文档库 最新最全的文档下载
当前位置:文档库 › 水电站课程设计报告

水电站课程设计报告

水电站课程设计报告
水电站课程设计报告

1.课程设计目的

水电站厂房课程设计是《水电站》课程的重要教学环节之一,通过水电站厂房设计可以进一步巩固和加深厂房部分的理论知识,培养学生运用理论知识解决实际问题的能力,提高学生制图和使用技术资料的能力。为今后从事水电站厂房设计打下基础。

2.课程设计题目描述和要求

2.1工程基本概况

本电站是一座引水式径流开发的水电站。

拦河坝的坝型为5.5米高的砌石滚水坝,在河流右岸开挖一条356米长的引水渠道,获得平均静水头57.0米,最小水头50m,最大水头65m。电站设计引用流量7.2立方米每秒,渠道采用梯形断面,边坡为1:1,底宽3.5米,水深1.8米,纵坡1:2500,糙率0.275,渠内流速按0.755米每秒设计,渠道超高0.5米。在渠末建一压力前池,按地形和地质条件,将前池布置成略呈曲线形。池底纵坡为1:10。通过计算得压力前池有效容积约320立方米。大约可以满足一台机组启动运行三分钟以上,压力前池内设有工作闸门、拦污栅、沉砂池和溢水堰等。

本电站采用两根直径1.2米的主压力钢管,钢管由压力前池引出直至下镇墩各长约110米,在厂房前的下镇墩内经分叉引入四台机组,支管直径经计算采用直径0.9米。钢管露天敷设,支墩采用混凝土支墩。支承包角120度,电站厂房采用地面式厂房。

2.2设计条件及数据

1.厂区地形和地质条件:

水电站厂址及附近经地质工作后,认为山坡坡度约30度左右,下部较缓。沿山坡为坡积粘土和崩积滚石覆盖,厚度约1.5米。并夹有风化未透的碎块石,山脚可能较厚,估计深度约2~2.5米。以下为强风化和半风化石英班岩,厂房基础开挖至设计高程可能有弱风化岩石,作为小型水电站的厂址地质条件还是可以的。

2.水电站尾水位:

厂址一般水位12.0米。

厂址调查洪水痕迹水位18.42米。

3.对外交通:

厂房主要对外交通道为河流右岸的简易公路,然后进入国家主要交通道。4.地震烈度:

本地区地震烈度为六度,故设计时不考虑地震影响。

2.3课程设计成果要求

厂房布置设计的内容为:根据给定的原始资料及机电设备,选择水轮机型号。决定厂房的型式及其在枢纽中的位置,进行厂区和厂房内部的布置,决定厂房的轮廓尺寸;计算管壁厚度并进行管壁应力分析。

完成厂区布置及主、副厂房布置得设计;编写设计计算说明书。

3.课程设计报告内容

3.1水轮机型号选择

根据该水电站的水头:平均静水头57.0米、最小水头50米、最大水头

65米。水头作用范围50~65m ,在水轮机系列型谱表3-3,表3-4中查出合适的机型有HL230和HL220两种,现将两种水轮机作为初选方案,分别求出其有关参数,并进行比较分析。

表3-1 大中型混流式转轮参数(暂行系列型谱)

3.2 HL220型水轮机的主要参数选择 1. 转轮直径1D 的计算

通过查《水电站》表3-6可得HL220型水轮机在限制工况下的单位流量

s m s L 3'

1M 15.11150Q ==,效率%89=M η,由此可初步假定原型水轮机在该工况下的单位流量s m s L 3'1M '115.11150Q Q ===,效率%15.89=η,即假设

%15.0=?η,%15.89%15.0%89=+=+?=M ηηη。

上述的'1Q 、η和KW N r 845=、m H r 0.57=代入

m H H Q N r r r

442.08915

.0575715.181.9845

81.9D '

1

1=????=

=

η

表3-2 反击型水轮机转轮标称直径系列 (单位:cm )

查表3-2选用与之接近而偏大的标称直径m D 5.01=。 2. 转速n 的计算

查《水电站》表3-4可得HL220型水轮机在最优工况下单位转速

min 70'10r n M =初步假定%91'10'10==M n n ,将已知的'

10n 和m H av 0.57=,

m D 5.01=代入

min 0.10575

.057

701'1r D H n n =?==,

表3-3 磁极对数与同步转速关系

通过查表3-3磁极对数与同步转速关系,选取与之接近的同步转速:

min /1000r n =。

3. 效率及单位参数修正

查《水电站》表3-6可得HL220型水轮机在最优工况下的模型最高效率为

%0.91M max =η,模型转轮直径为m D M 46.01=,得原型效率:

%15.915

.046

.0)91.01(1)1(155

11Mmax max =--=--=D D M ηη 效率修正值%15.0%0.91%15.91M max max =-=-=?ηηη,由此可得原型水轮机在最优工况和限制工况下的效率为:

%15.91%15.0%0.91M max max =+=?+=ηηη

%15.89%15.0%89=+=?+=ηηηM (与假定值相同)

单位转速的修正值按下式计算

)1(max max '

10'1-=?M M n n ηη

则()

03.00008.0191.09115.01max max

'10'1<=-=-=?M M

n n ηη

按规定单位转速可不加修正,同时,单位流量'

1Q 也可不加修正。

由上可知,原假定的%91=η、‘M Q 1'1Q =、‘

’M 1010ηη=是正确的,那么上述

计算及选用的结果m D 5.01=、min 1000r n =也是正确的。 4. 工作范围的检验

在选定m D 5.01=、min 1000r n =后,水轮机的'max 1Q 及各特征水头相对应的'1n 即可计算出来。水轮机在r H 、r N 下工作时,其'1Q 即为'max 1Q ,故

898.08915

.057575.081.9845

81.922

1'max 1=????=

=

η

r r r

H H D N Q <1.15s m /3,

此值与原选用的'1Q =1.15s m /3相比,符合“接近而不超过”原则,说明所选的D 1是合适的。 则最大引用流量为:

s m H D Q Q r /695.1575.0898.0322

1

'max 1max =??==

与特征水头max H 、min H 、r H 相对应的单位转速为:

min /02.62655

.01000max 1'min 1r H nD n =?==

min /71.7050

5

.01000min 1'max 1r H nD n =?==

min /23.6657

5.010001'1r H nD n r r =?==

在HL220型水轮机模型综合特性曲线图上分别绘出m Q 3'max 1898.0=,

min /71

.70'max 1r n =和min /02.62'min 1r n =的直线,得这三根线所围成的水轮机工作范围基本上包含了该特性曲线的高效率区。所以对于HL220型水轮机方案,所选定的参数.5m 0D 1=和min /1000r n =是合理的。 5. 吸出高度Hs 的确定

查《小型水电站》中册,水轮机部分,天津大学主编,P812-813表2-3和P840图2-24得气蚀系数σ=0.133(限制工况),气蚀系数修正值Δσ=0.022(当HP =57.0米时),由此可求出水轮机的吸出高度为:

()()m H H s 154.157022.013.0900

12

1090010=?+--=?+-?-=σσ

可见,HL220型水轮机方案的吸出高度满足电站要求。 3.3 HL230型水轮机的主要参数选择 1. 转轮直径1D 的计算

通过查《水电站》表3-6可得HL230型水轮机在限制工况下的单位流量

s m s L 3'1M 11.11110Q ==,效率%2.85=M η,由此可初步假定原型水轮机在该工况下的单位流量s m s L 3'1M '111.11110Q Q ===,效率%59.85=η,即假设

%39.0=?η,%59.85%39.0%2.85=+=+?=M ηηη。

上述的'1Q 、η和KW N r 845=、m H r 0.57=代入

m H H Q N r r r

451.08559

.0575715.181.9845

81.9D '11=????=

=

η

查表3-2选用与之接近而偏大的标称直径m D 5.01=。 2. 转速n 的计算

查《水电站》表3-4可得HL230型水轮机在最优工况下单位转速

min 71'10r n M =初步假定%7.90'10'10==M n n ,将已知的'10n 和m H av 0.57=,

m D 5.01=代入

min 08.10725

.057

711'1r D H n n =?==,

通过查表3-2磁极对数与同步转速关系表,选取与之接近的同步转速:

min /1000r n =。

3. 效率及单位参数修正

查《水电站》表3-6可得HL230型水轮机在最优工况下的模型最高效率为

%7.90M max =η,模型转轮直径为m D M 404.01=,得原型效率:

%09.915

.0404

.0)907.01(1)1(155

11Mmax max =--=--=D D M ηη 效率修正值%39.0%7.90%09.91M max max =-=-=?ηηη,由此可得原型水轮机在最优工况和限制工况下的效率为:

%09.91%39.0%7.90M max max =+=?+=ηηη

%59.85%39.0%2.85=+=?+=ηηηM (与假定值相同)

单位转速的修正值按下式计算

)1(max max '

10'1-=?M M n n ηη

则()

03.00021.01907.09109.01max max

'10'1<=-=-=?M M

n n ηη

,按规定单位

转速可不加修正,同时,单位流量'

1Q 也可不加修正。

由上可知,原假定的%91=η、‘M Q 1'1Q =、‘

’M 1010ηη=是正确的,那么上述

计算及选用的结果m D 5.01=、min 1000r n =也是正确的。 4. 工作范围的检验

在选定m D 5.01=、min 1000r n =后,水轮机的'max 1Q 及各特征水头相对应的'1n 即可计算出来。水轮机在r H 、r N 下工作时,其'1Q 即为'max 1Q ,故

