文档库 最新最全的文档下载
当前位置:文档库 › 构件吊环计算书

构件吊环计算书

构件吊环计算书
构件吊环计算书

淋水构件吊环计算书

吊环应设在承受弯距最小或便于吊装部位,使构件起吊平稳均匀,荷重对称,吊环材料应采用I 级钢筋,吊环设置计算如下:

1.单柱吊环埋设计算:

砼单柱截面为400×400mm ,仅取最大单柱Z-1进行计算。Z-1长12.2米,重5.441t 。施工时设2个吊钩,则每个吊钩承受的力为:5.441/2t=27.205KN 。则根据公式: A S =G/2σ得

A S =27205/(2×50)=272mm 2

则选取υ20的钢筋,A S =314mm 2,满足施工需要。 钢筋伸入砼需要长度,由公式: L=KQ/(2πd τw )得

L=4×27205/(2×3.14×20×2)=401mm ,施工取600mm

,满足施工需要。

吊钩位置根据规范需要,分别埋设在0.207L 。 2.柱子吊装验算:

柱子两个吊点平移时的吊装验算 柱身自重荷载:

q=A ×γ×K 动=0.42×25×1.5=6KN/m (γ为钢筋砼重度,K 动为吊装动力系数) 吊装弯矩:

M A =0.5ql 12=0.5×6×2.532=19.202KN.m M C =M A =19.202KN.m M B =ql 22/8-0.5(M A

+M C )

=6×7.152

/8-0.5×(19.202+19.202) =19.14KN.m

起吊时M A 、M C 弯矩最大,验算A 、C 点处截面(A 、C 点处截面相同,只取A 点处截面进行验算)。砼C30,f cm =16.5N/mm 2,f y =310N/mm 2

因此 αs =M/(f cm bh 0)=1.2×19.202×106/(16.5×400×3002)=0.052 γs =0.5(1+√1-2αs )=0.987

l 1=0.207L

l 1=0.207L

A

S ,=M/(γ

s

f

y

h

)=1.2×25.755×106/(0.987×310×300)=336.7mm2

实际配筋有:3Φ18(763mm2)>A

S

,=336.7mm2,满足施工要求

3.梁吊环埋设计算:

主梁截面为250×600mm,仅取最大长度5.5米进行计算。重1.98t。

施工时设2个吊钩,则每个吊钩承受的力为:1.98/2t=9.9KN。则根据公式:

A

S

=G/2σ得

A

S

=9900/(2×50)=99mm2

则选取υ14的钢筋,A

S

=154mm2,满足施工需要。

钢筋伸入砼需要长度,由公式: L=KQ/(2πdτ

w

)得

L=4×9900/(2×3.14×20×2)=158mm,施工取420mm,满足施工需要。

吊钩位置根据规范埋设在0.207L处。

4.主水槽吊环埋设计算:

主水槽截面为1300×2100mm,仅取最大长度6.763米进行计算。重15.178t。

施工时设4个吊钩,则每个吊钩承受的力为:15.178/4t=37.945KN。则根据公式:

A

S

=G/2σ得

A

S

=37945/(2×50)=379mm2

则选取υ25的钢筋,A

S

=491mm2,满足施工需要。

吊钩位置根据埋设在水槽两端有暗梁处。

交安三类试题教学内容

1. 日最高气温达到37℃以上、40℃以下时,用人单位在气温最高时段()小时内不得安排室外露天作业。 A.6.0 B.5.0 C.4.0 D.3.0 正确答案:D 2. 顶管施工中,管子的顶进或停止,应以()发出信号为准。 A.工具管头部 B.现场指挥 C.安全员 D.其他 正确答案:A 3. .②机械联接的强度由联接中()的强度决定。 A.最强环节 B.最薄弱环节 C.各环节加权平均 D.综合计算 正确答案:B 4. 爆破法破碎冻土,爆破施工要离建筑物( )以外。 A. 30m B. 40m C. 50m D. 100m 正确答案:C 5. 人工开挖土方时,两人应保持()的操作间距。 A.1m B.1~2m C.2~3m D.5~4m 正确答案:C 6. 建筑起重机械安装完毕经自检合格后,()应在验收前委托有相应资质的检验检测机构监督检验。 A.出租单位 B.安装单位 C.使用单位 D.建设单位

正确答案:C 7. 施工现场宿舍、办公室等临时用房建筑构件的燃烧性能等级应为();当采用金属夹芯板材时,其芯材的燃烧性能等级应为()。 A.A级,A级 B.A级,B级 C.B级,B级 D.B级,C级 正确答案:A 8. 剪刀撑:设在脚手架外侧面、与墙面平行的十字交叉斜杆,可增强脚手架的()。 A.纵向刚度 B.竖向刚度 C.横向刚度 D.其他 正确答案:A 9. 摊铺机停放在通车道路上时,周围必须设置明显的安全标志。夜间应设红灯示警,其能见度不得小于()m。 A.50m B.100m C.150cm D.200m 正确答案:C 10. 下列不属于建筑起重机械使用单位安全职责的是()。 A.制定建筑起重机械生产安全事故应急救援预案 B.在建筑起重机械活动范围内设置明显的安全警示标志,对集中作业区做好安全防护 C.设置相应的设备管理机构或者配备专职的设备管理人员,负责起重机械的安全管理工作 D.制定建筑起重机械安装、拆卸工程生产安全 事故应急救援预案 正确答案:D

