文档库 最新最全的文档下载
当前位置:文档库 › 科学杂志

科学杂志

科学杂志
科学杂志

1876-6102 ? 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (https://www.wendangku.net/doc/0f2686017.html,/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the CENTRO CONGRESSI INTERNAZIONALE SRL doi: 10.1016/j.egypro.2015.11.340

E nergy Procedia 78 ( 2015 )2657 – 2662

ScienceDirect

6th International Building Physics Conference, IBPC 2015

Changing to energy efficient light sources – An analysis of the energy

balance of buildings

Johan Nordén*, Henrik Karlsson, Caroline Markusson, Svein Ruud, Mikael Lindgren, Patrik Ollas

SP Technical Research Institute of Sweden, Ideon Science Park, SE-223 63, Lund, Sweden

Abstract

New light sources such as LED lamps have the potential to reduce the electricity for lighting significantly. However, by reducing the electricity for lighting, the building heating demand is increased. The effects on the building energy balance of changing to more efficient light sources has been investigated by dynamic thermal modelling of typical Swedish single-family and multi-family residential houses. The results show savings on an average of 3.5 kWh/m 2 and 0.62 €/m 2 for single-family houses, and 3.4 kWh/m 2 and 0.61 €/m 2 for apartments in multi-family houses annually when changing from incandescent and halogen lamps to LED lamps.

? 2015 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of the CENTRO CONGRESSI INTERNAZIONALE SRL.

Keywords: energy balance; lighting; energy efficiency; internal l oads

1. Introduction

The European target to halve the energy use in the built environment by 2050 will require all new buildings to be constructed as nearly zero-energy buildings or passive houses. The significantly lower heating demand of such buildings increases the emphasis on heat generated by devices, persons, lighting etc. in the energy balance calculations. For buildings with nearly zero- energy standards, even modest energy supply from internal loads can result in overheating. The heat will partly be stored in the building structure, partly heat the indoor air, and partly be ventilated. Since the storage of energy depends on the penetration depth and dampening of the heat wave, the distribution of heat and the dynamics with the indoor environment becomes more complex. A deeper understanding on how surface temperatures and the air temperature are influenced by the energy from lighting as well as from devices is therefore required in order to improve the design and control of new buildings.

In the study presented here, we have analysed the effects on the energy use and cost when changing from incandescent and halogen lamps to LED lamps, lamps which today have an equal or better performance than CFL lamps. This has been simulated for typical building types of Sweden with different heating distribution systems, insulation thicknesses, lighting scenarios etc. The buildings are representative of the Swedish housing stock from 1970 up to now; both for single-family houses and multi- family houses.

A living room was simulated with two lighting scenarios, one case with a pendent luminaire and spotlights recessed into the ceiling, and one with a pendent luminaire and surface mounted luminaires in the ceiling. The luminaires used were one pendent luminaire with an opal diffuser, one surface mounted luminaire, and one recessed spotlight. All are typical luminaires used in Swedish households. The light sources used were incandescent, HV halogen, and LED lamps.

* Corresponding author. Tel.: +46-10-516 5000. E-mail address: johan.norden@sp.se

Available online at https://www.wendangku.net/doc/0f2686017.html,

? 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (https://www.wendangku.net/doc/0f2686017.html,/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the CENTRO CONGRESSI INTERNAZIONALE SRL

2658J ohan Nordén et al. / E nergy Procedia 78 ( 2015 )2657 – 2662

2.Method

The energy use of different residential houses was simulated using energy balance calculations on a modelled living room. The required inputs for the simulations were building specifics, radiometric data for the luminaires, thermal data for the luminaires including transmission losses through the ceiling, load profiles for lighting, and load specifications and profiles for all other devices. The simulations were performed for one year in Gothenburg, Sweden.

2.1.Luminaire performance

The performance of the luminaries with the different light sources are shown in Table 1.

Table 1. Luminaire performance data

Variant Luminous flux

(lm) ratio (%) (lm/W)

Pendant Incandescent 651 99.8 59.4 11.0

Pendant LED 805 100 10.3 78.2

Surf mount Incandescent 237 52.8 71.3 3.32

Surf mount LED 267 59.0 12.2 21.9

Spot Halogen 121 73.8 32.8 3.69

Spot LED 194 100 5.2 37.3

2.2. Modelling

Detailed dynamic thermal simulations for evaluating the energy use of buildings with different lighting scenarios were performed using a Simulink/Matlab [2] model based on the “International Building Physics Toolbox in Simulink” [3]. In order to accurately model the luminaires, this model was further developed. The model includes transmission losses to the exterior, visible light, thermal radiation, and thermal convection. The distribution of visible light and thermal radiation is not uniform from the luminaires, and a detailed model taking measured angular radiation and light distributions into account was constructed.

Two lighting scenarios were evaluated. The first was for a pendant luminaire and four spotlights, and the second was for a pendant luminaires and two surface mounted luminaires. Since the different light sources had slightly different luminous flux, the flux and thus electricity consumption was normalized with the flux of the incandescent and halogen lamps.

Five building types typical for Sweden were simulated, two standard and three nearly zero-energy houses. A single-family house with a light structure and a multi-family house with a heavy structure were used representing the most typical buildings in Sweden from 1970 to 2007. As representatives of nearly zero-energy buildings, one single-family house with a light structure, a multi-family house with a light structure, and a multi-family house with a heavy structure were used. The implication of a light structure is that less energy can be stored in the s tructure.

The building components for the different houses are shown in Table 2.

Table 2. U-values for the houses simulated. The surface related heat loss factor (W/(m2K)) is the total transmission losses in the room (i.e. the heat loss factor (W/K)) distributed over the whole floor surface of the r oom.

Building type U-value wall

(W/(mK)) U-value roof

(W/(mK))

U-value floor

(W/(mK))

U-value window

(W/(mK))

Surface related heat loss

factor (W/(m2K))

Single-family house light 0.28 0.18 0.20 1.20 0.76

Single-family house NZE light 0.21 0.11 0.13 0.80 0.51

Multi-family house heavy 0.28 0.13 No losses 1.50 0.62

Multi-family house NZE heavy 0.23 0.13 No losses 0.80 0.41

Multi-family house NZE light 0.23 0.13 No losses 0.80 0.41 The room simulated was ventilated with a constant inlet air flow of 0.35 l/(sm2). Two types of ventilation corresponding to typical houses in Sweden were applied, fan assisted exhaust ventilation, and supply and exhaust air with heat recovery.

The heating distribution systems modelled were concrete embedded floor heating, pre-heated supply air, electric radiators, and water based radiators. Due to the lower inlet temperatures of heat pump systems, two inlet temperatures were simulated.

The heating systems and their controls were implemented in the above mentioned simulation models. The floor heating was simulated with a detailed IBPT-model [4]. A new dynamic model for the radiators based on standard SS-EN442 following the

J ohan Nordén et al. / E nergy Procedia 78 ( 2015 )2657 – 2662 2659 work of Lindvall [6] was developed taking into account the thermal inertia, and exchanges heat with the surroundings by radiation and convection.

For the pre-heating of the supply air, a simplified IBPT-model of a convective heater was developed.

Measured climate data for Gothenburg 1994 was used in the calculations. The annual average temperature was 7.02°C.

The data for load sizing and scheduling was taken from “End-use metering campaign in 400 households In Sweden” [1], a report published by the Swedish Energy Agency on the electricity use in Swedish households.

The water based heating systems were modelled as ideal in the sense that the system was always able to deliver the required heat.