935.08559

.057575.081.9845

81.922

1'max 1=????=

=

η

r r r

H H D N Q <1.15s m /3,

此值与原选用的'1Q =1.15s m /3相比,符合“接近而不超过”原则,说明所选的D 1是合适的。 则最大引用流量为:

s m H D Q Q r /765.1575.0935.0322

1

'max 1max =??==

与特征水头max H 、min H 、r H 相对应的单位转速为:

min /02.62655

.01000max 1'min 1r H nD n =?==

min /71.7050

5

.01000min 1'max 1r H nD n =?==

min /23.6657

5.010001'1r H nD n r r =?==

在HL230型水轮机模型综合特性曲线图上分别绘出m Q 3'max 1935.0=,

min /71

.70'

max 1r n =和min /02.62'min 1r n =的直线,得这三根线所围成的水轮机工作范围基本上包含了该特性曲线的高效率区。所以对于HL230型水轮机方案,所选定的参数.5m 0D 1=和min /1000r n =是合理的。 5. 吸出高度Hs 的确定

查《小型水电站》中册,水轮机部分,天津大学主编,P812-813表2-3和P840图2-24得气蚀系数σ=0.17(限制工况),气蚀系数修正值Δσ=0.022(当 m H P 0.57=时)

,由此可求出水轮机的吸出高度为: ()()m H H s 955.057022.017.0900

10

1090010-=?+--=?+-?-

=σσ 可见,HL230型水轮机方案的吸出高度满足电站要求。 3.4 HL220型与HL230型水轮机的比较分析

为了便于比较分析,现将这两种方案的有关参数列表如下: 表3-4 HL220型与HL230型水轮机参数对照表

由表3-4可见,两种机型方案的水轮机转轮直径D 1相同,均为0.5m,。但HL220型水轮机方案的工作范围包含了较多的高效率区域,运行效率较高,气蚀系数较小,安装高程较高,有利于提高年发电量和减小电站厂房的开挖量。故选择HL220 型水轮机方案,即:选定水轮的型号为HL220—WJ —50。

其主要参数如下: 台数:四台; 重量:7000Kg ;

型号:HL702(220)—WJ —50; 参考价格:22000元/台; 额定转速:n =1000r/min 设计水头:m H P 0.57= 设计流量:s m Q P /8.13= 额定出力:N =845KW ; 3.5水轮机装置方式的选择

在大中型水电站中,其水轮发电机组的尺寸一般较大,安装高程也较低,因此其装置方式多采用竖轴式,机水轮机轴和发电机轴在同一铅垂线上,并通过法兰盘联接。这样使发电机的安装高程较高不易受潮,机组的传动效率较高,而且水电站厂房的面积较小,设备布置较方便。

对机组转轮的直径小于1m 、吸出高度s H 为正值的水轮机,常采用卧轴装置,以降低厂房高度。而且卧式机组的安装、检修及运行维护也方便。由上述水轮机的参数计算以及水电站的类型可以确定水轮机装置方式采用卧轴式。 3.6调速器及油压装置的选择

调速器一般由调速柜、接力器、油压装置三部分组成。中小型调速器的调速柜、接力器和油压装置组合在一起,称为组合式;大型调速器分开设置,称为分离式。中小型调速器是根据计算水轮机所需的调速功A 查调速器系列型谱表来选择的。

反击式水轮机的调速功A (N ?m )的经验公式:

)(20365.05733.1225)250~200(1max m N D H Q A ?≈???==

Q 为最大水头下额定出力时的流量为

65

81.9845

81.9max ?=

=

H N Q =1.33s m /3。 故本设计选用中小型调速器,油压装置与调速器组合在一起,根据调速器系列型谱表选用自动调速器,型号为XT —300。 3.7主厂房各层高程和主要尺寸的确定 3.7.1水轮机安装高程s Z

确定设计尾水位的水轮机过流量,查《水电站》表2-5得:电站装机台数为4台水轮机的过流量为1台水轮机的额定流量。

吸出高度:

()H H m s σσ?+-?

-≤900

10

已知:m σ=0.133,σ?=0.022,,H=57m , w ?——尾水位12m

()m H s 15.157022.0133.0900

12

10=?+--

≤ 对应卧轴反击式水轮机: m D H Z S w s 9.122/5.015.1122/1=-+=-+?= 3.7.2水轮机的地面高程

由水轮机的布置方式可以知主机房地面高程为12.3m ,即水轮机的地面高程为12.3m 。

3.7.3尾水管底板高程和出口高程

由水轮机发电机组横剖面图A —A 得尾水管高度为3.70m ,尾水管出口距离尾水室地板高度为0.75m ,所以尾水管地板高程为

尾水管底板高程=m h h Z s 45.875.070.39.1221=--=-- 尾水管出口高程=m h Z s 2.970.39.121=-=-

1`h ——尾水管高度,m ;2h ——尾水管出口距离尾水室地板高度,m 3.7.4厂房基础开挖高程

根据尾水管底板高程8.45m ,底板混凝土厚度取1.0m ,则厂房基础开挖高程为7.45m 。

3.7.5蝶阀坑高度和宽度

查《小型水电站》中册,对于卧式机组不必设置贯通全厂的主阀廊道,单个设置主阀坑即可。主阀坑应便于主阀的安装、检修和操作,操作主阀一侧的空间应不小于1m ,对于侧主阀外廓与坑壁的距离不小于0.8m 。厂内有吊车时,应将主阀布置在吊车工作范围之内。 蝴蝶阀参数:

φ0.8m 手电动操作; 重 量:阀体340Kg ; 活 门:277Kg ; 启闭方式:电动操作;

主要尺寸:a=1730mm ;b=880mm ;c=350mm ;d=850mm ;e=470mm 。

图3-1 立式蝴蝶阀外形示意图

所以,蝶阀坑宽度=d+1000+800=2650mm=2.65m 蝶阀坑高度=1000 a =1730+1000=2730mm=2.73m 3.7.6尾水室的尺寸

图3-2 弯锥形尾水管尾水室尺寸

由图3-2所示:()cm D D 1~5.013+= ()34~3D L = 0014~12=θ 3)5.1~1.1(D h =

385.0D c = 3)2.1~0.1(D b =

H V )7.0~235.0(5=,经济流速取s m 1。

根据水轮发电机组剖面图A-A 、B-B ,已知m 5.03=D ,L=3.7m ,h=0.75m ;求出c=0.425,b=0.51,所以尾水室的宽度为B=0.51+0.51+1.08=2.1m 。该水电站的设计引水流量7.2立方米每秒,并且由于有4个水轮机所以,尾水室的流量

m Q 38.142.7==,

经济流速s m V /1=,bh m V Q A ===28.1,m h 86.01

.28

.1==。 所以该尾水室的宽度取2.0m ,高度取1.5m 。 3.7.7尾水渠的尺寸

尾水渠的流量s m Q 38.142.7==,经济流速s m V /5.1=,22.1m V

Q

A ==

,m b A h 57.01

.22.1===

。所以该尾水渠的宽度取2.0m ,高度取1.5m 。 3.7.8吊车轨顶高程

吊车轨顶高程=发电机层地面高程+发电机层楼板至吊车轨顶高度

发电机层楼板至吊车轨顶高度,根据吊车吊运最长部件的方式,外形尺寸及安全距离确定,厂房内最长吊运部件为尾水管,高度为3.7m 。

对于卧式水轮机吊车轨顶高程?:

76543h h h h h Z s +++++=?

3h ——为机组部件外露高度取1.5m

4h ——为吊运部件与固定的机组或设备间的垂直净距;水平净距0.3m ,垂直净距0.6m~1.0m 。取0.8m ,

5h ——最大吊运部件的高度取尾水管的高度为2.1m 。

6h ——吊运部件与吊钩之间的距离(一般在1.0~1.5m 左右)取1.2m 7h ——主钩最高位置(上极限位置)至轨顶面高程,已知吊车梁采用柳州起重工具厂的,跨度为11m ,对应的吊钩极限位置为0.98m ,取1m 。

即吊车轨顶高程=12.9+1+0.8+2.1+1.2+1=19m ,如图3-3。

图3-3 吊装过程各部分尺寸示意图

3.7.9厂房天花板高程和厂房顶高程

为了检修吊车和布置灯具,需在小车顶端到厂房天花板或屋顶大梁底面之间,留出至少0.3m 的安全高度。吊车在轨顶以上的高度由吊车规格决定。

天花板高度=吊车轨顶高程+吊车在轨顶以上的高度+安全超高 综合考虑,厂房天花板高程定为20.5m 。

3.8主厂房的长度和宽度 3.8.1机组间距c L

机组的布置方式:机组的布置方式对确定厂房轮廓尺寸有较大的影响。其布置方式有纵向布置、横向布置和斜向布置三种。本设计厂房中的机组布置采用横向布置,机组等距离布置。

卧式机组厂房尺寸的原则有:

1、机组间距应满足两点:发电机转子安装、检修时能抽出和套入;设备外廓之间的距离,一般为2m 左右。靠机组设备外端与侧墙的距离,同样满足上述要求。

2、电气屏柜与设备之间的距离,对于有吊车的厂房,一般不宜小于1.5m 。控制屏、动力屏后端离墙应有0.8~1.0m 的距离。

3、当厂内设有主阀时,应设主阀坑,上下游侧与压力钢管连接的法兰面与墙的距离,一般不应小于300毫米。

4、安装间的面积,应满足一台机组扩大性检修的需要,一般可取为一个机组段长度的1.0~1.3倍,视机组容量和台数而定。

5、当厂内设有吊车时,确定厂房宽度应考虑到吊车的标准跨度要求。

根据以上原则确定:机组间距c L 取6m 。 3.8.2边机组段长度

与安装间相邻的边机组长度,必须满足发电机层设备布置要求,下部块体结构尺寸应考虑蜗壳外围或尾水管边墙的混凝土厚度0.8m 以上,而与安装间相对一端边机组段长度,除满足设备布置外,为了保证边机组在吊桥工作范围以内,则x 1+≥J L ,其中J 为吊桥主钩至桥吊外侧的距离,x 为吊车梁末端挡车板的长度,x 一般为0.4~0.9m 。由此取边机距离墙壁的长度1L =4.5m ,2L =5.5m 。 3.8.3安装间的长度

安装间的长度当机组台数不超过4~6台时,可按检修一台机组时能放置四大 部件并留有做够的工作通道来确定。初步设计时,可采用a L =(1.0~1.5) c L ,故取安装间的长度为8m 。 3.8.4主厂房的总长度

当n 、c L 、1L 、2L 、a L 确定后,则主厂房的总长度为:

m L L L L n L a c 3575.55.463)1(21=+++?=+++-=

厂房两边的墙体采用的厚度为0.37m ,墙壁中轴线距离外墙的距离为0.2m 。柱子的尺寸为4.06.0?m 。

3.8.5厂房的宽度

主厂房的宽度应从厂房上部和下部结构的不同因素来考虑。上部宽度取决于吊车的跨度,发电机尺寸、最大部件的吊运方式、辅助设备的布置与运行方式等条件。厂房下部宽度取决于蜗壳和尾水管的尺寸。根据水轮机发电机组横剖面图A—A得机组总厂约为6m,并考虑厂内交通及10t吊车的标准跨度为10m和保证能套入和抽出发电机转子,墙体宽度等因素,定出厂房的宽度为11m。

3.9安装间的布置

3.9.1安装间的位置

安装间一般均布置在主厂房有对外道路的一端,高程和主厂房高程一至。对外交通通道必须直达安装间,车辆直接驶入安装间以便利用厂房桥吊卸货。水电站对外交通运输道路可以是铁路、公路、或水路。对于中小型水电对外交通运输道路站采用公路。

3.9.2安装间的尺寸

安装间与主厂房同宽以便桥吊通行,所以安装间的面积就决定了它的长度。

安装间的面积可按一台机组扩大性检修的需要确定,一般考虑放置四大部件,即发电机转子、发电机上机架、水轮机转轮、水轮机顶盖。四大部件要布置在主钩的工作范围内,其中发电机转子应全部置于主钩起吊范围内。发电机转子和水轮机转轮周围要留有1~2m的工作场地。

3.9.3安装间的布置

安装间内要安排运货车的停车位置

主变压器有时也要在安装间进行检修,这时要考虑主变压器运入的方式及停车点。主变压器大修时常需吊芯检修,在安装间上设尺寸相同的变压器坑。发电机转子放在安装间上时主轴要穿过地板,地板上在相应位置要设大轴孔,下要设大轴承台,并预埋底脚螺栓。安装间大门尺寸选用4.0m×4.5m。

3.10主厂房内机电设备布置及交通运输

3.10.1主厂房内机电设备的布置

主厂房内的机电设备主要的有水轮发电机组及其辅助附属设备(调速器、励磁盘及机旁盘),蝴蝶阀等。

机组及其辅助附属设备:调速器布置在发电机房,四周均留有大于1.0m宽的空间,以便于操作维修。调速器紧邻发电机,以缩短管路和运行操作方便。励磁盘与机旁盘装置在距离墙壁0.8m处。

3.10.2吊物孔

水电站厂房只在发电机层设有吊车,其他层如水轮机层的一些小型设备需要检修时,要将其吊运到发电机层的安装场,这就需要在发电机层的楼板上设置吊物孔,用于起吊发电机层以下几层的一些小型设备。孔尺寸为2.2m×1.6m的吊

物孔,盖有承重盖板。 3.10.3调速器

型号:XT-300 台数:4台

接力器全行程:150mm 接力器全行程时间:1.5~5s

外形尺寸:长高宽??(mm )163517851000?? 重量:1081kg 参考价格:20000元 安装位置为机组右边

组成:压力油罐、储油槽和油泵。 3.11副厂房布置

副厂房:应紧靠主厂房,基本上布置在主厂房的上游侧,下游侧和端部,可集中一处,也可分两处布置,本设计布置在主厂房的上游侧。

副厂房的组成、面积和内部布置取决于电站装机容量、机组台数、电站在电力系统中的作用等因素。 1、中央控制室

中控室是为了集中地对整座电站发电、配电、变电设备以及下游水位、流量进行监视和控制而集中布置各种控制仪表的专门房间。其中布置有各种指示盘、同步盘、记录盘等控制盘、直流盘、保护盘和信号盘等,它是电站的神经中枢。

中控室应尽量靠近主机房,交通方便。同时与开关站之间有方便通道联系。引水式厂房中央控制室应尽量靠近主机房和开关站之间,并靠近机组。一般也常布置在主厂房的一端,此时应结合装机顺序对初期发电和分歧过度的各种电缆、维护通道等进行统盘考虑,以保证中控室的安全运行。

中控室的净高度一般为4~4.5m.。中控室和发电机层之间最好用玻璃做成隔音墙。中控室下层应设电缆层或电缆夹层,净高度一般不小于2m ,也不宜大于2.5m 。中控室附近应设置交接班室、值班室及厕所等。

中控室的长为10m ,宽为6m ,中控室内放置7面保护屏,7面控制屏,3面厂用屏,3面直流屏,外形尺寸均为长宽?(cm )5580?,并设置一个工作台。中控制的净高取4.5m ,总的高度为6.5m 。由于该电电站为小型电站,故不设载波电话室,只在中央控制室中设一载波机。 2、高压开关室

发电机低压配电设备是指发电机引出线至主变压器升压前的低压配电设备。位于发电机和主变压器之间,并尽可能缩短其距离。发电机低压配电设备通常布

置于成套的开关柜中,其副厂房称为高压开关室。

高压开关室,当其长度超过7米时,应设两个向外开的门出口,通向其他房间或室外。不应布置在厕所、浴室的下面。高压开关室长为10m ,宽为6m ,里面放置13个高压开关柜,将开关柜设置成两排,中间的维护通道为1m ,尺寸为长高宽??(cm )120320120??。开关室布置在安装场上游侧,开关室设有一宽度为1.5m 的门和一宽度为0.9m 的门。 3、厂用设备的布置

厂用电大部分是交流电,厂用变压器常设两台,一台备用,布置在厂用开关室内。厂用电小部分是直流电,主要供给操作电路、信号以及继电器用电。直流电来自蓄电池,厂房一般需设直流电设备室。直流配电室一般包括蓄电池室、酸室、套间、充电机室、通风机室、直流配电盘等,它们应作为一个整体而布置在一起,并接近中控室。蓄电池室应尽量布置在中控室及配电装置室上部。其入口设有酸室和套间,以防酸气歪流。根据以上要求将贮酸室布置在中控制的旁边,宽度为2.5m ,长度为6m ;蓄电池室布置在贮酸室的旁边,宽度为3.5m ,长度为6m 。 4、楼梯

厂房各层之间用楼梯作主要交通通道,运行人员上下各层从楼梯上通行。从副厂房到安装间的楼梯宽为1.5m ,从主厂房到副厂房的楼梯宽为1.2m 。 5、值班室和卫生间

值班室和卫生间布置在中控室旁边,值班室长为6m ,宽为3m ;卫生间长为4.5m ,宽为3m 。 6、休息室和工具间

工具间布置在发电机层旁边,邻近安装间的位置,作为放置日常工具与零碎用品的场所。故将工具间布置在开关室的旁边,邻近安装场,长度为3.5,宽度为3,m,。休息室布置在卫生间附近,长为3m ,宽为2.5m 。 7、主变压器场

变压器场应尽量布置在露天场地,保证良好的通风条件;最好能靠近低压配电装置和主厂房,可减少事故几率;其场地最好与装配厂高程一致,并有轨道相连,以便与将变压器运送到装配场进行检修。变压器场面积为12×10m 。 8、对外交通

引水式厂房一般沿河岸布置,进厂公路可沿等高线从厂房。公路要直接通入主厂房的安装间,临近厂房一段应是水平,长度不小于20m ,并有回车场地。公路的坡度不宜大于10%~12%,转弯半径大于20m 。公路宽采用6米。 3.12钢管应力分析

3.12.1基本资料确定

本电站采用两根直径1.2米的主压力钢管,钢管由压力前池引出直至下镇墩各长约110米,在厂房前的下镇墩内经分叉引入四台机组,支管直径0.9米。钢管露天敷设,支墩采用混凝土支墩。支承包角120度,电站厂房采用地面式厂房。根据工程经验和设计要求,在压力前池后设一上镇墩,与下镇墩用内径为 1.2m 的压力钢管相连,支敦间距10m ,管轴线与地面倾角30?=?,上镇墩以下2m 处设伸缩节,填料长10.3b m =,与管壁摩擦系数0.25f =,支墩为滚动式,摩擦系数0.1f =,钢材糙率0.0135n =,钢材允许应力[]120MPa σ=,焊缝系数0.95φ=,钢管末跨跨中心处工作静水头0.57=h ,水击压力00.3H H ?=,要求对末跨跨中断面校核管壁应力强度。校核1—1断面的ф=0o和180o。简图如下:

本次设计的荷载组合选定为正常运行情况,轴向力主要有A1、A5、A6、A7、A8。

3.12.2管壁厚度的确定 1、管壁厚度的初步确定

管壁的计算厚度计δ按锅炉公式计算:

[] pa 12095.0,2.1,57M m D m H ====σφ,

带入公式,计算得: mm HD HD 5.4120

85.095.02120

100573.057001.085.022=??????+?=?==

)(计φσγσγδθ

考虑钢板厚度的误差及运行中的锈蚀和磨损,加上2mm 的裕度,所以初步确定钢管壁厚为mm mm 5.625.42=+=+=计δδ。

2、管壁的刚度校核:

已知 4800

+≥D

δ,且mm 6>δ,m D 2.1=。 所以5.54800

1200

5.6=+≥=δ,且mm 6>δ,故满足刚度校核要求。 3、稳定校核:

已知若管壁稳定则要满足130D ≥计δ,但

mm D

5.623.9130

=>=计δ,所以稳定不满足要求,因此在实际安装的过程中应该加加劲环。 4、管壁厚度选择

考虑到稳定要求,制作上方便及已有材料,实际制作厚度为8mm 。 3.12.3 跨中1-1截面应力分析 1、切向应力θσ

管壁的切向应力主要由内水压力引起的,对于倾斜的管道,若管轴与水平线的倾斜为?,则切向应力为

?θδ

γδγσθcos cos 422D D H p -=

cm D 度,管道的内径和管壁的厚—、δ

??