构件吊环计算书

淋水构件吊环计算书 吊环应设在承受弯距最小或便于吊装部位,使构件起吊平稳均匀,荷重对称,吊环材料应采用I 级钢筋,吊环设置计算如下: 1.单柱吊环埋设计算: 砼单柱截面为400×400mm ,仅取最大单柱Z-1进行计算。Z-1长12.2米,重5.441t 。施工时设2个吊钩,则每个吊钩承受的力为:5.441/2t=27.205KN 。则根据公式: A S =G/2σ得 A S =27205/(2×50)=272mm 2 则选取υ20的钢筋,A S =314mm 2,满足施工需要。 钢筋伸入砼需要长度,由公式: L=KQ/(2πd τw )得 L=4×27205/(2×3.14×20×2)=401mm ,施工取600mm ,满足施工需要。 吊钩位置根据规范需要,分别埋设在0.207L 。 2.柱子吊装验算: 柱子两个吊点平移时的吊装验算 柱身自重荷载: q=A ×γ×K 动=0.42×25×1.5=6KN/m (γ为钢筋砼重度,K 动为吊装动力系数) 吊装弯矩: M A =0.5ql 12=0.5×6×2.532=19.202KN.m M C =M A =19.202KN.m M B =ql 22/8-0.5(M A +M C ) =6×7.152 /8-0.5×(19.202+19.202) =19.14KN.m 起吊时M A 、M C 弯矩最大,验算A 、C 点处截面(A 、C 点处截面相同,只取A 点处截面进行验算)。砼C30,f cm =16.5N/mm 2,f y =310N/mm 2 因此 αs =M/(f cm bh 0)=1.2×19.202×106/(16.5×400×3002)=0.052 γs =0.5(1+√1-2αs )=0.987 l 1=0.207L l 1=0.207L

压弯构件稳定计算

压弯构件稳定计算 (1)概述 压弯构件实际上就是轴力与弯矩共同作用的构件,也就是轴心受力构件与受弯构件的组合,典型的两种压弯构件如图所示。 同其他构件一样,压弯构件也需同时满足正常使用及承载能力两种极限状态的要求,即 正常使用极限状态:刚度条件; 承载能力极限状态:强度、整体稳定、局部稳定. (2) 类型与截面形式

?单向压弯构件: 只绕截面一个形心主轴受弯; ?双向压弯构件: 绕两个形心主轴均有弯矩作用。 ?弯矩由偏心轴力引起的压弯构件也称作偏压构件。 ?截面形式: 同轴心受力构件一样,分实腹式截面与格构式截面。 ?实腹式:型钢截面与组合截面 ?格构式:缀条式与缀板式 ?按截面组成方式分为型钢(a、b),钢板焊接组合截面型钢(c、g),组合截面(d、e、f、h、i) ?按截面几何特征分为开口截面,闭口截面(g、h、i、j)

?按截面对称性分为单轴对称截面(d、e、f、n、p),双轴对称截面(其余各图) ?按截面分布连续性分为实腹式截面(a~j)格构式截面(k~p) (3)破坏形式 强度破坏、整体失稳破坏和局部失稳破坏。

强度破坏:截面的一部分或全部应力都达到甚至超过钢材屈服点的状况。 整体失稳破坏: ?单向压弯构件: 弯矩平面失稳:极值失稳,应考虑 效应(二阶效应)。 弯矩平面外失稳:弯扭变形,分岔失稳。 ?双向压弯构件:一定伴随扭转变形,为分岔失稳。 7.2.1 强度计算 ?两个工作阶段,两个特征点。 ?弹性工作阶段:以边缘屈服为特征点(弹性承载力); ?弹塑性工作阶段:以塑性铰弯矩为特征点(极限承载力)。

7.2.2 极限承载力与相关条件 联立以上两式,消去η,则有如下相关方程

拉弯和压弯构件的强度与稳定计算.

拉弯和压弯构件的强度与稳定计算 1.拉弯和压弯构件的强度计算 考虑部分截面发展塑性,《规范》规定的拉弯和压弯构件的强度计算式 f W M A N nx x x n ≤+γ (6-1) 承受双向弯矩的拉弯或压弯构件,《规范》采用了与式(6-1)相衔接的线性公式 f W M W M A N ny y y nx x x n ≤++γγ (6-2) 式中:n A ——净截面面积; nx W 、ny W ——对x 轴和y 轴的净截面模量; x γ、y γ——截面塑性发展系数。 当压弯构件受压翼缘的外伸宽度与其厚度之比t b />y f /23513,但不超过y f /23515时,应取x γ=1.0。 对需要计算疲劳的拉弯和压弯构件,宜取x γ=y γ=1.0,即不考虑截面塑性发展,按弹性应力状态计算。 2.实腹式压弯构件在弯矩作用平面内的稳定计算 目前确定压弯构件弯矩作用平面内极限承载力的方法很多,可分为两大类,一类是边缘屈服准则的计算方法,一类是精度较高的数值计算方法。 按边缘屈服准则推导的相关公式 y Ex x x x x f N N W M A N =???? ? ?-+??11 (6-4) 式中:x ?——在弯矩作用平面内的轴心受压构件整体稳定系数。 边缘纤维屈服准则认为当构件截面最大受压纤维刚刚屈服时构件即失去承载能力而发生破坏,更适用于格构式构件。实腹式压弯构件当受压最大边缘刚开始屈服时尚有较大的强度储备,即容许截面塑性深入。因此若要反映构件的实际受力情况,宜采用最大强度准则,即以具有各种初始缺陷的构件为计算模型,求解其极限承载力。