The recessed halogen spotlights were only used in the cases with a light building structure since they require a hole to be made in the ceiling. When used with halogen lamps the spotlights require a protective cover. The hole made in the insulation for the cover was modelled as a point source thermal bridge with a ξ-value of 0.15 W/K for the standard house and 0.10 W/K for the nearly zero-energy buildings based on measurements. For the LED spotlights, no cover was required and therefore no thermal bridge was modelled.

3.Results

3.1.Energy use in single-family houses

The most significant results of the annual energy simulations of a living room in a single-family house are shown in Table 3.

Table 3. Energy savings for living rooms in single-family houses when changing from incandescent and halogen lamps to LED lamps.

House type Heat distribution

system Ventilation Lighting

scenario

Electricity saving

Inc -> LED [kWh/m2]

Heating increase

[kWh/m2]

Total saving

[kWh/m2]

Standard house, light Floor heating Exhaust Spot 12.92 3.62 9.30

structure Floor heating Exhaust Surf 13.59 8.58 5.01

Electric radiator Exhaust Spot 12.92 5.35 7.57

Electric radiator Exhaust Surf 13.59 10.27 3.32

Water radiator Exhaust Spot 12.92 4.92 8.00

Water radiator Exhaust Surf 13.59 9.50 4.09

Water radiator Heat recovery Spot 12.92 4.38 8.53

Water radiator Heat recovery Surf 13.59 8.47 5.12 Nearly zero-energy Floor heating Heat recovery Spot 12.92 3.77 9.15

house, light structure Floor heating Heat recovery Surf 13.59 7.11 6.49

Pre heated air Heat recovery Spot 12.92 4.25 8.67

Pre heated air Heat recovery Surf 13.59 7.21 6.38

Electric radiator Heat recovery Spot 12.92 4.47 8.44

Electric radiator Heat recovery Surf 13.59 7.63 5.97 Firstly, the total energy consumption of the room was always lowered when changing to more efficient LED lamps. In all cases, the energy for heating was increased, but this increase was always lower than the decrease in electricity usage. Looking into the detailed results, 35-80% of the electricity used for lighting was converted into useable heat in the simulated cases. For standard houses, the lowest usage occurred for spotlights recessed into the ceiling, and the best usage for houses with direct electrical heating without heat recovery. For well insulated nearly zero-energy houses, 50-60% of the electricity was converted into useful heat.

The benefits of changing to more efficient lighting were lowest for standard houses with direct electrical heating without heat recovery. The reason was that the electric heating from the lamps was directly replaced by heat from the electric radiators. The worst case was for surface mounted luminaires where 3 kWh/(m2year) was saved. The largest energy saving was achieved in a house with exhaust ventilation, floor heating, and spotlights. Here the saving was 9.3 kWh/(m2year). Parts of the heat generated by the lamp was then directly transmitted through the protective cover of the halogen spotlight and lost to the exterior. In addition, the cover became a thermal bridge that increased the thermal losses all hours of the day.

Important to note is that the calculations were performed for a living room, which is a room with a relatively high density of lighting. Therefore, the savings per m2 are not representable for the whole building. For total energy savings per m2 of the house, an approximation is that the living room values should be h alved.

The largest energy saving when changing from incandescent to LED occurred when there was no heating demand. Figure 1 and Figure 2 shows the energy use for heating and lighting over the year for a standard house with direct electrical heating and

2660J ohan Nordén et al. / E nergy Procedia 78 ( 2015 )2657 – 2662

exhaust ventilation without heat recovery and a nearly zero-energy house with supply and exhaust air ventilation with heat recovery.

Figure 1 Monthly savings in electricity for heating and lighting in t he spotlight scenario for a standard house and an NZE house with direct electrical heating when changing from incandescent lamps to LED l amps Figure 2 Monthly electricity savings for heating and lighting in the surface mounted scenario for a standard house and an NZE house with direct electrical heating when changing from incandescent lamps to LED l amps

Figure 1 shows the spotlight scenario and Figure 2 shows the surface mounted scenario. The case with direct electric heating was chosen for simplicity as it is easier to compare electricity use only and not heat versus electricity that can be more ambiguous. As the figures show, the savings increased with decreasing heating demand. This means that the savings were larger in the summer, and for NZE buildings because of their shorter heating season. Looking at the surface mounted luminaire scenario in Figure 2, the savings in the winter were negligible for both house types; here electricity from lighting was to a large extent converted into usable heat. For the spotlights, the thermal bridge created by the hole due to the protective cover increased the savings.

To conclude, changing to more energy efficient lighting always results in a saving in the absence of a heating demand.

3.2.Energy use in multi-family houses

The results of the annual energy simulations of a living room in a multi-family house are shown in Table 4.

Table 4. Energy savings for living rooms in multi-family houses when changing from incandescent and halogen lamps to LED lamps

House type Heat distribution

system Ventilation Lighting

scenario

Electricity saving

Inc -> LED [kWh/m2]

Heating increase

[kWh/m2]

Total saving

[kWh/m2]

Standard house, heavy Water radiator Exhaust Surf 13.59 9.69 3.90 structure Water radiator Heat recovery Surf 13.59 7.69 5.90

Nearly zero-energy house, Pre heated air Heat recovery Surf 13.59 6.43 7.16 heavy structure Electric radiator Heat recovery Surf 13.59 6.73 6.86

Water radiator Heat recovery Surf 13.59 6.35 7.25 Nearly zero-energy house, Pre heated air Heat recovery Spot 12.92 4.16 8.76 light structure Pre heated air Heat recovery Surf 13.59 7.02 6.57 Electric radiator Heat recovery Spot 12.92 4.41 8.51

Electric radiator Heat recovery Surf 13.59 7.49 6.11

Water radiator Heat recovery Spot 12.92 4.07 8.85

Water radiator Heat recovery Surf 13.59 6.87 6.72

J ohan Nordén et al. / E nergy Procedia 78 ( 2015 ) 2657 – 2662 2661

As in the case for single-family houses, changing from incandescent and halogen lamps to LED lamps always resulted in a

saving. The savings ranged from 3.8 kWh/m 2 to 8.9 kWh/m 2 annually. The lowest savings were for a standard house with heavy structure without heat recovery systems, where most of the energy from lighting was converted into useable heat. As the house became more insulated, the savings increased. The largest saving occurred for spotlights in a nearly zero-energy house with a light structure. Here, the thermal bridge created by the protective cover increased the losses to the exterior. Being able to remove this cover was much beneficial.

As in section 3.1, a realistic estimate is that he values should be halved to account for the whole house.

3.3. Cost savings

For the residents, the cost saving is in most cases the topic of highest interest. They will be investing in more expensive lamps and they need to see that they get return on the investment. Table 5 shows the most interesting results in terms of energy savings as well as the cost savings for the houses simulated. The energy savings are taken from Table 3 and Table 4. The cost of the lamps is ever changing, and was taken from an online shop [5]. The depreciation time for the investment in new lamps was taken as five years, i.e. within five years the lamps are fully paid. No annuity was used; the cost was simply divided by 5. Lighting was supposed to be on for an average of 4h per day all year leading to a service time of 7305 h over five years. Since the lifetime of the LED lamps is 25 000h and the lifetime of the incandescent lamps is 1 000h, the LED lamps did not require any replacements whereas the incandescent were replaced six times. The cost for electricity was 1.13 €/kWh, for district heating 0.08 €/kWh and for heat from the heat pump 0.04 €/kWh (COP=3).