300

/001.03

为管轴与水平线的夹角,—线的构成的圆心角,取管壁的计算点与垂直中—管顶以上的计算水头,—水的容重,—?θγcm

H cm kgf

又因为

m H m D P 85.205.05196.00cos 30cos 2

2

.1cos cos 2=<=??=?θ,所以上式等号右端的第二项是次要的,可以不要计入,则原公式如下:

MPa D H p 52.54008

.023.12.15781.92=????==δγσθ

3.12.4径向应力γσ

管壁的内表面的径向应力r σ等于该处的内水压强,即

MPa H r 727.03.15781.9-=??-=-=γσ

“-”表示压力,“+”表示拉应力,表示内压应力为-0.727Mpa ,管壁的外表面

0=r σ。

3.12.5轴向应力x σ

跨中断面的轴向应力由两部分组成,即由水重和管重引起的轴向弯曲应力

1x σ及表各轴向力引起的应力3x σ,其中F

A x ∑=

3σ。

由上述基本资料可得:

kN L g A T 25.12030sin 103)85.781.9008.0207.1(sin 11-=??????-=-=π?

()

kN H D D

A 71.23.1)103110(81.9)2.1216.1(4

4

2222215-=?-??-?-

=-=

π

γπ

kN h D A W 44.549.081.92.14

4

2206-=???-

=-

γπ

()kN H bf D A k 09.203.15.01035781.925.03.0216.117-=??-?????-=-=πγπ

kN

Q Q f A W P 37.1151.030cos 101081.92.145.781.9008.0208.1cos )(028-=??????

?

????+????-=+=∑ππ?

kN A A A A

A A 86.2638765

1

-=++++=∑

()

2220303.02.1216.14

m F =-?=

π

MPa F

A x 7.80303

.086.2633-=-==

∑σ。

kN l q q M w s 26.11630cos 1042.181.9208.1008.081.985.7101cos )(10

1

222=?????

????+?????=??+?=

ππ?

当00=θ时,MPa D M x 86.120cos 008.02.126

.1164402

21-=????±==πδπσ

当0180=θ时,MPa D M x 86.120cos 008

.02.126.116440

2

21=????±==πδπσ 。 3.12.6跨中1-1截面强度校核

当00=θ时:

MPa x z x 56.2186.127.831-=--=+=σσσ

MPa 727.0-=γσ ,MPa 52.54=θσ ()()()[]

()()()[

]

MPa MPa x r r x 11495.01201.6852.5456.2152.54727.0727.056.212

1

2

1

222222=?<=+++++-=

-----=

σσσσσσσθθ 故当00=θ时,1-1截面满足强度要求 当090=θ时:

MPa x z x 16.486.127.831-=-=+=σσσ

MPa 727.0-=γσ,MPa 52.54=θσ ()()()[]

()()()[

]

MPa MPa x r r x 11495.012004.5752.5416.452.54727.0727.016.42

1

2

1

222222=?<=+++++-=

-----=

σσσσσσσθθ 故当090=θ时,1-1截面满足强度要求。

4.结论

4.1成果评价

本设计从设计资料分析、水轮机型号选择、主厂房的各层高程确定、尺寸布置、副厂房的布置等都是按照课本所学方法进行计算,符合设计规范,其设计计算成果具有较高的可靠性。但在整体的设计过程中,由于设计资料的不完善,导致出现了一些问题。

第一,没有说明厂房、开关站各比较方案的地形、覆盖层厚度、岩性、构造、基岩风化深度、水文地质条件及主要工程地质问题,提出地质选择意见、岩土物理力学性质参数和处理意见。在厂房布置上没有考虑地形地质条件,没有考虑厂房机组之间应设伸缩缝。应把整个厂房划分成中间机组段边机组段及安装间段三种独立体并分别对每段进行整体稳定及地基应力计算满足规定的安全度。

第二,缺少电气部分的设计,包括水电站接入电力系统地理位置、电气主接线方案、厂用电接线图等。厂房设计工程中只考虑了土建部分的设计,没有考土建部分内部的布线。

第三,没有进行消防设计,没有根据防火间距及疏散要求,说明厂区内各

水电站课程设计报告

1.课程设计目的 水电站厂房课程设计是《水电站》课程的重要教学环节之一,通过水电站厂房设计可以进一步巩固和加深厂房部分的理论知识,培养学生运用理论知识解决实际问题的能力,提高学生制图和使用技术资料的能力。为今后从事水电站厂房设计打下基础。 2.课程设计题目描述和要求 2.1工程基本概况 本电站是一座引水式径流开发的水电站。 拦河坝的坝型为5.5米高的砌石滚水坝,在河流右岸开挖一条356米长的引水渠道,获得平均静水头57.0米,最小水头50m,最大水头65m。电站设计引用流量7.2立方米每秒,渠道采用梯形断面,边坡为1:1,底宽3.5米,水深1.8米,纵坡1:2500,糙率0.275,渠内流速按0.755米每秒设计,渠道超高0.5米。在渠末建一压力前池,按地形和地质条件,将前池布置成略呈曲线形。池底纵坡为1:10。通过计算得压力前池有效容积约320立方米。大约可以满足一台机组启动运行三分钟以上,压力前池内设有工作闸门、拦污栅、沉砂池和溢水堰等。 本电站采用两根直径1.2米的主压力钢管,钢管由压力前池引出直至下镇墩各长约110米,在厂房前的下镇墩内经分叉引入四台机组,支管直径经计算采用直径0.9米。钢管露天敷设,支墩采用混凝土支墩。支承包角120度,电站厂房采用地面式厂房。 2.2设计条件及数据 1.厂区地形和地质条件: 水电站厂址及附近经地质工作后,认为山坡坡度约30度左右,下部较缓。沿山坡为坡积粘土和崩积滚石覆盖,厚度约1.5米。并夹有风化未透的碎块石,山脚可能较厚,估计深度约2~2.5米。以下为强风化和半风化石英班岩,厂房基础开挖至设计高程可能有弱风化岩石,作为小型水电站的厂址地质条件还是可以的。 2.水电站尾水位: 厂址一般水位12.0米。 厂址调查洪水痕迹水位18.42米。 3.对外交通: 厂房主要对外交通道为河流右岸的简易公路,然后进入国家主要交通道。4.地震烈度: 本地区地震烈度为六度,故设计时不考虑地震影响。

水电站课程设计

该枢纽工程位西北某省A河上游干流上,其布置和工程参数如附件所示, 该水电站拟定主要设计参数 序号项目单位数值 1 最大水头m 125 2 最小水头m 86 3 多年平均水头m 92.5 4 设计水头m 88 5 总装机容量MW 360 (一)水轮机型号选型 1 根据该水电站的水头变化范围86~125m,在水轮机系列谱表3-3,表3-4中查出适合的机型有HL180和HL200两种。 2 主要参数选择 2.1 选取4台机组 2.2 转轮直径D1计算 单机容量:36万kw/4=9万kw (一)HL180水轮机 2.2.1查文献HL180转轮综合特性曲线可知机组效率M=90%;g =96%

Nr=Ny/zg=360000/4*0.96=93750kw 查表3-6可得HL180型水轮机在限制工况下的单位流量'1M Q =860L/s=0.86m 3/S ,效率m=89.5%,由此可 初步假定原型水轮机在该工况下的单位流量'1 Q =' 1M Q =0.86m 3/S ,效率=92%。 上述的Q1’,和Nr=单机容量:36万kw/4=9万kw ;g=96% Nr=Py/zg=360000/4*0.96=93750kw ,Hr=88m 带入式 η r r 11'81.9r H H Q N D = 可得=3.83m ,选用与之接近而偏大的 标称直径=3.9m 。 2.2.2转速n 计算 查表3-4可得HL180型水轮机在最优工况下单位转速10M n'=67r/min,初步假定M 1010'n ' n = ,将已知的和av H =92.5m ,1 D =3.9m 代入式1 1 ' n n D H =可得n=165.2r/min , 选用与之接近而偏大的同步转速n=166.7r/min 。(上式中'n 选用原型最优单位转速10 'n ,H 选用加权平均水头 Hav ) 2.2.3 效率级单位参数修正 ηηη1 D 1 D 10 'n ? ? ? ???--=-=?)5/1()^(1)1(11Mmax Mmax max D D K K M ηηηη)(