弯矩沿杆长均匀分布的两端铰支压弯构件,《规范》采用数值计算方法,考虑构件存在l/1000的初弯曲和实测的残余应力分布,算出了近200条压弯构件极限承载力曲线。然后《规范》借用了弹性压弯构件边缘纤维屈服时计算公式的形式,经过数值运算,得出比较符合实际又能满足工程精度要求的实用相关公式 y Ex px x x f N N W M A N =???? ? ?-+8.01? (6-5) 式中:px W ——截面塑性模量。 弯矩沿杆长为非均匀分布的两端铰支压弯构件,构件的实际承载能力将比由上式算得的值高。为了应用于其他荷载作用时的压弯构件,可用等效弯矩x mx M β (x M 为最大弯矩)代替公式中的x M 来考虑这种有利因素。另外,考虑部分塑性深入截面,采用x x px W W 1γ=,并引入抗力分项系数,即得到《规范》所采用的实腹式压弯构件弯矩作用平面内的稳定计算式 f N N W M A N Ex x x x mx x ≤? ?? ? ? -+'18.01γβ? (6-6) 式中:N ——所计算构件段范围内的轴向压力设计值; x M ——所计算构件段范围内的最大弯矩设计值; x ?——弯矩作用平面内的轴心受压构件的稳定系数; x W 1——弯矩作用平面内的对受压最大纤维的毛截面模量; 'Ex N ——参数,' EX N =) 1.1/(22 x EA λπ; mx β——等效弯矩系数,《规范》按下列情况取值: (1)框架柱和两端支承的构件: ①无横向荷载作用时:mx β=0.65+0.351M /2M ,1M 和2M 为端弯矩,使构件产生同向曲率(无反弯点)时取同号,使构件产生反向曲率(有反弯点时)取异号,1M >2M ; ②有端弯矩和横向荷载同时作用时:使构件产生同向曲率时,mx β=1.0;使构件产生反向曲率时,mx β=0.85; ③无端弯矩但有横向荷载作用时:mx β=1.0。

盾构反力架安装专项方案及受力计算书

目录 一、工程概况 (2) 二、反力架的结构形式 (2) 2.1、反力架的结构形式 (2) 2.2、各部件结构介绍 (2) 2.3、反力架后支撑结构形式 (4) 三、反力架安装准备工作 (5) 四、反力架安装步骤及方法 (5) 五、反力架的受力检算 (6) 5.1、支撑受力计算 (6) 5.2、斜撑抗剪强度计算 (8) 六、反力架受力及支撑条件 (8) 6.1、强度校核计算: (10) 6.2、始发托架受力验算 (11)

一、工程概况 东莞市轨道交通R2线2304标土建工程天宝站~东城站盾构区间工程起点位于天宝站,终点位于东城站。盾构机由天宝站南端盾构始发井组装后始发,利用吊装盾构机的260t履带吊安装反力架。 二、反力架的结构形式 2.1、反力架的结构形式 如图一所示。 图一反力架结构图 2.2、各部件结构介绍 (1) 立柱:立柱为箱体结构,主受力板为30mm钢板,筋板为

20mm钢板,材质均为Q235-A钢材,箱体结构截面尺寸为700mmX500mm,具体形式及尺寸见图二。 图二立柱结构图 (2) 上横梁:结构为箱体结构,主受力板为30mm钢板,筋板为20mm钢板,材质均为Q235-A钢材,箱体结构截面尺寸为700mmX500mm,其结构与立柱相同。 (3) 下横梁:箱体结构,主受力板为30mm,筋板为20mm钢板,材质均为Q235-A,箱体结构截面尺寸为250mmX500mm,其结构如图三所示。 图三下横梁结构图

(4 )八字撑:八字撑共有4根,上部八字撑2根,其中心线长度为1979mm,下部八字撑2根,其中心线长度为2184mm,截面尺寸如图四所示。 图四八字撑接头结构图 2.3、反力架后支撑结构形式 后支撑主要有斜撑和直撑两种形式,按照安装位置分为立柱后支撑、上横梁后支撑、下横梁后支撑。 立柱支撑(以左线盾构反力架为例):线路中心左侧(东侧)可以直接将反力架的支撑固定在标准段与扩大端相接的内衬墙上;线路中心线右侧(西侧)材料均采用直径500mm,壁厚9mm的钢管。始发井东侧立柱支撑是3根直撑(中心线长度为1700mm),始发井西侧立柱是2根斜撑(中心线长度分别为5247mm和3308mm,与水平夹角均为45度)和一根直撑(底部)。如下图所示 1700