Table 5. Annual savings by changing from incandescent and halogen lamps to LED lamps.

structure

house, light

structure

heavy structure

light structure

As discussed in previous sections, the simulated results for a living room are not directly applicable to a whole house due to the higher lighting levels of this type of room. The last column of Table 5 therefore shows the savings per m 2 for the whole house. As can be seen from the table; a change to more energy efficient LED lamps resulted in savings in all simulated cases. The average saving for a single-family house was 0.62 €/m 2, which for a house with a floor area of 150 m 2 would result in a saving of approximately 94 €. For multi -family houses, the cost savings were on average 0.61 €/m 2. For an apartment of 100 m 2 this would result in a cost saving of 61 € per year. In many cases, the resident are charged for electricity but not for heating. In these cases, the average saving would be 0.91 €/m 2 which would yield a saving of 91 € per year.

The savings come from two factors, the cost of buying the lamps, and the energy savings. With the five year analysis of Table 5, the cost of the lamps is always lower for LED lamps. Even though the cost of purchase is considerably higher for LED lamps, the short lifetime of the incandescent lamps (6 replacements for the 7 300 h) makes the cost of LED lamps lower in this case. For the longer perspective, the LED lamps are expected to last 25 000 h which would mean a lifetime of 17 years in the described scenario and having to change the incandescent bulbs 25 times would mean that the savings would be considerably higher. The reason for choosing 5 years in the analysis was that it is difficult for the customers to trust lifetimes of 17 years for a product that

House type Heat distribution system Lighting scenario Increased heating cost (€/y) Electricity saving (€/y) Saving light source (€/y) Total annual saving (living room) (€/m 2) Total annual saving (house) (€/m 2) Standard single- Floor heating Spot 5.4 57.8 0.8 1.5 0.7 family house, light Floor heating Surf 12.8 60.8 7.7 1.6 0.8 Electric radiator Spot 0.0 33.9 0.8 1.0 0.5 Electric radiator Surf 0.0 14.9 7.7 0.6 0.3 Nearly zero-energy Floor heating Spot 5.6 57.8 0.8 1.5 0.7 single-family Floor heating Surf 10.6 60.8 7.7 1.6 0.8 structure Electric radiator Spot 0.0 37.8 0.8 1.1 0.5 Electric radiator Surf 0.0 26.7 7.7 1.0 0.5 Standard multi- Water radiator Surf 28.9 60.8 7.7 1.1 0.6 family house, heavy Water radiator Surf 22.9 60.8 7.7 1.3 0.6 Nearly zero-energy Pre heated air Surf 0.0 32.0 7.7 1.1 0.6 multi-family house, Electric radiator Surf 0.0 30.7 7.7 1.1 0.5 Water radiator Surf 18.9 60.8 7.7 1.4 0.7 Nearly zero-energy Pre heated air Spot 0.0 39.2 0.8 1.1 0.6 multi-family house, Pre heated air Surf 0.0 29.4 7.7 1.0 0.5 Electric radiator Spot 0.0 38.1 0.8 1.1 0.5 Electric radiator

Surf

0.0

27.3

7.7

1.0

0.5

2662J ohan Nordén et al. / E nergy Procedia 78 ( 2015 )2657 – 2662

has been in the market for such a short period of time. Being able to realise a saving within five years makes the investment into higher purchase price lamps more probable. From a technical point of view there is reason to trust the data given by the lamp manufacturers but there will always be inferior products in the market and in the end it will be up to the customer to choose the supplier that he or she trusts.

4.Discussion

The most fundamental result of the energy balance calculation and the cost estimations performed is that it is always beneficial to change from incandescent and halogen lamps to LED lamps. A common argument is that all of the energy consumed by lighting is converted to heat which comes to use within the building. With this argument, it is not useful to change to more efficient light sources especially not if the cost of the new light sources are higher. Our study shows that this is not the case. Independent of heating system or type of house, a change always results in a saving in all simulated cases. The main reason for this is that every kWh of electricity saved from lighting outside the heating season is a kWh saved, none of this heat would be useful for the building. For nearly zero-energy buildings, the heating season is shorter, and the savings are thus larger.

LED lamps have a higher cost than conventional incandescent or halogen lamps. This is one of the factors prohibiting the large scale upgrade to more energy efficient lighting. But due to the longer life time of the LED lamps, our study shows that the payback time in terms of cost with current lamp prices is between 4-5 years based on an average use of 4 h per day. The LED lamps on the market today often have a lifetime between 25 000 h and 35 000 h and if this is correct the lamps will with the 4 h per day use last for 17-24 years. But since light sources are becoming more energy efficient, it is hardly realistic to consider such a scenario. Most probably, they will be replaced much sooner to accommodate further energy savings.

The average electricity use for lighting in single-family houses in Sweden is 850 kWh per year and for apartments in multi-family houses it is 550 kWh per year [1]. Considering the lamps in the market today, a realization of a saving of 85% in electricity for lighting is possible by changing from incandescent and halogen to LED lamps. Including the increased heating required, our study shows that the savings per m2 floor area per year are on an average 3.5 kWh/m2 for single-family houses, and 3.4 kWh/m2 for apartments. In terms of cost, the savings are on an average 0.62 €/m2 for single-family houses, and 0.61 €/m2 for apartments in multi-family houses.

Notable is that when the lamps are changed, the heat that was generated by electricity for lighting for incandescent is in many cases replaced by heat from other lower cost sources such as district heating, heat pumps, and bio fuels. This increases the savings further. The worst case is for houses with direct electrical heating where the electricity for the less efficient light sources is replaced by heat from electric radiators at almost the same rate during the heating season.

Whenever the need for heating is low or non-existent, changing to more energy efficient lighting will always result in a s aving of energy, i.e. the shorter the heating season, the larger the saving. This means that more energy efficient buildings benefit more, but it also means that the warmer the climate, the larger the saving. For countries with a warmer climate than Sweden, the savings will be larger both due to the electricity savings from the lamp change itself, and due to the slightly reduced cooling loads in the summer. In this study we have looked at residential houses in Sweden where cooling systems rarely are used.Therefore, overheating has not been analysed.

Another important finding is that installations with spotlights requiring a protective cover for the luminaire have relatively large losses through the hole in the insulation created by the cover. This point source thermal bridge was measured to 0.1-0.2 W/K. This cover is not required by LED spotlights, and additional savings can thus be achieved during winter. Acknowledgements

The project was funded by Swedish Energy Agency, and is gratefully acknowledged.

References

[1] Zimmermann. J.P. End-use metering campaign in 400 households In Sweden. Swedish Energy Agency; 2009

[2] The MathWorks Inc.: Matlab, Simulink. https://www.wendangku.net/doc/0f2686017.html,

[3] Rode, C., Gudum C., Weitzmann, P., Peuhkuri, R., Nielsen, T. R., Sasic Kalagasidis, A., Hagentoft C-E. International Building Physics Toolbox, General

report, R-02:4. Gothenburg: Chalmers University of Technology, Department of Building Physics; 2002. Also available on https://www.wendangku.net/doc/0f2686017.html,.

[4] Karlsson, H. Thermal Modelling of Water-Based Floor Heating Systems - supply temperature optimisation and self-regulating effects. Doktorsavhandlingar

vid Chalmers tekniska h?gskola, ny serie nr 3050; 2010

[5] Elgiganten Online Shop, www.elgiganten.se 2014-03-09.