水电站厂房课程设计

2015年秋水利水电工程专业水电站厂房课程设计 1.课程设计的目的 课程设计是以工程实例为题,由学生独立思考,灵活应用有关的布置原则和要点,自己动手布置厂房,从而巩固和加深厂房部分的理论知识,并进一步培养学生的计算,制图和应用技术资料的技能。 2.工程枢纽概况 水库库区跨越S、N两河,地处MY县城以北20km,两条河在MY县城以南约10km 处汇合成SN河。 水库是以防洪及工农业供水为主要任务,兼有发电效益的综合利用水利工程。 水库各特征水位如下: 死水位:▽126.0m 正常高水位:▽157.50m 设计洪水位:▽158.20m 校核洪水位:▽159.50m 坝顶高程:▽160.00m 主要建筑物包括: (1)挡水建筑物 有N、S主坝两座及副坝五处,为碾压式粘土斜墙土坝,最大坝高为N河主坝,高66.4m,S河主坝高56m,各副坝15.7m~39m不等。 (2)泄水建筑物 ①溢洪道:有S河左岸第一、第二溢洪道。第一溢洪道为正常溢洪道,底部高程▽140m,宣泄超过100年一遇的洪水,为5孔带胸墙式河岸溢洪道。 第二溢洪道为非常溢洪道,与第一溢洪道配合,宣泄1000年洪水,底部高程▽148.5m,为5孔开敞式河岸溢洪道。 ②隧洞: a. N河左岸发电隧洞,用作发电供水和下游工农业供水,并在调压井上游设泄水支洞,用以宣泄10000年一遇特大洪水。进水塔进口底部高程为▽116.0m,洞径6m,洞长416m,底坡i=1/400,调压室为园筒式,内径17.14m,调压室后接2根埋藏式压力钢管,管径5.5m,管长125m。

b. S河发电泄水隧洞,任务是施工导流,发电、灌溉、供水和泄水。 见图1所示。 ③坝下廊道: 为施工期的临时建筑物,施工导流采取S、N两河分别导流的方式,故设N河导流廊道、 210 180 150 图一:枢纽布置图(1:3000) S河导流廊道,可宣泄20年一遇洪水,另有南石骆驼输水廊道,用以泄放3个流量的

水电站课程设计

水电站课程设计——水轮机选型设计说明书 学校: 专业: 班级: 姓名: 学号: 指导老师:

第一节基本资料 (3) 第二节机组台数与单机容量的选择 (4) 第三节水轮机型号、装置方式、转轮直径、转速、及吸出高度与安装高程的确定 (5) 第四节水轮机运转特性曲线的绘制 (11) 第五节蜗壳设计 (13) 第六节尾水管设计 (16) 第七节发电机选择 (18) 第八节调速设备的选择 (19) 参考资料 (20)

第一节基本资料 一、水轮机选型设计的基本内容 水轮机选型设计包括以下基本内容: (1)根据水能规划推荐的电站总容量确定机组的台数和单机容量; (2)选择水轮机的型号及装置方式; (3)确定水轮机的轮转直径、额定出力、同步转速、安装高程等基本参数; (4)绘制水轮机的运转特性曲线; (5)确定蜗壳、尾水管的型式及它们的主要尺寸,以及估算水轮机的重量和价格;(6)选择调速设备; (7)结合水电站运行方式和水轮机的技术标准,拟定设备订购技术条件。 二、基本设计资料 某梯级开发电站,电站的主要任务是发电,并结合水库特性、地区要求可发挥水产养殖等综合效益。电站建成后投入东北主网,担任系统调峰、调相及少量的事故备用容量,同时兼向周边地区供电。该电站水库库容小不担任下游防洪任务。经比较分析,该电站坝型采用混凝土重力坝,厂房型式为河床式。经水工模型试验,采用消力戽消能型式。 经水能分析,该电站有关动能指标为: 水库调节性能日调节 保证出力 4万kw 装机容量 16万kw 多年平均发电量 44350 kwh 最大工作水头 39.0 m 加权平均水头 37.0 m 设计水头 37.0 m 最小工作水头 35.0 m 平均尾水位 202.0 m 设计尾水位 200.5 m 发电机效率 98.0%

水电站课程设计

一、原始资料及设计条件 1、概述 1.1工程概况 某水电站位于沅水一级支流巫水下游峡谷河段,下距会同县若水乡镇2km,距洪江市15km。坝址下游2km有洪江~绥宁省级公路从若水乡镇经过,交通较为便利。 该工程初拟正常蓄水位191m,迥水至高椅坝址,库容0.0708亿m3,装机16MW,是一座以发电为主,兼有防洪、旅游等综合效益的水电工程,枢纽建筑物由溢流闸坝、重力式挡水坝、右岸引水发电隧洞和引水式厂房组成。 1.2. 工程等别和建筑物级别 本工程以发电为主,兼有防洪、旅游等综合效益。水库正常蓄水位191m时库容为0.0708亿m3,电站装机容量为16MW。 2、水文气象资料 2.1洪水 各频率洪峰流量详见下表1。 (1)下坝址水位~流量关系曲线详见下表2。 表3 上坝址水位~流量关系曲线表(高程系统:85黄海) (3)厂址水位~流量关系曲线详见下表4。 表4 厂址水位~流量关系曲线表(高程系统:85黄海)

多年平均含沙量:0.089kg/m3 多年平均输沙量:22.05万t 设计淤沙高程:169.0m 淤沙内摩擦角:100 淤沙浮容重:0.9t/m3 2.4气象 多年平均气温:16.6℃ 极端最高气温:39.1℃ 极端最低气温:-8.6℃ 多年平均水温:18.2℃ 历年最高气温:34.1℃ 历年最低气温: 2.1℃ 多年平均风速: 1.40m/s 历年最大风速:13.00m/s,风向:NE 水库吹程: 3.0km 最大积雪厚度:21cm 基本雪压:0.25KN/m3 3、工程地质与水文地质 3.1工程地质资料 (1)该工程区地震基本烈度小于Ⅵ度,不考虑地震荷载。 (2)基岩物理力学指标如下 上坝址 饱和抗压强度:20~30MPa 抗剪指标:f砼/岩=0.6~0.65 抗剪断指标:f′砼/岩=0.8~0.9 c′=0.7~0.8MPa 下坝址 饱和抗压强度:15~25MPa 抗剪指标:f砼/岩=0.6~0.62 抗剪断指标:f′砼/岩=0.7~0.8 c′=0.70MPa 3.2坝址工程地质条件 (1)上坝址工程地形、地质条件 上坝址位于河流弯曲段下游,流向2790,基本为“U”型横向河谷。河床基岩裸露,高程181~184m,河床宽136m,水深0.5~3.0m。坝轴线上游100~350m,河床深槽较发育,一般槽宽20~40m,槽深11~14.5。当蓄水位192m 时,河谷宽161m ,左岸冲沟较发育,坝轴线上、下游分别分布2# 及3# 冲沟,边坡具下陡上缓特征,高程227m以下坡角450,以上坡角250,山顶高程271m ;右岸地形较平顺,上游有一小冲沟分布,边坡较陡峻,坡角350~450,山顶高程292m。

水电站课程设计水电站厂房设计

课程设计:水电站厂房设计 专业班级:12级水利水电工程卓越班姓名: 学号: 指导教师: 南昌工程学院水利与生态工程学院印制 2015——2016学年第一学期

南 昌 工 程 学 院 课程设计(论文)任务书 I 、课程设计(论文)题目:某水电站厂房课程设计 II 、课程设计(论文)使用的原始资料(数据)及设计技术要求: 一、设计原始资料 (一)工程概况 图1为某水电站的厂房布置图,它是一座以发电为主兼有防洪、灌溉、过木、供水等综合效益的县办骨干电站。采用钢筋混凝土堆石坝,最大坝高74m ,坝址以上控制流域面积564k ㎡,占全流域面积的75.3%,多年平均流量为s m /6.173水库总库容为3 810783.2m ?,属多年调节。 图1 厂房为坝后式,安装3台8000KW 机组,总装机容量KW 4104.2?,保证出力5500KW ,多年平均发电量h KW ??4107260,年利用小时3025h ,在系统中(地方电网)担任调峰、调相任务,并可对下游梯级进行调节,经济效益显著。 在枢纽布置上,为避免厂房、溢洪道、筏道的相互干扰,将岸坡式溢洪道布置在坝左岸的一鼻形山脊上,用钢筋混凝土挡土墙与堆石坝衔接,出口消能采用挑流形式。过木干筏道布置在坝左岸的山坡上。隧洞布置在坝右岸的山体中,具有导流、发电引水和放空等