盾构机反力架计算书

盾构机反力架计算书 太平桥站盾构始发反力架支撑计算书一、工程情况说明 哈尔滨地铁一号8标工业大学—太平桥区间投入一台德国海瑞克盾构机进行施工,编号S-285,从太平桥站西端头下井。我们对反力架采取水平撑加斜支撑的形式加固,将反作用力传递至车站底板、中板及侧墙。 二、反力架及支撑示意图 12 中板 侧反反 力力 墙 架架 底板底板 12 1-12-2 计算说明: 1、根据以往施工情况,始发盾构机推力按照800T进行计算,其中底部千斤顶油压按照200bar,两侧按照140bar,顶部千斤顶不施加推力; 2、通过管片和基准钢环调节,每组千斤顶所在区域按照均布荷载进行计算; 3、水平支撑采用200mm及250mm宽翼缘H型钢,分别支撑与车站底板及侧墙上,斜撑采用200mm宽翼缘H型钢,45度角撑于车站底板上; 4、反力架经几次始发使用,梁自身抗弯和抗剪无问题,本次不予计算。三、力学模型图

A 44.7t/m44.7t/mBD C 89.4t/m 盾构机在顶推过程中反力架提供盾构向前掘进的反力,通过焊接在反力架上的型钢支撑, 将力传递到车站结构上。为保证反力架能够提供足够的反力,以确保前方地层不会发生较大 沉降。要求型钢支撑强度足够。 四、计算步骤 1、模型简化 假设千斤顶推力平均分配到四个支撑边,即每边承受200t的压力。 2、轴力验算 1)底边 σ,F/A,F/(8,A,2,A),2000000/(8,6428,2,9218),28.6MPa 112 2 200mm H型钢截面面积A=6428mm1 2 250mm H型钢截面面积A=9128mm2 σ,σ,210MPa 1max 2)右侧边 σ,F/A,F/(10,A),2000000/(10,6428),31.1MPa 21 σ,σ,210MPa 2max 3)顶边 σ,F/A,F/(4,A),2000000/(4,6428),77.8MPa 31 σ,σ,210MPa 3max

常用结构计算方法汇编之桥梁工程:吊装(预埋螺栓、吊环)计算

7 吊装(预埋螺栓、吊环) 7.1 设计原则 吊环设置均应通过计算,并应遵循以下原则: ⑴ 吊环采用I 级钢制作,严禁使用冷加工钢筋,以防脆断; ⑵ 作吊环计算采用容许应用值,在构件自重标准值作用下,吊环的拉应力不大于50N/mm 2(起吊时的动力系数已考虑在内); ⑶ 每个吊环按2个截面计算,当在一个构件上设有4个吊环时,计算时仅考虑3个吊环同时发挥作用; ⑷ 吊环应尽可能按构件重心对称布置,使其受力均匀。 7.2 吊环计算 7.2.1 吊环强度计算 吊环的应力可按下式计算: nA Q =σ≤][σ (3.7-1)式中: σ —— 吊环拉应力(N/mm 2); n —— 吊环的截面个数,一个吊环时为2;二个吊环时为4;四个吊环时为6; A —— 一个吊环的钢筋截面面积(mm 2); Q —— 构件的重量(N); ][σ —— 吊环的允许拉应力,一般取不大于50N/mm 2(已考虑超载系数、吸附系数、 动力系数、钢筋弯折引起的应力集中系数、钢筋角度影响系数等)。 一个吊环可起吊的重量可按下式计算: 2205.784 ][2d d Q ==πσ (3.7-2)除个别小型块状构件外,多数构件是用2个或4个吊环,且为对称布置,在此情况下应考虑吊绳斜角的影响,则一个吊环可起吊的重量按下式计算: αsin 5.7820d Q = (3.7-3) 式中: 0Q —— 一个吊环起吊的重量(N); d —— 吊环直径(mm); ][σ —— 吊环的允许拉应力,取50N/mm 2; α —— 吊绳起吊斜角(°)。 由式(3.7-3)算出吊环直径与构件重量的关系列于表3.7-1中,可供选用。 表3.7-1 吊环规格及可吊构件重量选用表 可吊构件重量(kN) 吊绳垂直 吊绳斜角45° 吊绳斜角60° 吊环直径d (mm) 1个吊环 2个吊环 4个吊环2个吊环4个吊环2个吊环4个吊环 吊环露出 混凝土面高度 (mm) 6 2.83 5.65 8.48 4.00 5.99 4.89 7.34 50 8 5.02 10.05 15.07 7.11 10.66 8.70 13.05 50 10 7.85 15.70 23.55 11.10 1 6.65 13.60 20.39 50 12 11.30 22.61 33.91 15.99 23.98 19.58 29.37 60 14 15.39 30.77 46.16 21.76 32.64 26.65 39.97 60

船体结构规范计算书

目录 1.计算说明 (3) 2.本船主尺度及计算参数 (3) 3.外板 (3) 4.甲板 (4) 5.单层底结构 (5) 6.舷侧骨架 (6) 7.甲板骨架 (7) 8.支柱 (9) 9.平面横舱壁 (10) 10.平面纵舱壁 (12) 11.浮箱结构计算 (13) 12.泵舱结构计算 (16)