[6] Lindvall, N. J?mf?relse mellan funktionen hos radiatorsystem injusterade efter tv? principer - En analys av radiatortermostatventilens betydelse och

reglerf?rm?ga.. Masters thesis at Chalmers tekniska h?gskola, Institutionen f?r Termo- och fluiddynamik.; 2006

科学杂志

1876-6102 ? 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (https://www.wendangku.net/doc/0f2686017.html,/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the CENTRO CONGRESSI INTERNAZIONALE SRL doi: 10.1016/j.egypro.2015.11.340 E nergy Procedia 78 ( 2015 )2657 – 2662 ScienceDirect 6th International Building Physics Conference, IBPC 2015 Changing to energy efficient light sources – An analysis of the energy balance of buildings Johan Nordén*, Henrik Karlsson, Caroline Markusson, Svein Ruud, Mikael Lindgren, Patrik Ollas SP Technical Research Institute of Sweden, Ideon Science Park, SE-223 63, Lund, Sweden Abstract New light sources such as LED lamps have the potential to reduce the electricity for lighting significantly. However, by reducing the electricity for lighting, the building heating demand is increased. The effects on the building energy balance of changing to more efficient light sources has been investigated by dynamic thermal modelling of typical Swedish single-family and multi-family residential houses. The results show savings on an average of 3.5 kWh/m 2 and 0.62 €/m 2 for single-family houses, and 3.4 kWh/m 2 and 0.61 €/m 2 for apartments in multi-family houses annually when changing from incandescent and halogen lamps to LED lamps. ? 2015 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of the CENTRO CONGRESSI INTERNAZIONALE SRL. Keywords: energy balance; lighting; energy efficiency; internal l oads 1. Introduction The European target to halve the energy use in the built environment by 2050 will require all new buildings to be constructed as nearly zero-energy buildings or passive houses. The significantly lower heating demand of such buildings increases the emphasis on heat generated by devices, persons, lighting etc. in the energy balance calculations. For buildings with nearly zero- energy standards, even modest energy supply from internal loads can result in overheating. The heat will partly be stored in the building structure, partly heat the indoor air, and partly be ventilated. Since the storage of energy depends on the penetration depth and dampening of the heat wave, the distribution of heat and the dynamics with the indoor environment becomes more complex. A deeper understanding on how surface temperatures and the air temperature are influenced by the energy from lighting as well as from devices is therefore required in order to improve the design and control of new buildings. In the study presented here, we have analysed the effects on the energy use and cost when changing from incandescent and halogen lamps to LED lamps, lamps which today have an equal or better performance than CFL lamps. This has been simulated for typical building types of Sweden with different heating distribution systems, insulation thicknesses, lighting scenarios etc. The buildings are representative of the Swedish housing stock from 1970 up to now; both for single-family houses and multi- family houses. A living room was simulated with two lighting scenarios, one case with a pendent luminaire and spotlights recessed into the ceiling, and one with a pendent luminaire and surface mounted luminaires in the ceiling. The luminaires used were one pendent luminaire with an opal diffuser, one surface mounted luminaire, and one recessed spotlight. All are typical luminaires used in Swedish households. The light sources used were incandescent, HV halogen, and LED lamps. * Corresponding author. Tel.: +46-10-516 5000. E-mail address: johan.norden@sp.se Available online at https://www.wendangku.net/doc/0f2686017.html, ? 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (https://www.wendangku.net/doc/0f2686017.html,/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the CENTRO CONGRESSI INTERNAZIONALE SRL

science杂志介绍

怎样在《Science》杂志上发表文章 佚名 一、《Science》杂志概况 美国的《Science》杂志为国际上著名的自然科学综合类学术期刊,在世界学术界享有盛誉,反映其被引文量的影响因子始终高居《SCI》收录的5700种科学期刊的前十位。据2001年最新统计,《Science》杂志年发表论文数901篇,被引用次数282431,影响因子为23.329,排名所有科学期刊的第8位。由于其独特的学术地位,国内许多科研院所为鼓励学术人员在该刊发表文章,都制定了优厚的奖励措施。 《Science》杂志创刊于1880年,目前在全球拥有16.5万个订户,超过《N ature》杂志三倍。《Science》杂志具有新闻杂志和学术期刊的双重特点,每周除向世界各地发布有关科学技术和科技政策的重要新闻外,还发表全球科技研究最显著突破的研究论文和报告。 《Science》杂志发表的论文涉及所有科学学科,特别是物理学、生命科学、化学、材料科学和医学中最重要的、最激动人心的研究进展。据统计,发表的论文中60%有关生命科学,40%是属于物理科学领域的(见附录1)。每年《Scien ce》杂志还出版大约15期专辑,展示某一专门领域的最新成果,例如生物技术、寄生虫学、纳米技术、计算机技术等。除高水平的论文外,每期专辑还发表有关科技职业的专题文章和以不同国家、地区为对象的专栏。 除了为发表全世界最好的科学论文和报道全球最好的科学新闻而努力外,《S cience》杂志还有三个特别重要的目标: ?将《Science》杂志和科学带入更多的发展中国家的科学工作者的家中和实验室里; ?帮助世界各地青年科技工作者更多地了解今后十年最重要的科技发展趋势、最新的科学仪器和技术以及科技职业的选择; ?用电子手段传播科技信息,进一步提高信息质量,并且通过与发展中国家和发达国家的团体合作利用计算机互联网传送杂志,降低发行成本。 1995年,《Science》杂志与时俱进,实现了上网,即科学在线《Science Online》,提供《Science》杂志全文、摘要和检索服务。特别要注意的是:网络版是印刷版的补充,而不是替代。网络版上许多内容是免费的,如今日科学(S cience Now)报道每日科学新闻;科学后浪(Science Next Wave)给未来科学家提供职业信息;科学事业(Science Careers)提供就职机会、会议和研究活

世界顶级的管理学期刊排名

世界顶级的管理学部分期刊目录 Rank 1: Administrative Science Quarterly (ASQ) 管理科学季刊 Rank 2: Academy of Management Review (AMR) 中国科学院管理评论Rank 3: Academy of Management Journal (AMJ) 管理学会期刊 Rank 4: Journal of Applied Psychology (JAP) 应用心理学杂志 Rank 5: Strategic Management Journal (SMJ) 战略管理杂志 Rank 6: Personnel Psychology (Perpsych) 人事心理学 Rank 7: Organizational Behavior and Human Decision Processes (OBHDP)组织行为与人类决策过程 Rank 8: Management Science (MS) 管理科学 Rank 9: Journal of Vocational Behavior (JVB) 中国职业行为 Rank 10:Journal of Management (JOM) 管理学报 Rank 11:Industrial and Labor Relations Review (I&LRR) 工业和劳动关系回顾 Rank 12:Journal of Occupational and Organizational Psychology (JOOP) 职业与组织心理学 Rank 13:Journal of Human Resources (JHR) 人力资源杂志 Rank 14:Journal of Organizational Behavior (JOB) 中国组织行为 Rank 15:Journal of Management Studies (JMS) 管理研究杂志 Rank 16:Decision Sciences (DS) 决策科学 Rank 17:Journal of International Business Studies (JIBS) 中国国际商务研究Rank 18:Human Relations (HR) 人际关系 Rank 19:Industrial Relations (IR) 劳资关系 Rank 20:Harvard Business Review (HBR) 哈佛商业评论 Rank 21:California Management Review (CMR) 加州管理评论 Rank 22:Solan Management Review (SMJ) 索兰管理评论 Rank 23:Journal of Business Venturing (JBR) 创业杂志

