I R)特征及近红外光谱(N I R)特征进行了综合对比研究。结果表明,常规宝石学测试方法很难将上述两类宝石区别开来(紫外可见光吸收光谱对鉴定天然和合成红色绿柱石的能力很有限(同时这两种宝石的中红外吸收光谱(M I R)没有明显的特征差异,其吸收位置和吸收强度基本一致)但在2 000!9 000 cm1红外波段,天然红色绿柱石与水热法合成红色绿柱石的吸收频率差异明显,因此具有独特的鉴别特征。进一步研究表明,天然红色绿柱石在3 500?4 000 cm1之间没有强吸收峰,几乎不含结构水,但在3 300? 3 600 cm1之间有非常弱的吸收带(峰值为3 418 cm”,因此有可能有其他形式的水。水热法合成红色绿柱石样品的近红外光谱特征表明,其在3 500?4 000 cm1之间及5 000! 5 800 cm1之间均显示有强烈的水的振动吸收:其在5 000?5 800 cm1有弱的I型水吸收峰和强$型水吸收峰,可以归属为分子水的弯曲和伸缩的合频振动(其在7 000?7 500 cm1之间显示的弱I型水的吸收峰和强的$型水的吸收峰可以归属为水的倍频振动。因此,水热法合成红色绿柱石中的结构水归属I型水与$型水的混合型,其在3 500?4 000及5 000! 5 800 cm1范围水的近红外吸收光谱特征可作为区别天然和水热法合成红色绿柱石的依据。通过紫外可见光光谱、中红外光谱以及近红外光谱等光谱分析手段可以初步判断红色绿柱石中是否含水、水的赋存状态、以及不同类型水的相对强度和频率,为区分天然与水热法合成红色绿柱石提供诊断性证据。 关键词合成红色绿柱石(近红外光谱(U V-V i s吸收光谱;结构水(综合鉴定 中图分类号:P619.2 文献标识码:A D O I:10. 3964/j.issn. 1000-0593(2019)02-0517-05 引言 绿柱石是一种典型的含有铍元素的六方环状铝硅酸盐矿 物。天然绿柱石的基本化学式为B e A l C S L d c"1"。绿柱石中常含有C r,F e,T4 V,M n等微量元素)不同的微量元素可以使绿柱石呈现不同的颜色。由此可以将其进一步细分为祖母绿、海蓝宝石及其他绿柱石类宝石,如金色绿柱石、金 黄色绿柱石、红色绿柱石等。天然红色绿柱石目前仅仅在美国犹他州地区有少量产出,因其稀有的颜色,成为绿柱石族中很珍贵的宝石品种之一。近年来,随着市场对彩色宝石的需求逐年增加,莫斯科晶体研究所与其相关企业T a i n s公司采用水热法合成出红色绿柱石,并批量投放市场[2],因此有必要对其做进一步的对比研究。 此前,已有文献报道了对天然红色绿柱石的颜色成因,并对绿柱石中通道水分子的构型及与钠离子的耦合关系进行 研究[34]。而对天然和水热法合成红色绿柱石的综合对比研究报道相对甚少,尤其是对其近红外光谱的研究相对薄弱!]) 本工作运用常规宝石学测试方法,结合紫外可见吸收光谱(U V-v is ib le a b s o rp tio n s p e c tru m,U V-V is)特征,中红外光谱(m id-in fra re d a b s o rp tio n s p e c tru m,M I R)特征,近红夕卜 光谱(n e a r-in fra re d s p e c tru m,N I R)特征测试方法,对美国犹他州的天然红色绿柱石及俄罗斯产的水热法合成红色绿柱石 进行了表征研究,探讨了水热法合成红色绿柱石中水的存在类型,以期为进一步的鉴定提供依据。 收稿日期:2018-06-15,修订日期:2018-10-25 基金项目:国家自然科学基金项目(11564037, 11364037),甘肃省自然科学研究基金计划项目(1308R;!Z A166)资助 作者筒介:董雪,女,1990年生,西北师范大学教师e-m ail:xzd008@https://www.wendangku.net/doc/013288189.html, "通讯联系人e-m ail:sundx@https://www.wendangku.net/doc/013288189.html,

水热法合成宝石

水热法合成宝石 模拟自然界热液成矿作用过程,水热法生长晶体宝石是在含水体系中由液相(溶液)转变为晶相的方式进行的。自然界热液成矿是在一定的温度和压力下进行的,而且成矿溶液具有一定的浓度和PH值(矿化剂溶液的性质因生长宝石晶体的不同而不同)。实验证明,只有在高压釜中才能满足宝石晶体模拟自然界生长的条件。所以,水热法有别于其它宝石晶体生长的体系。该法适用于常温常压下溶解度低而在高温高压下溶解度高的材料。 1.生产工艺 根据晶体生长的运输方式,可分为三种生产工艺: (1)等温法 等温法主要是利用溶解度差异来生长晶体,所用原料为亚稳相的物质,籽晶为稳定相的物质。在高压釜内上下无温差,是该法特色。 该法的缺点是,无法生长出晶形完整的大晶体。 (2)摆动法 摆动法的装置由两个不同温度的圆筒组成。一筒盛培养液,另一筒放置籽晶。定时摆动两个圆筒,以加速二筒之间的对流。利用两筒间的温度差在高压环境下生长出晶体。 (3)温差法 温差法是在立式高压釜内生长晶体的一种方法,多用于生长合成水晶、合成红宝石、合成祖母绿、合成海蓝宝石等。晶体生长条件如下: a.矿质在矿化剂溶液中应具有一定的溶解度,并能形成所需的单一稳定晶相; b.矿质在适当的温差下能形成过饱和度而又不自发成核; c.晶体生长需要一定切型和规格的籽晶,并使原料的总表面积与籽晶总表面积之比值达到足够大; d.溶液密度的温度系数要足够大,以利晶体生长的溶液对流和溶质传输; e.高压釜容器要有抗高温腐蚀性能。

2.基本装置 水热法的基本装置主要有高压釜、加热器、温度控制器和温度记录器等(图2-2)。 3.具体实例:水热法合成水晶 (1)水热法合成水晶的原理 一般情况下石英是不溶于水的化合物,但由于水在过热状态下所具有的特性,使得石英在一些特殊条件下可以被溶解。在合成水晶时,必须加入一定量的 的溶解度。 矿化剂,以改变溶剂的原始成分与性质,才能增加SiO 2 (2)水热法合成水晶的工艺 水热法合成水晶的工艺流程可以分为以下四个阶段。 a.准备阶段 包括溶液的配制,籽晶的切割与清洗,培养料(熔炼石英)、籽晶、籽晶架挡板、系籽晶金属丝和高压釜自由空间的体积计算,充填度计算以及密封环压圈尺寸、加温、测温系统的检查等。 b.装釜阶段 将熔炼石英放入高压釜内,放置籽晶架,倒入碱液(矿化剂溶液),测定液面高度,安装密封环,密封高压釜,然后将高压釜装入炉膛中,插入热电偶,盖上保温罩等。 c.生长阶段 加热炉通电加热,将高压釜升温并进行温度调节,调节到所需的温度并控制温差。在生产过程中要保持温度稳定(一般要求温度波动在5℃以内)。生长完毕后停炉,打开保温罩,使上部热量的散失快于下部。降温后可将高压釜提出炉膛。

相关文档