1. 计算说明: 本船为无人的非自航的箱形驳船,在甲板上承载新下水船舶。并通过下潜、使新船下水。港内作业,属遮蔽航区。主船体采用纵骨架式结构,滑道部位特殊加强。浮箱采用横骨架式结构。全船结构设计依据中国船级社1996年《钢质海船入级与建造规范》(以下简称“规范”)第2篇之第2章“船体结构”、第5章“油船”及第12章“驳船”部分的要求进行计算。同时,满足中国船级社1992年《浮船坞入级与建造规范》中的有关要求。 2. 本船主尺度及计算参数: 1)船长L=60 m; 2)船宽B=35 m; 3)型深D=6 m; 4)计算吃水d=4 m; 5)方形系数C b= ▽/(L*B*d)≈1; 6)L/D=10, B/D=5.83; 7)纵骨间距S=0.0016L+0.5=0.6m=600mm; 8)肋板、强横梁及强肋骨间距S=2m 。 9)甲板负荷P 及甲板计算压头h: ①一般部位:P1=10t/m2=100kP a ,h1=0.14P1+0.3=14.03m; ②滑道部位:P2=25t/m2=250KP a,h2=0.14P2+0.3=35.3m; 3. 外板 3.1船底板 3.1.1 据规范5.2.1.1,船中部0.4L区域内的船底板厚度应不小于: t1=0.056sf b(L1+170)=0.056×0.6×1×(60+170) =7.728mm t2=6.4sf b d=6.4×0.6×1×6=9.41mm

预埋件和吊环

预埋件和吊环 A 预埋件 预埋件由锚板和直锚筋或锚板、直锚筋和弯折锚筋组成,见图9-42。 图9-42 预埋件的形式与构造 (a)由锚板和直锚筋组成;(b)由锚板、直锚筋和弯折锚筋组成1.受力预埋件的锚筋应采用热轧钢筋,严禁采用冷加工钢筋。 2.预埋件的受力直锚筋不宜少于4根,且不宜多于4层;其直径不宜小于8mm,且不宜大于25mm。受剪预埋件的直锚筋可采用2根。 预埋件的锚筋应位于构件的外层主筋内侧。 3.受力预埋件的锚板宜采用Q235级钢板。锚板厚度宜大于锚筋直径的0.6倍,受拉和受弯预埋件的锚板厚度尚宜大于b/8(b为锚筋间距)。 对受拉和受弯预埋件,其锚筋的间距b、b1和锚板至构件边缘的距离c、c1,均不应小于3d和45mm。 4.受拉直锚筋和弯折锚筋的锚固长度应不小于受拉钢筋锚固长度l s,且不应小于30d;受剪和受压直锚筋的锚固长度不应小于15d(d为锚筋直径)。 弯折锚筋与钢板间的夹角,一般不小于15°,且不大于45°。 5.考虑地震作用的预埋件,其实配的锚筋截面面积应比计算值增大25%,且应相应调整锚板厚度。在靠近锚板处,宜设置一根直径不小于10mm的封闭箍筋。 铰接排架柱顶预埋件的直锚筋:对一级抗震等级应为4根直径16mm,对二级抗震等级应为4根直径14mm。

B 吊环 1.吊环的形式与构造,见图9-43所示。图(a )为吊环用于梁、柱等截面高度较大的构件;图(b )为吊环用于截面高度较小的构件;图(c )为吊环焊在受力钢筋上,埋入深度不受限制;图(d )为吊环用于构件较薄且无焊接条件时,在吊环上压几根短钢筋或钢筋网片加固。 图9-43 吊环形式 吊环的弯心直径为2.5d (d 为吊环钢筋直径),且不得小于60mm 。 吊环的埋入深度不应小于30d ,并与主筋钩牢。埋深不够时,可焊在受力钢筋上。 吊环露出混凝土的高度,应满足穿卡环的要求;但也不宜太长,以免遭到反复弯折。其值可参考表9-22的数值选用。 2.吊环的设计计算,应满足下列要求: (1)吊环应采用HPB235级钢筋制作,严禁使用冷加工钢筋; (2)在构件自重标准值作用下,每个吊环按2个截面计算的吊环应力不大于50N/mm 2(已考虑超载系数、吸附系数、动力系数、钢筋弯折引起的应力集中系数、钢筋角度影响系数等)。 (3)构件上设有四个吊环时,设计时仅取三个吊环进行计算。吊环的应力计算公式: s A n G ?= 9800σ (9-6) 式中 A s ——一个吊环的钢筋截面面积(mm 2); G ——构件重量(t ); σ——吊环的拉应力(N/mm 2); n ——吊环截面个数;2个吊环时为4,4个吊环时为6。