国内外顶级期刊

国外部分 期刊名(英文)期刊名(中文)影响因子 (部分) 备注 管理科学类包括战略管理SM、运筹研究OR、创新管理IM顶级期刊 ACADEMY OF MANAGEMENT REVIEW管理评论 3.9 ADMINISTRATIVE SCIENCE QUARTERLY管理科学季刊 3.3 STRATEGIC MANAGEMENT JOURNAL战略管理季刊 2.5 ACADEMY OF MANAGEMENT JOURAL管理学术期刊 2.4 JOURNAL OPERTION MANAGEMENT运筹管理期刊 1.795 JOURNAL PRODUCT INNOVATION MANAGEMENT产品创新管理期刊 1.623 MANAGEMENTSCIENCE管理科学 1.468 MATHPROGRAM数学规划 1.29 MATH OPERATION RESEARCH数学运筹研究 1.146 OPERTION RESEARCH运筹研究0.672 EUROPE JOURNAL OPERATION RESEARCH欧洲运筹研究期刊0.605 INTERNATIONAL JOURNAL PRODUCTION RESEARCH 产品研究国际期刊0.557 OPERATION RESEARCH LETTER运筹研究通讯0.449 JOURNAL OPERATION RESEARCH SOCIETY运筹研究世界期刊0.416 PRODUCTION OPERATION MANAGEMENT产品运作管理0.393 ANNUAL OPERATION RESEARCH运筹研究年刊0.331 INTERNATIONAL JOURNAL TECHNOLOGY MANAGEMENT 国际技术管理期刊0.266 金融、会计、商业顶级期刊 JOURNAL OF FINANCE金融学期刊 2.8 JOURNAL OF CONSUMER RESEARCH消费者研究期刊 2.5 JOURNAL OF MARKETING;市场学期刊2 JOURNAL OF FINANCIAL ECONOMICS金融经济学期刊 1.9 JOURNAL OF MARKETING RESEARCH市场学研究期刊 1.7 MARKETING SCIENCE市场期刊 1.4 REVIEW OF FINANCIAL STUDIES;金融研究评论 1.3 JOURNAL OF BUSINESS商业期刊 1.2 JOURNAL OF ACCOUNTING RESEARCH会计期刊 1.1 FINANCE MANAGEMENT金融管理 WORLD BANK ECONOMICS REVIEW世界银行经济评论 JOURNAL OF MONEY CREDIT AND BANKING货币信用与银行期刊JOURNAL OF MONETARY ECONOMICS货币金融期刊 JOURNAL OF FINANCIAL INTERMEDIATION金融中介期刊 JOURNAL OF INTERNATIONAL 国际货币与金融期刊

科学杂志读后感

科学杂志读后感 科学杂志读后感范文一 《我们爱科学》是一本内容科学杂志,介绍了好多形状各异的植物和微生物,还有动物的故事。它的知识性很强,情节生动有趣,让我学到了许多书本上学不到的知识。 我们要学科学、爱科学,把科学展示出来。科学家告诉我们,好奇心是人的天性中最重要的方面之一,也是激发探索科学奥妙的主要动机,所以遇到问题我们要勇于问为什么,勇于尝试、创新,勇于推翻前人的结论。例如伽利略,哥白尼等人,他们不顾来自各方面的压力和反对,勇敢地指出前人错误的论点,通过亲身实践证明了自己的观点是正确的,也换来了伟大的成功。 以前,我一直不知道人体皮肤的作用,读了这本书,才知道皮肤可以调节体温,通过汗液把温度降下来。而且皮肤是感觉器官,触及它就立即感知,无论抠、抓、掐,轻重程度都能分辨出来,即使闭上眼睛,也可以准确地知道位置。皮肤富有弹性,按一下即恢复原样;它防止水渗进身体里,被雨水淋了也不怕。皮肤好可爱,我要告诫大家:身体发肤,受之父母,要爱惜呀! 《我们爱科学》不仅让我知道很多科学方面的知识,而且丰富了我的生活,使我更快乐。 科学杂志读后感范文二 《科学家的故事》这本书是我最喜欢的一本书,书中写了李时珍、达尔文、牛顿、爱迪生等一些科学家的故事,读完之后,觉得他们真是很伟大,很厉害。特别是李时珍,真不愧是我国古代伟大的科学家,我们都应该向他学习。 李时珍三四岁就开始学习察看植物,红的、黄的、白的,五颜六色的植物他都要弄清楚,等李时珍长大后发现,旧本草书里有许多错误,于是他下定决心把本草重新整理,把错误的地方改过来。于是,李时珍翻山越岭,到深山去采集药物。李时珍在进行收集整理本草刚目的过程中,并不是一帆风顺的,曾经有一次采集的所有资料都丢掉了,但是他没有灰心,一点一点的又从头再来。为了分清各种植物的药用功能,采到的药物他都要亲自尝一尝,有好几次差点要了他的命。还有,李时珍的家乡出产一种靳蛇,又叫白花蛇,身上有24块斜方块,白花蛇可以治病,是一种祛风湿的好药,李时珍想尽办法捉来了一条白花蛇,为了试验效果,李时珍让这条白蛇咬了一口,差一点没了命。 正是这种精神,让他又试着尝试各种草药上千种,例如,曼陀罗花,李时珍为了试验这种花的麻醉作用,就在自己身上试一试吃了这种花是不是会麻死人,当然结果也是可想而知的。经过了很多次的试验,李时珍终于完成了《本草刚目》的修订,记载的药物有1892种,还附有1160幅插图,还增补了374种新药。 从李时珍的身上,我感到古人为我们付出了那么多,我们应该感谢古人,感谢李时珍的《本草刚目》,它真是一部伟大的医学巨着埃李时珍为了重新编写《本草刚目》,吃尽了千辛万苦,还亲自实验,不怕困难,不怕死亡,我们要学习他的这种精神,在学习上不退缩,不怕苦,

如何在顶级科学杂志上发表论文.2

鲁白 (2002年9月25日在复旦大学上海医学院的讲课录音记录) 下面谈一下投稿的基本过程,特别是与Cell、Nature、Science、PNAS 等影响因子比较高的杂志有关的一些技术性问题,也许可以打破其神秘感。其实这些杂志的主编,编辑们都经常在介绍其政策,评审标准,过程,等等。他们也经常来中国访问。今天我来代替他们介绍一下。一个系列杂志叫Cell、Neuron、Immunity…..等等,原来都是从Cell分出来的。这个杂志的基本特点是它有一个非常强的编委Editorial Board。怎样的人可以当编委呢?他们往往是有名的科学家,而且也愿意并能够非常快地对投稿做出评估。这些科学家也经常被选来做评审reviewer。大家都知道每篇文章送到杂志社后,都要请该领域的2-3专家看,并匿名写出评审意见给作者。你不知道是谁写的,但这些专家会给你提出批评,哪些地方不好,哪些地方需要进一步做实验,怎么样做,这就叫杂志评审。 Cell、Neuron、Immunity等这些杂志的评审不少就是编委做的。因为现在杂志竞争的重要因素是发表要快,而做编委的专家能很快写出评审意见来。还有一个特点,Cell等杂志主编,编辑有非常大的权利,他们甚至可以象追星族那样去追科学家,去参加各种各样的科学会议,当看到你有非常重要的最新成果,他们会去竞争,会问你,你的文章写出来了没有,我保证给你多少时间发表,等等。另一个系列是Nature衍生出来的,这些杂志的特点是没有一个编委,但有一个评审专家库, 也就是说谁来评审,不是乱选的。这些杂志主编,编辑也有相当大的权利。这些是什么人呢?他们一般是读完博士,然后到非常好的实验室做博士后,这些人也许自己没有做出什么特别重大的贡献,没有什么好的文章,但他们欣赏能力特别好,文笔非常好,写得又快。你可不要小看他们,虽然自己没有做出什么伟大的工作来,但他们的思想水平学术水平都相当不错,看得多,写得快,Nature、Science的编辑大同小异,都是这样一批年纪不大的人,很活跃,经常参加各种各样的会议和活动。 Science杂志的编辑权利相对小些,因为他们还有一个编委会editorial board,有相当大的权利。一般过程是,当你的文章送到Science杂志社后,编辑先做一个初审,看一下是不是基本够格,然后他还要把文章的摘要Abstract送到编委会的某一个人那里,认可以后,才可以拿出去评审。两道关卡,大部分文章一下子就这样被砍掉了。 PNAS杂志是美国科学院院刊,文章有好有坏,院士自己投稿就不需要经过评审,叫做contribute。院士原来一年可以五篇,后来减到四篇、三篇,就是院士自己写的文章,只要你投就给你发表,不需要经过评审,相信你是院士,投科学论文应该有责任心的。第二种叫做Communicate,不是院士自己的文章,是你的文章,院士觉得你的文章不错,他来给你通讯,投到PNAS杂志,这文章要评审,但是评审专家由院士自己来选。所以这个也不怎么样。还有一种叫Track C,就象一般杂志,你只要投过去,然后编辑部来给你选一个院士,由他来找评审专家,相对来说,这比较客观些,所以Track C的文章质量就相对好一些。我不是说院士的文章都很差,但院士有特权,可以把在其他杂志发不出去的文章,投到PNAS上去,所以在PNAS上有很多不怎么样的文章。