多种功能,即施工期用隧洞导流,并在导流洞口上的山岩中另开一洞口,与隧洞相连成为“龙抬头”形式,采用塔式进水口作为发电引水和放空隧洞的首部,水库蓄水时将导流洞口封赌。隧洞直径为5.2m 。隧洞出口设有放空水库用的闸门。在放空闸门上游另凿发电引水岔洞,洞径4.6m ,然后以三根m 2Φ的钢支管与机组相连。 本工程规模属大(2)型,枢纽为二等工程,电站厂房按3级建筑物设计。 (二)水电站厂房主要设备 1、水轮机和发电机 电站最大水头m H 3.64max =,加权平均水头m H cp 63.59=,最小水头m H 02.38min =。按水头范围及装机容量,套用3台现有机组。水轮机型号为140220--LJ HL ,单机额定 出力为KW 8333,该机组适用m H 65max =,m H 38min =m H p 58=,额定流量35.16m /s , 和电站水头范围比较匹配。发电机型号为3300/168000-SF ,单机额定出力KW 8000(悬式),采用密封式通风,可控硅励磁。水轮机导叶0b 为0.35m 。水轮机带轴长3.74m ,发电机转子带轴长4.785m.。一台机组在设计水头、额定出力下运行的尾水位为100.1 m 。 2、调速器:选用3500-YDT 型电气液压式 3、主阀:采用卧式液压型摇摆式接力器双平板偏心蝴蝶阀 4、桥式起重机:本电站的最重部件为发电机转子带轴重37.5t ,结合厂房布置要求。选用起重机跨度m L k 12=,主副钩最大起升高度分别为20m 和22m ,主钩最高位置至轨顶距离为0.911m ,小车高度2.723m 。厂房屋顶结构厚度为2.456 m 。 二、设计技术要求 厂房课程设计重点是主厂房内部主要设备和结构的布置,以及轮廓尺寸的决定。设计图应符合工程图纸的要求,说明书应能说明设计内容,文字通顺、整洁。 III 、课程设计(论文)工作内容及完成时间: 一、工作内容 水电站厂房课程设计要求学生根据所给任务书,利用所给的资料,完成下列工作: 1、用简略的方法选择厂房的主要和辅助设备。 2、进行厂区和厂房内部布置,决定厂房的轮廓尺寸。 3、绘制设计图纸(至少要有一平一立两张图纸)和编写设计计算书和说明书。 二、完成时间 本课程设计2周,具体安排大致如下(供参考): 1、设计布置,了解设计任务书及熟悉原始资料 1天 2、进行厂房布置设计,并布置草图 6天 3、绘厂房布置图(可用计算机绘制)及整理编写计算书和说明书 3天 Ⅳ 主 要参考资料: 《水电站厂房设计规范 SL 266-2014 替代SL266-2001 中华人民共和国水利部 编 中国水利水电出版社 2014》 《DLT5186-2004水力发电厂机电设计规范》 《水力机械(第2版)金钟元 编 中国水利水电出版社 1992》

某水电站设计课程设计 精品

第一章原始资料及设计条件 1.1 概述 1.1.1 工程概况 某水电站位于沅水一级支流巫水下游峡谷河段,下距会同县若水乡镇2km,距洪江市15km。坝址下游2km有洪江~绥宁省级公路从若水乡镇经过,交通较为便利。 该工程初拟正常蓄水位191m,迥水至高椅坝址,库容0.0708亿m3,装机16MW,是一座以发电为主,兼有防洪、旅游等综合效益的水电工程,枢纽建筑物由溢流闸坝、重力式挡水坝、右岸引水发电隧洞和引水式厂房组成。 1.2工程等别和建筑物级别 本工程以发电为主,兼有防洪、旅游等综合效益。水库正常蓄水位191m时库容为0.0708亿m3,电站装机容量为16MW,根据水利水电工程等级划分的规定,工程规模为小(1)型,工程等别为Ⅳ等。永久性建筑物闸坝、电站厂房等属4级建筑物,临时建筑物属5级。 1.2 水文气象资料 1.2.1 洪水 各频率洪峰流量详见下表 表1-1 坝址洪峰流量表 1.2.2 水位~流量关系曲线: 表1-2 下坝址水位~流量关系曲线表高程系统:85黄海

表1-3 上坝址水位~流量关系曲线表 高程系统:85黄海 表1-4 厂址水位~流量关系曲线表 高程系统:85黄海 多年平均含沙量:0.0893/m kg ; 多年平均输沙量:22.05万t ;设计淤沙高程:169.0m ;淤沙内摩擦角:10?;淤沙浮容重:0.93/m t 。 1.2.4 气象 多年平均气温:16.6?C ;极端最高气温:39.1?C ;极端最低气温:-8.6?C ;多年平均水温:18.2?C ;历年最高气温:34.1?C ;历年最低气温:2.1?C ;多年平均风速:1.40s m /; 历年最大风速:13.00s m /,风向:NE ;水库吹程:3.0km ;最大积雪厚度:21cm ;基本雪压:0.252/m KN 。 1.3 工程地质与水文地质 1.3.1 工程地质资料 (1)该工程区地震基本烈度小于Ⅵ度,不考虑地震荷载。 (2) 基岩物理力学指标 上坝址:饱和抗压强度:20~30MPa ;抗剪指标:岩砼/f =0.6~0.65;抗剪断指标:

水力发电机组辅助设备课程设计报告

xx工程大学 水力发电机组辅助设备 课程设计 设计说明书 学院: 班级: 姓名: 学号: 指导老师:

目录 第一部分设计原始资料 (3) 第二部课程设计的任务和要求 (5) 第三部计算书和说明书 (7) 一、主阀 (7) 二、油系统 (7) 三、压缩空气系统 (14) 四、技术供水系统 (20) 五、排水系统 (22) 六、结束语 (25) 七、参考文献 (26)

第一部分:设计原始资料 一、水电站概况: 该水电厂位于海河流域,布置形式为坝后式水电站,坝型为土石坝,坝顶高程60.0m,水库调节库容2.6×108m3,属于不完全年调节水库。安装有1?~6?共6台轴流转桨式机组,其中1?机组在系统中承担调相任务。 二、水电站主要参数 1、电站水头H max=37.30m,H min=31.20m;H pj=34.50m 2、正常高水位:54.00m;正常尾水位:20.50m;最高尾水位20.9m;最低尾水位20.0m 3、装机容量N=6*17000KW 4、电站采用岔管引水方式,布置有三条引水总管,引水总管长度210m 三、水轮机和发电机技术资料

机型: ZZ440-LJ-330 SF17-28/550 额定出力: N r=17750KW; P r=17000KW 额定转速: n r=214.3r/min 水轮机安装安程:18.6m 水轮机导叶中心线D0=3.85m;导叶高度1.20m; 转轮标称直径D1=3.3m;尾水管直锥段上端直径3.5m,下端直径4.2m,直锥段高度6.6m;转轮占用体积6.76 m3;弯肘及扩散段体积27.52m3;检修时最低尾水位蜗壳残余水量15.0 m3 机组采用机械制动,制动耗气流量q z=65L/s 空气冷却器压力降△h=3-5m水柱 空气冷却器Q空=120m3/h 推力轴承及导轴承冷却器耗水量:26m3/h 四、调速器及油压装置 调速器型号: SDT-100 油压装置型号: YZ-2.5 -推力、上导轴承油槽的充油量3.0m3; 下导轴承油槽充油量1.5 m3 导水机构接力器充油量2×1.6 m3 水轮机转轮浆叶接力器充油量2.0 m3 主阀接力器充油量1.5m3 五、配电装置 主变: 3*40000KVA,冷却方式:风冷

水电站厂房课程设计任务说明书

水电站厂房课程设计说明书 张文奇 1.蜗壳的型式 电站设计水头H p=95.5m>40m (且>80m ),根据《水力机械》第二版第96页的蜗壳型式选择金属蜗壳。 2.蜗壳的主要参数 2.1金属蜗壳的断面形状为圆形。 2.2对于圆形断面金属蜗壳为了获得良好的水力性能一般采用蜗壳的包角为 0?=345°。 2.3根据《水力机械》第二版第99页图4-30查得,当设计水头为95.5m 时,蜗壳的进口断面的平均流速c V =7.5m/s ; 2.4己知水轮机的型号HL200-LJ-275,根据《水力机械》第二版附表5查得:1D =2750mm ,H=95.5m 时,蜗壳的座环内径b D =3650mm ,外径a D = 4550 mm ,所以蜗壳座环的内、外半径分别: 3. 金属蜗壳的水力计算 电站设计水头H P =95.5m ,进口平均流速c V =7.5m/s ,包角为0?=345°,每台机组过水能力:max Q =62.69m 3/s 。 3650 182522b b D r mm = ==4550 227522a a D r mm = = =

3.1对于蜗壳进口断面: 断面的面积: 断面的半径: 从轴中心线到蜗壳外缘的半径: 3.2对于中间任一断面: 设为从蜗壳鼻端起算至计算断面i 处的包角,则该计算断面处的 其中max Q =62.69m 3/s 。,c V =7.5m/s ,a r =2.275m 计算成果见表1: 2max 062.69345==8m 3603607.5C C C C Q Q F V V ???= =???max 1.6m ρ= ==max a max 2 2.2752 1.6 5.475R r m ρ=+=+?=i ?max 360i i Q Q ?= ? i ρ= a 2i i R r ρ=+

水电站厂房课程设计西华精选文档

水电站厂房课程设计西 华精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

课程设计报告 (理工类) 课程名称: 水电站建筑物课程设计 课程代码: 8511961 学院(直属系): 能源与环境学院 年级/专业/班: 2010级/水利水电工程/2班 学生姓名: 学号: 3320 实验总成绩:

任课教师: 杨耀 开课学院: 能源与环境学院 水电站厂房课程设计任务书 西华大学能源与环境学院 2012年5月 一、课程设计的目的 课程设计是以工程实例为题,由学生独立思考,灵活应用有关的布置原则和要点,自己动手布置厂房,从而巩固和加深厂房部分的理论知识,并进一步培养学生的计算、制图和应用技术资料的技能。 二、课程设计的内容与要求 设计的内容概括地说,就是在给定工程枢纽布置和厂区位置的前提下,利用现有资料进行厂房布置设计。 具体内容包括: 1.确定主厂房的轮廓尺寸;