钢结构之拉弯和压弯构件

拉弯和压弯构件 对于压弯构件,当承受的弯矩较小时其截面形式与一般的轴心受压构件相同。当弯矩较大时,宜采用弯矩平面内截面高度较大的双轴或单轴对称截面(图1)。 图1 弯矩较大的实腹式压弯构件截面 设计拉弯构件时,需计算强度和刚度(限制长细比);设计压弯构件时,需计算强度、整体稳定(弯矩作用平面内稳定和弯矩作用平面外稳定)、局部稳定和刚度(限制长细比)。 拉弯和压弯构件的容许长细比分别与轴心受拉构件和轴心受压构件相同。 一、拉弯和压弯构件的强度计算 拉弯和压弯构件的强度计算式 f W M A N nx x x n ≤+γ (1) 承受双向弯矩的拉弯或压弯构件,采用的计算公式 f W M W M A N ny y y nx x x n ≤++γγ (2) 式中 n A ——净截面面积; nx W 、ny W ——对x 轴和y 轴的净截面模量; x γ、y γ——截面塑性发展系数。 当压弯构件受压翼缘的外伸宽度与其厚度之比t b />y f /23513,但不超过 y f /23515时,应取x γ=1.0。 对需要计算疲劳的拉弯和压弯构件,宜取x γ=y γ=1.0,即按弹性应力状态计算。 二、实腹式压弯构件在弯矩作用平面内的稳定计算

确定压弯构件弯矩作用平面内极限承载力的方法很多,可分为两大类,一类是边缘屈服准则的计算方法,一类是精度较高的数值计算方法。 1. 边缘屈服准则 边缘纤维屈服准认为当构件截面最大纤维刚刚屈服时构件即失去承载能力而发生破坏,较适用于格构式构件。按边缘屈服准则导出的相关公式 y Ex x x x x f N N W M A N =??? ? ??-+??11 (3) 式中 x ?——在弯矩作用平面内的轴心受压构件整体稳定系数。 2.最大强度准则 实腹式压弯构件当受压最大边缘刚开始屈服时尚有较大的强度储备,即容许截面塑性深入。因此若要反映构件的实际受力情况,宜采用最大强度准则,即以具有各种初始缺陷的构件为计算模型,求解其极限承载力。 规范修订时,采用数值计算方法,考虑构件存在l/1000的初弯曲和实测的残余应力分布,借用了弹性压弯构件边缘纤维屈服时计算公式的形式,经过数值运算,得出比较符合实际又能满足工程精度要求的实用相关公式 y Ex px x x f N N W M A N =???? ? ?-+8.01? (4) 式中 px W ——截面塑性模量。 3. 实腹式压弯构件整体稳定计算 式(4)仅适用于弯矩沿杆长均匀分布的两端铰支压弯构件,为了把式(4)推广应用于其他荷载作用时的压弯构件,可用等效弯矩x mx M β (x M 为最大弯矩)代替公式中的x M 。另外,考虑部分塑性深入截面,采用x x px W W 1γ=,并引入抗力分项系数,即得到规范所采用的实腹式压弯构件弯矩作用平面内的稳定计算式 f N N W M A N Ex x x x mx x ≤?? ? ? ?-+'18 .01γβ? (5) 式中 N ——轴向压力设计值;

盾构隧道管片排版总结

管片选型与排版 区间盾构结构为预制钢筋混凝土环形管片,外径6200mm,内径5500mm,厚度350mm,宽度1200mm。在盾构施工开工前,应对管片进行预排版,确定管片类型数量. 1)隧道衬砌环类型 为满足盾构隧道在曲线上偏转及蛇形纠偏的需要,应设计楔形衬砌环,目前国际上通畅采用的衬砌环类型有三种:①直线衬砌环与楔形衬砌环的组合;②通用型管片;③左、右楔形衬砌环之间相互组合。国内一般采用第③种,项目隧道采用该衬砌环。 直线衬砌环与楔形衬砌环组合排版优缺点:优点—简化施工控制,减少管片选型工作量;缺点—需要做好管片生产计划,增加钢模数量。 盾构推进时,依据预排版及当前施工误差,确定下一环衬砌类型。由于采用衬砌环类型不完全确定性,所以给管片供应带来一定难度。2)管片预排版 1、转弯环设计 区间转弯靠楔形环完成,分三种:标准换、右转弯环、左转弯环。即管片环向宽度六块不是同一量,曲线外侧宽,内侧窄。 管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度;③标准环数与楔形环数之比u值。还有一个可供参考的因素:楔形量管模的使用地域。楔形量理论公式如下: △=D(m+n)B/nR ①

(D-管片外径,m:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径) 本次南门路到团结桥楔形环设计为双面楔形,楔形量对称设置于楔形环的两侧环面。按最小水平曲线半径R=300m计算,楔形量△=37.2mm,楔形角β=0.334°。 值得注意的是转弯环设计时,环宽最大和最小处是固定的,左转弯以K块在1点位设计,右转弯以K块在11点位设计,即在使用转弯环时,要考虑错缝拼装和管片位置要求。 2、圆曲线预排版 设需拟合圆曲线半径为450m(南门路到团结桥区间曲线半径值),拟合轴线弧长270m,需用总楔形量计算如下: β=L/R=0.6 ② △总=(R+D/2)β-(R-D/2)β=3720mm ③ 由△总计算出需用楔形环数量: n1=△总/△=100 ④ 标准环数量为: n2=(L-n1*B)/B=125 ⑤ 标准环和楔形环的比值为: u=n2:n1=5:4 ⑥ 即在R=450圆曲线上,标准环和楔形环比例为5:4,根据曲线弧长计算管片数量,确定出各类型管片具体数量,出现小数点时标准环数量减1,转弯环加1。