SCI各领域国际顶尖学术期刊一览

SCI各领域国际顶尖学术期刊一览 中国科学院科技情报中心将各领域的SCI期刊按影响因子大小分成四个区,其中一区和二区为高影响因子论文,三区为中等影响因子论文,四区为低影响因子论文。其中,一区和二区的一小部分杂志被列为顶尖学术期刊(TopJournal)。 要比较各校在高水平的杂志的论文发表情况,可以根据顶尖杂志的名单和一区二区的杂志名单,查询ISI网站,谁好谁差,一比就知,无需争辩,一目了然。 以下为各领域顶尖学术期刊的详细名单 分区中文分类刊名简称 1 地学ACTAASTRONOM 1 地学ADVGEOPHYS 1 地学AMJSCI 1 地学BAMMETEOROLSOC

1 地学CLIMDYNAM 1 地学JCLIMATE 1 地学JPETROL 1 地学LIMNOLOCEANOGR 1 地学QUATERNARYSCIREV 1 地学REVGEOPHYS 1 地学TELLUSB 2 地学AMMINERAL 2 地学CHEMGEOL 2 地学EARTHPLANETSCLETT 2 地学GEOCHIMCOSMOCHIMAC 2 地学GEOLOGY 2 地学GEOPHYSRESLETT 2 地学JGEOPHYSRES 2 地学JATMOSSCI

2 地学MONWEATHERREV 1 地学天文ANNUREVASTRONASTR 1 地学天文ASTROPHYSJ 1 工程技术ACTAMATER 1 工程技术ADVMATER 1 工程技术AICHEJ 1 工程技术ANNUREVBIOMEDENG 1 工程技术ANNREVMATERRES 1 工程技术APPLSPECTROSC 1 工程技术ARTIFINTELL 1 工程技术ARTIFLIFE 1 工程技术BIOMATERIALS 1 工程技术CHEMVAPORDEPOS 1 工程技术CHEMMATER

Science和Nature杂志介绍

《Science》 一、《Science》杂志概况 美国的《Science》杂志为国际上著名的自然科学综合类学术期刊,在世界学术界享有盛誉,反映其被引文量的影响因子始终高居《SCI》收录的5700种科学期刊的前十位。据2001年最新统计,《Science》杂志年发表论文数901篇,被引用次数282431,影响因子为23.329,排名所有科学期刊的第8位。由于其独特的学术地位,国内许多科研院所为鼓励学术人员在该刊发表文章,都制定了优厚的奖励措施。 《Science》杂志创刊于1880年,目前在全球拥有16.5万个订户,超过《N ature》杂志三倍。《Science》杂志具有新闻杂志和学术期刊的双重特点,每周除向世界各地发布有关科学技术和科技政策的重要新闻外,还发表全球科技研究最显著突破的研究论文和报告。 《Science》杂志发表的论文涉及所有科学学科,特别是物理学、生命科学、化学、材料科学和医学中最重要的、最激动人心的研究进展。据统计,发表的论文中60%有关生命科学,40%是属于物理科学领域的(见附录1)。每年《Scien ce》杂志还出版大约15期专辑,展示某一专门领域的最新成果,例如生物技术、寄生虫学、纳米技术、计算机技术等。除高水平的论文外,每期专辑还发表有关科技职业的专题文章和以不同国家、地区为对象的专栏。 除了为发表全世界最好的科学论文和报道全球最好的科学新闻而努力外,《S cience》杂志还有三个特别重要的目标: ?将《Science》杂志和科学带入更多的发展中国家的科学工作者的家中和实验室里; ?帮助世界各地青年科技工作者更多地了解今后十年最重要的科技发展趋势、最新的科学仪器和技术以及科技职业的选择; ?用电子手段传播科技信息,进一步提高信息质量,并且通过与发展中国家和发达国家的团体合作利用计算机互联网传送杂志,降低发行成本。 1995年,《Science》杂志与时俱进,实现了上网,即科学在线《Science Online》,提供《Science》杂志全文、摘要和检索服务。特别要注意的是:网络版是印刷版的补充,而不是替代。网络版上许多内容是免费的,如今日科学(S cience Now)报道每日科学新闻;科学后浪(Science Next Wave)给未来科学家提供职业信息;科学事业(Science Careers)提供就职机会、会议和研究活

前人Science文章写作经验

科研论文写作——续‘我投SCI稿件的一点经验’ 作者: yuyongtao(站内联系TA)发布: 2006-07-03 写科研论文不是一件轻松的事儿。如果我们把研究工作比喻成战争的后勤准备,那么科研论文就是这场战争最核心的部分:决战。要想赢得一场战争的胜利,扎实的基础工作是必要的,但显然是不够的,战场上杀敌的决心和出色的指挥同样是决定成败的关键之一。对于身处信息化时代的大多数研究人员来讲,大量的时间需要花费在选题、课题申请、具体的科研工作和科研论文等最终成果上。了解本领域的发展和前沿显然必须通过大量阅读专业文献才可能,这需要时间。为了节省宝贵的时间,同时集读者和作者于一身的研究者都期望所阅读的论文能够简明扼要地提出、分析和解决问题。孙子兵法云:‘知己知彼,百战不殆’。要想有效而高效地通过学术论文地方式交流科学思想,我们必须了解,作为读者,我们最需要什么,这样才能在写作科研论文的时候,有的放矢,打赢科研工作中这最后一场战役。因此,在本文中,我想结合在SCI刊物上发表论文的经验,以科研论文写作要素的方式,与各位虫友交流这方面的心得体会,希望能对打算投稿SCI刊物的菜虫虫们有所帮助和启发。 摘要:摘要的写作显然是非常有挑战性的。因为绝大多数读者都是在读完论文摘要之后才决定是否有必要获取全文进行深入的阅读。因此,好的摘要必须能言简意赅的充分表现论文的主要内容和结论,必须能包涵论文正文的各种要元素,信息量丰富(informative),能独立于正文之外(self-containing)。换句话说,摘要应该是正文精要的缩写,是压缩了的正文。那么摘要应该包括什么具体要素呢?我认为至少应该涵盖以下几个方面:简要描述论文提出的问题,所采用的方法和主要的结论。摘要必须包括正文的主要结论,以方便读者通过阅读摘要就可以了解文章的全貌。虽然摘要的位置处于一篇论文的最前面,但是,从写作的顺序上来说,当正文写作完毕后再考虑写摘要似乎更明智。这个时候,作者对整篇文章已了然于心,对需要突出强调的东西非常清楚,更易于写出不错的摘要。 Introduction: 这个部分应当:(1)精确地描述文章提出的问题(target question);(2)给出具体问题的背景知识,解释为什么这个问题很重要,为什么值得读者花时间细细琢磨;(3)告诉不熟悉文章方法的读者足够的细节,使他们能了解作者都做了哪些工作,以及为什么要这么做;(4)在结束的段落简要地交待一下文章的主要结论。 Materials and Methods: 这个部分应当描述一下论文究竟都做了哪些具体的工作。应当交待技术层面的一些信息以方便读者弄清楚作者都做了哪些实验。如果实验的方法是完全照搬前人已有的工作,则不必详细阐述这些方法的文字,只需要在文中给出具体的参考文献即可。如果实验方法不完全与前人的工作一致,则必须清楚地声明哪些东西是前人的结果,哪些东西是作者自己提出的处理方式。对于某种方法不必连篇累牍地阐述每个细节,只需要交待最关键,便于读者直接重复作者的实验工作的那些细节信息就足够了。 Results and discussion: 因为作者的结果和讨论一般不会只有一个,太多的结果容易分散读者的注意力,使读者不知道哪些结果更为重要。这时候必须牢记,要在合适的时候交待并重复研究结果的大局(big picture),随时提醒读者某个结果现在的位置及在真个文章体系中的地位和作用,这样就不至于使读者陷入“只见树木,不见森林” 的窘境中去,同时也有利于保持一个清晰明了的逻辑主线。每个段落最好以一个主题句(opening/topic sentence) 开始,概括一下本段或随后几段组成的段群的中心意思,同时也是提醒(signify)读者注意作者这一部分的文字将要详细说明的内容。然后在这个意群结束的时候再回过头用一个句子总结呼应(echoing) 一下上文的主题句。 在写作结果部分的时候,作者应当善于利用图表代替文字来表达意思,这样做既可以节省篇幅,也能够将文字的东西可视化、直观化。图表包含的信息应当反映论文主要的研究结果。换句话说,我们可以将主要的研究结果分别制作成为图表的形式,有几个主要结果和讨论就做几张图表,以图表为线索引领我们的结果和讨论部分。图题(figure caption)和表头