确定厂房轮廓尺寸时有关机组和设备的尺寸可由给定的基本数据查找或查阅有关的工具书。 2.绘出蜗壳与尾水管单线图,拟定转轮流道、座环等尺寸; 3.选择厂房起重设备; 4.进行厂区布置; 厂区布置可在地形图上绘出,要求至少拟定两个方案进行比较后,确定一个方案。 5.进行厂房布置; 厂房布置的具体内容包括主、副厂房的布置和对厂房结构布置的考虑,说明如下: ①在布置主、副厂房的同时,对厂房的结构布置一定要有考虑,包括: a.主厂房的分缝 b.一、二期混凝土的划分 c.止水的设置 d.下部块体结构的布置,包括机墩、蜗壳混凝土、尾水管的结构型式、尾水闸墩、上下游墙等的结构布置,在下部块体中要设哪些工作孔道,在什么位置等。

水电站课程设计1

水电站课程设计 一:计算水轮机安装高程 参考教材,立轴混流式水轮机的安装高程Z s 的计算方法如下: 0/2s s Z H b ω=?++ 式中ω?为设计尾水位,取正常高尾水位1581.20m ;0b 为导叶高度,1.5m ; s H 为吸出高度,m 。 其中,10.0()900 s m H H σσ? =- -+? 式中,?为水轮机安装位置的海拔高程,在初始计算时可取为下游平均水位的海拔高程,设计取1580m ; m σ为模型气蚀系数,从该型号水轮机模型综合特性曲线(教材P69)查得m σ=0.20, σ?为气蚀系数的修正值,可在教材P52页图2-26中查得σ?=0.029; H 为水轮机水头,一般取为设计水头,本设计取H=38m 。水头H max 及其对应工况的m σ进行校核计算。 10.0()900 s m H H σσ? =- -+?=10.0-1580900-(0.2+0.029)?38=-0.458 0/2s s Z H b ω=?++=1581.20-0.458+1.5/2=1581.49m 。 二:绘制水轮机、蜗壳、尾水管和发电机图 2.1水轮机的计算

图1.1 转轮布置图 如图所示,可得HL240具体尺寸: 表1.11 转轮参数表 D 1 D 2 D 3 D 4 D 5 D 6 b 0 h 1 h 2 h 3 h 4 1.0 1.078 0.928 0.725 0.483 0.128 0.365 0.054 0.16 0.593 0.283 4.1 4.420 3.805 2.973 1.980 0.525 1.497 0.221 0.656 2.431 1.160 2.2 蜗壳计算 进口断面尺寸计算 (1)进口断面流量的确定 由资料,该水电站初步设计时确定该电站装机17.6×410kW ,电站共设计装4台机组,故每台机组的单机容量为17.6×410kW ÷4=4.4×410kW 。 由水轮机出力公式:9.81N QH QH ωγ===4.4×410kW 式中:Q 为水轮机设计流量(3/m s ); H 为设计水头,m ;由设计资料得H=38.0m 。 所以,4×10//=118.039.81 4.4Q N H ω=?=(9.8138.0)(3/m s )

水电站课程设计

. . 水电站课程设计 ——水轮机选型设计说明书 学校: 专业: 班级: : 学号: 指导老师:

第一节基本资料 (3) 第二节机组台数与单机容量的选择 (4) 第三节水轮机型号、装置方式、转轮直径、转速、及吸出高度与安装高程的确定 (5) 第四节水轮机运转特性曲线的绘制 (11) 第五节蜗壳设计 (13) 第六节尾水管设计 (16) 第七节发电机选择 (18) 第八节调速设备的选择 (19) 参考资料 (20)

第一节基本资料 一、水轮机选型设计的基本内容 水轮机选型设计包括以下基本内容: (1)根据水能规划推荐的电站总容量确定机组的台数和单机容量; (2)选择水轮机的型号及装置方式; (3)确定水轮机的轮转直径、额定出力、同步转速、安装高程等基本参数; (4)绘制水轮机的运转特性曲线; (5)确定蜗壳、尾水管的型式及它们的主要尺寸,以及估算水轮机的重量和价格;(6)选择调速设备; (7)结合水电站运行方式和水轮机的技术标准,拟定设备订购技术条件。 二、基本设计资料 某梯级开发电站,电站的主要任务是发电,并结合水库特性、地区要求可发挥水产养殖等综合效益。电站建成后投入东北主网,担任系统调峰、调相及少量的事故备用容量,同时兼向周边地区供电。该电站水库库容小不担任下游防洪任务。经比较分析,该电站坝型采用混凝土重力坝,厂房型式为河床式。经水工模型试验,采用消力戽消能型式。 经水能分析,该电站有关动能指标为: 水库调节性能日调节 保证出力 4万kw 装机容量 16万kw 多年平均发电量 44350 kwh 最大工作水头 39.0 m 加权平均水头 37.0 m 设计水头 37.0 m 最小工作水头 35.0 m 平均尾水位 202.0 m 设计尾水位 200.5 m 发电机效率 98.0%

水电站课程设计

《水电站》课程设计水轮机的选型设计 专业:XXX 班级: XX 姓名:XXX 学号:XXX 指导教师:XXX

【摘要】 本说明书共七个章节,主要介绍了大江水电站水轮机选型,水轮机运转综合特性曲线的绘制,蜗壳、尾水管的设计方案和工作原理以及调速设备和油压装置的选择。主要内容包括水电站水轮机、排水装置、油压装置所满足的设计方案及控制要求和设计所需求的相关辅助图和设计图。系统的阐明了水电站相关应用设备和辅助设备的设计方案的步骤和图形绘制的方法。 【关键词】 水轮机、综合运转特性曲线图、蜗壳、尾水管、调速器、油压装置。

【Abstract】 Curriculum project of hydro station is a important course and practical process in curriculum provision of water-power engineering major . There are more contents and specialized knowledge in the curriculum project , which make students not to adapt themselves quickly to complete the design . In this paper , characteristic of the curriculum project is analyzed , causes of in adaptation to the curriculum project in students are found , rational guarding method are proposed , and a example of applying the guarding method is given . The results show that using provided method to guard student design is a good method, when teaching mode and time chart are given , students are guarded from mode of thinking and methodology , and design step are discussed and given . After the curriculum project of hydro station, the capability of students to solve practical engineering problems is improved , and the confidence to engage in design is strengthened . 【Keyword】 Curriculum project of hydro station; guarding method ; mode of thinking ; methodology; design step.

2017水电实习报告4篇

2017水电实习报告4篇 *目录2017水电实习报告水利水电工程认识实习报告水电公司实习报告暑期水电工实习报告一、实习目的 生产实习是教学与生产实际相结合的重要实习性教学环节。在生产实习过程中,学校也以培养学生观察问题、解决问题和向生产实际学习的能力和方法为目标。培养我们的团结合作精神,牢固树立我们的群体意识,即个人智慧只有在融入集体之中才能最大限度地发挥作用。 通过这次生产实习,使我在生产实际中学习到了电气设备运行的技术管理知识、电气设备的制造过程知识及在学校无法学到的实习知识。在向工人学习时,培养了我们艰苦朴素的优良作风。在生产实习中体会到了严格地遵守纪律、统一组织及协调一致是现代化大生产的需要,也是我们当代大学生所必须的,从而近一步的提高了我们的组织观念。 我们在实习中了解到了工厂供配电系统,尤其是了解到了工厂变电所的组成及运行过程,为小区电力网设计、建筑供配电系统课程设计奠定基础。通过参观四川第一化工集团自动化系统,使我开阔了眼界、拓宽了知识面,为学好专业课积累必要的感性知识,为我们以后在质的变化上奠定了有力的基础。

通过生产实习,对我们巩固和加深所学理论知识,培养我们的独立工作能力和加强劳动观点起了重要作用。 二、实习内容 桥水电站位于云南省大理白族自治州云龙县大栗树西侧,以发电为主,是澜沧江中下游河段“两库八级”梯级开发的最上游一级电站,也是云南省“云电外送”、“西电东送”战略的骨干工程之一。电站正常蓄水高程1307米,坝址控制流域面积9.71万平方公里,总装机容量90万千瓦,年均发电量40.41亿千瓦时。枢纽建筑物主要由拦河坝、电站进水口、地下厂房系统、泄洪表孔以及冲沙泄洪底孔等组成。拦河坝为碾压混凝土重力坝,坝顶高程1310米,最大坝高105米,坝顶长度356米。 桥水电站大坝施工于xx年8月份开工,xx年11月22日大江截流顺利合龙,xx年5月10日基坑开挖达到1205米设计高程,同年5月22日首仓混凝土开盘浇筑。xx年7月18日,大坝混凝土浇筑全线封顶,实际施工进度比中标合同工期要求均提前完成,取得了安全、质量、进度的全面丰收。工程建设方在下闸当日致函水电四局,对百米高坝16个月全线封顶、45天完成3扇表孔弧门安装及按期实现下闸蓄水成绩的取得给予高度赞誉。