钢筋吊环计算

预制构件吊装应力计算及吊环设计计算 一、预制构件吊装应力计算 构件的吊点位置一般与构件实际工作的支点位置是不重合的,一般吊点比支点位置像跨中靠近一些。如果吊点与支点重合,那么吊装时候的跨中弯矩比工作状态下支点的跨中弯矩要大20%,此时,可能造成吊装应力大于规范允许值,这是因为构件吊装时,内力要乘以动力系数,规范规定动力系数为1.2,故要进行吊装计算。 实例说明,跨径16m低高度箱梁,如下图 已知条件:箱梁的恒载集度q=11.339KN/m,材料:C50砼(500号砼) 1、截面的抵抗惯性矩 见下表1

2、构件吊装时应力计算,见表 2 设计要求,预应力钢筋放张时,构件砼的强度为设计值的80%(即放张、起吊),构件设计强度为C50砼(500号砼),放张时为大于C40砼,此时砼允许压应力为 2/1.22875.0σcm KN ha =×=大于设计值2.033KN/cm 2(跨中截面) 砼允许拉应力2/182.082.1267.0σcm KN MPa ha ==×==设计值(吊环截面上缘) 计算满足规范要求,既设计选定的砼标号、预应力钢筋放张时砼要达到的强度,都是合适的。 二、吊环设计计算 1、 吊环采用R235制作,Rg=240MPa=24KN/cm 2(fsk=235MPa ), 应采用50号砼与

光圆钢筋的握裹力,{c}=16.5kg/cm=0.165KN/cm 2,每侧梁端个设一对吊环,每个吊环双肢。 梁的自重反力为:KN p 052.912 06 .16339.11=×= 考虑动力系数后,梁的自重应力KN P 263.109052.912.1'=×= 假设用28υ钢筋,4肢钢筋的面积为263.24158.64cm Fa =×=,吊环安全系数取K=4 2、考虑安全系数后,钢筋的强度为'≥4p Fa Rg 所以 KN KN 263.109781.1474 63 .2424>=×,选择的钢筋满足要求。 3、吊环的锚固长度计算 C50砼与光圆钢筋的允许粘结力为{C}=0.165KN/cm 2 摩阻力cm KN /4514.1π8.2165.0τ=××=,锚固长度:cm L 686.974514 .1781 .141== 吊环在砼中埋置深度为cm 923152060=++60+20+15-3=92cm,2肢埋置深度 cm cm 7.97184292>=×。如下图 构件必须采用R235钢筋制作,严禁使用冷加工钢筋。每个吊环按两肢界面计算,在构件自重标准值作用下,吊环的拉应力不应大于50Mpa,一个构件设置有4吊环时,仅考虑3个吊环同时发挥作用。吊环埋入混凝土深度不应小于35倍钢筋直径,端部做成180°弯钩,且应与构件内钢筋焊接或者绑扎,吊环内直径不应小于三倍钢筋直径,不应小于60mm.

盖板吊环

宣宁杭高速公路宣城至宁国段XN-04标预制盖板(吊装)施工方案 编制:校核:审批: 编制单位:巢湖市路桥公司宣宁高速XN-04标项目部 编制日期:二零一零年七月十三号

宣宁高速公路路基工程第四标段 预制盖板(吊装)施工方案 一、工程概况 本工程盖板采用集中预制,考虑到预制厂制板数量、使用时间和周期性的要求,选在砼拌合站附近,做到经济、合理、整齐、有序,形成标准化施工的要求。我标段共有盖板涵5道、通道6道,小型预制盖板共378片;预制盖板几何尺寸2400mm×990mm、3400mm×990mm、7000mm×990mm等多种尺寸,盖板重量约在1.5t~8.5t之间。 二、盖板吊环的安装及受力计算 预制盖板混凝土标号为C30。其中 机通盖板尺寸为7000mm×990mm×400mm,每块盖板配有钢筋445.23kg,C30混凝土2.77m3。 盖板涵盖板尺寸为3400mm×990mm×300mm(360mm),每块盖板配有钢筋约104.47kg,C30混凝土约1.11m3。 预制盖板吊环的形式与构造,见下图所示。

按照《建筑施工手册》(第四版缩印本)9-2-9-2中吊环设计的各项要求,吊环的弯心直径为2.5d,(d为吊环钢筋直径),且不得小于60mm。 吊环的埋入深度不应小于30d,并与主筋钩牢。埋入深度不够时,可焊在受力钢筋上。 吊环露出混凝土的高度,应满足穿卡环的要求;但也不宜超过100mm,以免遭到反复弯折。 在构件自重标准值作用下,每个吊环按2个截面计算的吊环应力不大于50N/mm2(已考虑超载系数、吸附系数、动力系数、钢筋弯折引起的应力集中系数、钢筋角度影响系数等)。 现场盖板的吊环施工我项目部全部采用φ20的一级钢制作吊环,现就我标段盖板几何尺寸分类情况来看,在此处仅对以下两种盖板作吊环的应力验算,便于安全施工。 1:7000mm×990mm×400mm盖板吊环的应力验算计算公式:δS=9800G/2m×A s =9800×7.77/{6×(3.14×202) /4} =76146/1884 =40.42N/mm2≤50N/mm2 式中δS—【规范】规定δS=50(N/mm2); As —吊环的钢筋截面面积(mm2); G —构件重量(t),机通盖板混凝土每块方量约为