SCI生物国际顶尖学术期刊一览

S C I各领域国际顶尖学术期刊一览中国科学院科技情报中心将各领域的SCI期刊按影响因子大小分成四个区,其中一区和二区为高影响因子论文,三区为中等影响因子论文,四区为低影响因子论文。其中,一区和二区的一小部分杂志被列为顶尖学术期刊(TopJournal)。以下为生物领域顶尖学术期刊的详细名单 分区?中文分类??刊名简称? 1 生物 AMJHUMGENET 1 生物 ANNUREVBIOCHEM 1 生物 ANNUREVBIOPHBIOM 1 生物 ANNUREVCELLDEVBI 1 生物 ANNUREVGENET 1 生物 ANNUREVMICROBIOL 1 生物 ANNUREVPHYSIOL 1 生物 ANNUREVPLANTPHYS 1 生 物 BBA-REVBIOMEMBRANES 1 生物 BIOESSAYS 1 生物 CELL 1 生物 CURRBIOL 1 生物 CURROPINCELLBIOL 1 生物 CURROPINGENETDEV 1 生物 CURROPINPLANTBIOL 1 生物 CURROPINSTRUCBIOL 1 生物 CYTOKINEGROWTHFR 1 生物 DEVELOPMENT 1 生物 DEVCELL 1 生物 EMBOJ

1 生物 FASEBJ 1 生物 FEMSMICROBIOLREV 1 生物 GENEDEV 1 生物 GENOMERES 1 生物 HUMMOLGENET 1 生物 JCELLBIOL 1 生物 MICROBIOLMOLBIOLR 1 生物 MOLCELLBIOL 1 生物 MOLBIOLCELL 1 生物 MOLCELL 1 生物 NATBIOTECHNOL 1 生物 NATCELLBIOL 1 生物 NATGENET 1 生物 NATREVGENET 1 生物 NATREVMOLCELLBIO 1 生物 NATSTRUCTBIOL 1 生物 PLANTCELL 1 生物 PROGNUCLEICACIDRE 1 生物 TRENDSBIOCHEMSCI 1 生物 TRENDSCELLBIOL 1 生物 TRENDSECOLEVOL 1 生物 TRENDSGENET 1 生物 TRENDSPLANTSCI 2 生物 AMJPHYSIOL-CELLPH 2 生物 APPLENVIRONMICROB 2 生物 BIOCHEMJ 2 生物 BIOCHEMISTRY-US 2 生物 BIOLREPROD 2 生物 BIOPHYSJ 2 生物 DEVBIOL

极具权威性的美国科学杂志《今日心理学》阅读答案_0

极具权威性的美国科学杂志《今日心理学》 阅读答案 极具权威性的美国科学杂志《今日心理学》近日刊登了一篇惊人的文章,文章指出,原先人们认为海产品对大脑最有益,多吃海产品可以提高人的智力,但美国科学家最新研究的结果却大大出乎人们的预料。研究发现,森林中的野果比如红莓苔子、黑莓果等对大脑的益处远远超过海产品,排在第一位;占据第二位的是蔬菜,其次才是鱼等海产品。 研究人员发现,红莓苔子之所以排在排在第一位,是因为其中含有大量能与自由氧离子发相互作用的抗氧化剂。抗氧化剂的存在几乎破坏了对血管和心脏有极大破坏性的胆醇激素。黑莓果里面含有的抗氧化剂要相对少一些,但含有对视力和听力非常有益的成分。大叶子的红甜菜和圆白菜含有一种能把发展成帕金森氏综合症的酶破坏掉的物质。菠菜能够延缓神经系统的衰老,还可以防止认知能力出现问题。相比之下,鱼的作用就小多了,只有鲑鳟鱼、金枪鱼、沙丁鱼和鲱鱼含有能分解有害酶的脂肪酸,此外,这些鱼中还有大量大脑所需要的磷。 俄罗斯医学科学院食品研究的教授波波夫也持这样的观点。他认为,野果不仅对大脑有益,对心脏也有好处。他们的研究发现,许多含有大量维素C和蔗糖的蔬菜,对大脑

的活动也特别有益。 但几乎所有的专家都认为,如果认为只吃了上述食品你就变得聪明了,那就大错特错了。这样的食品结构会引起营养的失衡,食品应该是多种多样的。 还有一种观点认为巧克力可以提高智力。的确,巧克力中含有一些对大脑有益的物质。研究发现每天吃50克巧克力可以延缓机体的衰老,但这里所指的是黑色的苦巧克力。哪些非常甜的、含有奶制品的巧克力含有大量糖,过多食用这样的巧克力会产许多不良问题,如糖尿病、肥胖症等。 食品专家指出,在日常饮食中,最重要的是保持一个良好习惯,每餐不能吃得太饱。饱满的午餐会降低大脑的活动能力,出现所谓的“食困”现象,但紧张的工作与低能量的饮食也是不相容的。因此,最合理的方法是多吃一些蔬菜、豆制品和液体,但不是啤酒和浓茶。 科学研究还发现,其实大脑最好的营养成分是葡萄糖,大脑细胞需要大量的葡萄糖。葡萄糖通常存在于谷物、土豆和豆角中,桃子、香蕉和梨中也含有丰富的葡萄糖。 研究人员指出,食品本身并不能提高智力。含有维素B 的食品,比如肉、鱼、花等,可以帮助促进大脑思维的过程,消除疲劳。早晨吃上一个橙子可以一整天精神饱满。如果你不能利用这些食品恢复体质,还可以用合成维素补充。但是要想开发智力,最好的方法是不断学习、读好书,与有文化有知识的人交流。 8.下列对美国科学家最新研究的结果表述正确的一项