水电站课程设计

《水电站建筑物》课程设计BL电站计算说明书 姓名: 学号: 指导教师: 年月日

一、基本资料 1.1工程概况 根据某市供水和灌溉的需求,于X河的Y河口坝址修建BL水电站。该电站水库控制流域面积2085km2,坝址处多年平均径流量7.21×108m3。 水库属大(2)型,工程等别为Ⅱ等,主要建筑物为2级,次要建筑物为3级。采用混合坝型,拟建一座坝后式水电站。电站尾水泄入灌溉渠道,结合工农业用水进行发电。 水电站厂房按3级建筑物设计,厂房经右岸坝下公路对外联系。 1.2设计的目的与任务 目的:通过本次课程设计,使学生将所学水电站基本知识加以系统化,能够运用基本理论知识解决实际工程问题,使学生在分析问题、理论计算、制图、编写说明书与计算书等方面得到锻炼,初步掌握水电站的设计步骤、方法、基本理论,为参加工作打下基础。 任务:进行水轮机选型与厂房布置设计。 1.3BL电站设计资料 气象资料: 该地区多年平均气温9.3℃,最低气温-35.8℃。最大风速北风21m/s。最大冰厚0.37m。地面冻结深度一般在1.1m左右。 水文资料: (1)水库特征水位与溢洪道泄量特征: (2 电站尾水渠出口即为灌溉渠道的渠首,渠底高程40.35m,渠顶高程45.90m,渠

道设计流量48.0m 3/s 。渠道加大流量53.0m 3/s 。 电站尾水渠水位流量关系表(Z ~Q ): (3)厂房地质资料 水库坝址系由变质岩、沙岩、熔岩及花岗岩类组成,坝址有一组北北西向断层,在厂房范围内有一小断层通过。 本地区地震基本烈度为Ⅶ度。厂房设计烈度为7度。 (4)水轮机选型的基本资料: 经水能计算,最终确定: 1.电站最大水头H max =27.8m ; 2.加权平均水头H a =22.1m ; 3.设计水头H r =21.3m ; 4.电站正常运转时的最小水头H min =14.0m 。 5.水电站总装机容量N f =6400kW ,考虑水电站运行及用水量变化规律,经方案比较,决定选用两台机组。发电机效率ηf =0.91。 二、 水轮机的选型 本水电站的最大水头H max =27.8m ,正常运转时最小水头H min =14.0m ,加权平均水头H a =22.1m ,设计水头H r =21.3m 。水电站总装机容量N f =6400kW ,设计装机台数2台,单机容量N y1=3200kW 。 2.1水轮机型号选择 根据该水电站的水头变化范围14.0~27.8m ,查《水电站(第三版)》,河海大学,刘启钊主编P 73表3-4水轮机系列型谱中查出合适的机型有HL240、HL310。选择HL240。 2.2 转轮直径的计算 转轮直径D 1按下式计算: m H H Q N D r 63.1%6.893.213.2140.181.93200 81.9r '1r 1=????= =η (2-1) 式中 N r ——水轮机的额定出力,3200kW ; H r ——水轮机的设计水头,21.3m ; '1Q ——原型水轮机单位流量,初步假定s /40.13'1'1m Q Q M ==; η ——与'1Q 相应的原型效率,假设为89.6%。 根据计算结果,D 1=1.63m ,应选择与之相近且偏大的轮转标称直径,但D 1=1.8m 相差太大,可近似取为D 1=1.6m 。

水电站 课程设计

《某水电站厂房初步设计》 课程设计 学生姓名: 学号: 专业班级:水利水电(2)班 指导教师: 二○一三年九月二十七日

目录 第一章工程概况 (1) 第二章有关设计资料 (2) 2.1 厂区地形和地质条件 (2) 2.2 水电站尾水位 (2) 2.3 对外交通 (2) 2.4 地震烈度 (2) 第三章水轮机型号及主要参数选择 (3) 3.1 水轮机型号选择 (3) 3.2 主轴及蜗壳形式选择 (3) 3.3 HL220型水轮机方案的主要参数选择 (3) 3.4 两种方案的比较分析 (6) 第四章机电设备 (7) 4.1 水轮机 (7) 4.2 调速器(自动调速器) (7) 4.3 发电机 (8) 4.4 蝶阀 (8) 4.5 桥式起重机 (9) 第五章电气主结线及电气设备布置: (10) 第六章主要控制高程的确定 (11) 6.1 水轮机的吸出高度和安装高程 (11) 6.2 水轮机层的地面高程 (11) 6.3 尾水设计及相关高程 (11) 6.4 吊车轨顶高程 (12) 6.5 厂房天花板高程和厂房顶高程 (13) 第七章主厂房的布置设计 (14) 7.1 机组的布置方式 (14) 7.2 厂房下部结构的构造和布置 (14) 7.3 主厂房的长度和宽度 (14) 7.4 安装间的布置 (16)

7.5 主厂房内机电设备布置及交通运输 (16) 第八章副厂房的布置设计 (17) 8.1 中央控制室 (17) 8.2 高压开关室 (17) 8.3 厂用设备的布置 (18) 8.4 楼梯 (18) 8.5 厂变和工具间 (18) 8.6 值班室和休息室 (18) 8.7 调度室和通讯室 (18) 8.8 卫生间 (18) 第九章水电站枢纽布置 (19) 9.1 厂房 (19) 9.2 主变压器场 (19) 9.3 引水道 (19) 9.4 压力钢管 (19) 9.5 尾水道 (19) 9.6 对外交通 (19) 第十章开挖量的计算 (20) 第十一章分析与总结 (23) 11.1 问题分析 (23) 11.2 课设感受 (24) 参考文献 (25) 附图1:水轮机机组平面示意图 (26) 附图2:水轮发电机组剖面图B-B (27) 附图3:水轮发电机组横剖面图A-A (28) 附图4:HL220型水轮机综合特性曲线图 (29)

水电站课程设计计算书

水电站厂房课程设计计算书 1.蜗壳单线图的绘制 1.1 蜗壳的型式 根据给定的基本资料和设计依据,电站设计水头Hp=46.2m ,水轮机型号 :HL220-LJ-225。可知采用金属蜗壳。又Hp=46.2m>40m ,满足《水电站》(第4版)P32页对于蜗壳型式选择的要求。 1.2 蜗壳主要参数的选择 金属蜗壳的断面形状为圆形,根据《水电站》(第4版)P35页可知:为了获得良好的水力性能及考虑到其结构和加工工艺条件的限制,一般取蜗壳的包角为0345?=。 通过计算得出最大引用流量m ax Q 值,计算如下: ○ 1水轮机额定出力:15000 156250.96 f r f N N KW η= = = 式中:60000150004 f KW N KW = =,0.96f η=。 ○ 2'31max 3 3 2222115625 1.11 1.159.819.81 2.2546.20.904 r p N Q m s D H η = = =

水轮机课程设计报告

- - - 目录 第一章基本资料 (1) 第二章机组台数与单机容量的选择 (2) 第三章水轮机主要参数的选择与计算 (5) 第四章水轮机运转特性曲线的绘制 (10) 第五章蜗壳设计 (13) 第六章尾水管设计 (17) 第七章心得体会 (20) 参考文献 (20)

第一章基本资料 基本设计资料 黄河B水电站是紧接L水电站尾水的黄河上游的一个梯级水电站。水库正常蓄水位2452 m,电站总装机容量4200 MW,额定水头205 m。 经水能分析,该电站有关动能指标如表1所示: 表1 动能指标

第二章机组台数与单机容量的选择 水电站的装机容量等于机组台数和单机容量的乘积。根据已确定的装机容量,就可以拟定可能的机组台数方案,选择机组台数与单机容量时应遵循如下原则: 2.1机组台数与工程建设费用的关系 在水电站的装机容量基本已经定下来的情况下,机组台数增多,单机容量减小。通常小机组单位千瓦耗材多、造价高,相应的主阀、调速器、附属设备及电气设备的套数增加,投资亦增加,整体设备费用高。另外,机组台数多,厂房所占的平面尺寸也会增大。一般情况下,台数多对成本和投资不利。因此,较少的机组台数有利于降低工程建设费用

2.2机组台数与设备制造、运输、安装以及枢纽安装布置的关系 单机容量大,可能会在制造、安装和运输方面增加一定的难度。然而,有些大型或特大型水电站,由于受枢纽平面尺寸的限制,总希望单机容量制造得大些。 2.3机组台数对水电站运行效率的影响 水轮机在额定出力或者接近额定出力时,运行效率较高。机组台数不同,水电站平均效率也不同。机组台数较少,平均效率越低。机组台数多,可以灵活改变机组运行方式,调整机组负荷,避开低效率区运行,以是电站保持较高的平均效率。但机组台数多到一定程度,再增加台数对水电站运行效率增加的效果就不显著。当水电站在电力系统中担任基荷工作时,引用流量较固定,选择机组台数较少,可使水轮机在较长时间内以最大工况运行,使水电站保持较高的平均效率。当水电站担任系统尖峰负荷并且程度调频任务时,由于负荷经常变动,而且幅度较大,为使每台机组都可以在高效率区工作,则需要更多的机组台数。 另外,机组类型不同,高效率范围大小也不同,台数对电厂平均效率的影响就不同。对于高效率工作区较窄的,机组台数应适当多一些。轴流转浆式水轮机,由于单机的效率曲线平缓且高效区宽,台数多少对电厂的平均效率影响不明显;而混流式、轴流定浆式水轮机其效率曲线较陡,当出力变化时,效率变化较剧烈,适当增加台数可明显改善电厂运行的平均效率。 2.4机组台数与水电站运行维护的关系 机组台数多,单机容量小,水电站运行方式较灵活机动,机组发生事故停机产生的影响小,单机轮换检修易于安排,难度也小。但台数多,机组开、停机操作频繁,操作运行次数随之增多,发生事故的几率也随之增高,对全厂检修很麻烦。同时,管理人员多,维护耗材多,运行费用也相应提高。故不能用过多的机组台数。 2.5机组台数与其他因素的关系 2.5.1机组台数与电网的关系

相关文档