如何在顶级科学杂志上发表论文

如何在顶级科学杂志上发表论文 本文由https://www.wendangku.net/doc/0f2686017.html,提供第一,Major advance in a classic field,假如说是一个非常经典的学科如组织胚胎学(读医学院的人,都要学),它已经不能再有很大进展时,突然你有一个重大的突破,这样的工作,应该是相当不错的。 第二,New techniques and methods that can be widely used,我们在做研究工作中经常会发现新的方法和技术。一个技术和方法要被非常广泛地使用,那就是一个很好的工作,甚至可以得诺贝尔奖。 第三,Discoveries with obvious practical implications,过去在NIH 有一中国人发表了一篇文章,发现了AIDS virus的受体。那不得了,艾滋病毒可以进入人类免疫系统的细胞里,找到了受体,显而易见就可以想办法阻止它进入人类的免疫系统细胞,根本不用去想,应用的前景显而易见。 第四,Conceptual breakthrough,完全一个新的概念,过去人家不是这样认为的一个概念上的突破。 第五,Challenge to traditional views, break dogma,dogma是教课书已经建立一个理论体系,你要能够打破它,证明是错的,就很了不起。这与上面讲的是对应的,一个是能提出一个新的概念,另外是打破一个旧的观念,就是说我要提出反对意见,原来的概念有问题,对它提出挑战,提出这样的问题,也是一个很好的工作。 第六,opening up new area,开创了一个崭新的领域,也是从一个小事情做起,举一个例子细胞凋亡现象的发现,细胞凋亡这是个很大的领域,发现这现象的几位科学家在今后哪一年给他们诺贝尔奖是肯定的。 在讲完什么样的工作是好的工作后,再讲讲什么样的工作是不好的工作。 第一,Horizontal growth,叫做横向长。 第二,Filling gaps,有人发现了A,猜想A会到B,有人发现了C,你就在中间证实一下A是通过B到C的。这样的发现,也不是说不可以发表文章,但这种文章不会在很出色的杂志上发表,因为杂志的编委一看这种文章就认为是一种Filling gaps。 第三,Working out details,有人把大的框架已经搞出来了,你把细节再搞清楚的文章,一般不会是特别好的文章。

怎样在《Science》杂志上发表文章

怎样在《Science》杂志上发表文章 一、《Science》杂志概况 美国的《Science》杂志为国际上著名的自然科学综合类学术期刊,在世界学术界享有盛誉,反映其被引文量的影响因子始终高居《SCI》收录的5700种科学期刊的前十位。据2001年最新统计,《Science》杂志年发表论文数901篇,被引用次数282431,影响因子为23.329,排名所有科学期刊的第8位。由于其独特的学术地位,国内许多科研院所为鼓励学术人员在该刊发表文章,都制定了优厚的奖励措施。 《Science》杂志创刊于1880年,目前在全球拥有16.5万个订户,超过《N ature》杂志三倍。《Science》杂志具有新闻杂志和学术期刊的双重特点,每周除向世界各地发布有关科学技术和科技政策的重要新闻外,还发表全球科技研究最显著突破的研究论文和报告。 《Science》杂志发表的论文涉及所有科学学科,特别是物理学、生命科学、化学、材料科学和医学中最重要的、最激动人心的研究进展。据统计,发表的论文中60%有关生命科学,40%是属于物理科学领域的(见附录1)。每年《Scien ce》杂志还出版大约15期专辑,展示某一专门领域的最新成果,例如生物技术、寄生虫学、纳米技术、计算机技术等。除高水平的论文外,每期专辑还发表有关科技职业的专题文章和以不同国家、地区为对象的专栏。 除了为发表全世界最好的科学论文和报道全球最好的科学新闻而努力外,《S cience》杂志还有三个特别重要的目标: ?将《Science》杂志和科学带入更多的发展中国家的科学工作者的家中和实验室里; ?帮助世界各地青年科技工作者更多地了解今后十年最重要的科技发展趋势、最新的科学仪器和技术以及科技职业的选择; ?用电子手段传播科技信息,进一步提高信息质量,并且通过与发展中国家和发达国家的团体合作利用计算机互联网传送杂志,降低发行成本。 1995年,《Science》杂志与时俱进,实现了上网,即科学在线《Science Online》,提供《Science》杂志全文、摘要和检索服务。特别要注意的是:网络版是印刷版的补充,而不是替代。网络版上许多内容是免费的,如今日科学(S cience Now)报道每日科学新闻;科学后浪(Science Next Wave)给未来科学家提供职业信息;科学事业(Science Careers)提供就职机会、会议和研究活

Science接收如下这些文章

Science接收如下这些文章,要求很高的,国内一年也没多少篇 综述(Review)文章一般长度为4个版面,讨论具有跨学科意义的最新进展,着重于尚未解决的问题以及未来可能的发展方向。文章都要经过审稿。这类文章要求有摘要、概括主要观点的引言和反映章节主要内容的小标题。参考文献建议不要超过40条。 技术特写(Tech. Sight)2000单词以内,介绍当前的试验技术以及新出版的软件。研究成果栏目是《Science》杂志最重要的一部分,包括研究文章(Research Articles)、报告(Reports)、简讯(Brevia)和技术评论(Technical Comments)。研究成果栏目中的论文考虑到广泛的读者群,因此,介绍研究工作背景和其重要性的引言、清晰的图片及说明十分重要。 研究文章(Research Articles)栏目发表反映某一领域的重大突破的文章,文章长度不超过4500单词或5个版面,包括摘要、引言和加有简短小标题的内容部分。参考文献建议最多不超过40条。 报告(Reports)栏目发表新的、有广泛意义的重要研究成果。长度不超过2500单词或3个版面。报告要包括摘要和引言。参考文献应在30条以内。 简讯(Brevia)报道能够广泛吸引科学家的、学科间的实验和分析结果,长度不超过800单词或1个版面。 技术评论(Technical Comments)讨论《Science》周刊过去6个月内发表的论文,长度不超过500单词。原文章作者将被给与答复 评论的机会。评论和答复都要得到评议和必要的编辑。讨论的提要刊登在印刷版,全文刊登在电子版。 一、《Science》杂志概况 美国的《Science》杂志为国际上著名的自然科学综合类学术期刊,在世界学术界享有盛誉,反映其被引文量的影响因子始终高居《SCI》收录的5700种科学期刊的前十位。据2001年最新统计,《Science》杂志年发表论文数901篇,被引用次数282431,影响因子为23.329,排名所有科学期刊的第8位。由于其独特的学术地位,国内许多科研院所为鼓励学术人员在该刊发表文章,都制定了优厚的奖励措施。 《Science》杂志创刊于1880年,目前在全球拥有16.5万个订户,超过《Nature》杂志三倍。《Science》杂志具有新闻杂志和学术期刊的双重特点,每周除向世界各地发布有关科学技术和科技政策的重要新闻外,还发表全球科技研究最显著突破的研究论文和报告。 《Science》杂志发表的论文涉及所有科学学科,特别是物理学、生命科学、化学、材料科学和医学中最重要的、最激动人心的研究进展。据统计,发表的论文中60%有关生命科学,40%是属于物理科学领域的(见附录1)。每年《Science》杂志还出版大约15期专辑,展示某一专门领域的最新成果,例如生物技术、寄生虫学、纳米技术、计算机技术等。除高水平的论文外,每期专辑还发表有关科技职业的专题文章和以不同国家、地区为对象的专栏。

相关文档
相关文档 最新文档