吊耳计算书

吊耳及吊具计算书 1.钢筋吊环计算 σ=9807*G/n.A≤[σ] σ:吊环承受拉应力 n:吊环的截面个数:1个吊环2,2个吊环为4,4个吊环为6。 A:一个吊环的钢筋截面面积(mm)2。 G:构件重量(t)。 9807:(t)吨换算成牛顿(N)。 [σ]:吊环的允许拉应力,取50N/mm2,(考虑动力系数、钢筋弯折引起的应力集中系数,钢筋角度影响系数等)。(公路桥涵施工规范) (1).类型1:4个Φ16吊环能承受的最大重量: G max=6*2.011*102*50/9807=6.15 t (2).类型1:4个Φ20吊环能承受的最大重量: G max=6*3.14*102*50/9807=9.5t (3).类型2:4个Φ22吊环能承受的最在重量: G max=6*3.801*102*50/9807=11.6 t (4).类型2:4个Φ25吊环能承受的最在重量: G max=6*4.906*102*50/9807=15.0 t (5).类型3:4个Φ28吊环能承受的最在重量: G max=6*6.1544*102*50/9807=18.7t (6).类型3:4个Φ32吊环能承受的最在重量: G max=6*8.0384*102*50/9807=24.5t 2、钢板吊耳计算 a.按钢板容许拉应力计算 σ=9807*K*G/n*A≤[σ] σ:吊耳承受拉应力。 K:动力系数,取1.5。 n:吊耳的截面个数:1个吊耳2,2个吊耳为4,4个吊耳为6。 A:一个吊环的钢筋截面面积(mm)2。 G:构件重量(t)。 9807:(t)吨换算成牛顿(N)。 [σ]:钢板容许拉应力,取80N/mm2 b.按钢板局部承压计算 σ’=9807*K*G/n*A≤[σ] σ’:吊耳钢板承受压应力。 K:动力系数,取1.5。 n:吊环数量:1个吊耳1,2个吊耳为2,4个吊耳为3。 A:一个吊环的钢筋截面面积(mm)2。 G:构件重量(t)。 9807:(t)吨换算成牛顿(N)。 [σ]:吊环的容许压应力,取215N/mm2 c.按板板承受剪应力计算 τ=9807*K*G/n*A≤[σ] τ:吊耳承受剪应力。

内力图-地铁盾构计算书

1. 设计荷载计算 1.1 结构尺寸及地层示意图 ?=7.2 ?=8.9 2 q=20kN/m 图1-1 结构尺寸及地层示意图 如图,按照要求,对灰色淤泥质粉质粘土上层厚度进行调整: mm 43800 50*849+1350h ==灰。按照课程设计题目,以下只进行基本使用阶段的荷载计算。 1.2 隧道外围荷载标准值计算 (1) 自重 2 /75.835.025m kN g h =?==δγ (2)竖向土压 若按一般公式: 2 1 /95.44688.485.37.80.11.90.185.018q m KN h n i i i =?+?+?+?+?==∑=γ 由于 h=1.5+1.0+3.5+43.8=48.8m>D=6.55m ,属深埋隧道。应按照太沙基公式或普氏公式计算竖向土压: a 太沙基公式: )tan ()tan (0010 ]1[tan )/(p ??? γB h B h e q e B c B --?+--= 其中: m R B c 83.6)4/7.75.22tan(/1.3)4/5.22tan(/0000=+=+=?

(加权平均值0007.785 .5205 .42.7645.19.8=?+?= ?) 则:2 )9.8tan 83 .68 .48()9.8tan 83.68 .48(11/02.18920]1[9 .8tan )83.6/2.128(83.6p m KN e e =?+--=-- b 普氏公式: 2 0012/73.2699 .8tan 92 .7832tan 32p m KN B =??== ?γ 取竖向土压为太沙基公式计算值,即:2 1/02.189p m KN e =。 (3) 拱背土压 m kN R c /72.286.7925.2)4 1(2)4 1(2G 22=??- ?=?- =π γπ 。 其中:3/6.728 .1645.11 .728.10.8645.1m KN =+?+?= γ。 (4) 侧向主动土压 )2 45tan(2)245(tan )(q 0021? ? γ-?-- ?+=c h p e e 其中:2 1/02.189p m KN e =, 3/4.785 .5205 .41.7645.18m KN =?+?= γ 0007.785.5205.42.7645.19.8=?+?=? kPa c 1.1285 .5205 .41.12645.12.12=?+?= 则:200 00 2 1/00.121)27.745tan(1.122)27.745(tan 02.189q m KN e =-??--?= 2 00 00 2 2 /06.154)27.745tan(1.122)27.745(tan )85.54.702.189(q m KN e =-??--??+= (5) 水压力按静水压考虑: a 竖向水压:2 w1w w1/478.24=48.8×9.8=H =p m KN γ b 侧向水压:2 w1w w1/478.24=48.8×9.8=H =q m KN γ 2w2w w2/532.14=5.5)(48.8×9.8=H =q m KN +γ (6) 侧向土壤抗力 衬砌圆环侧向地层(弹性) 压缩量:) R 0.0454k EI 24()]R q (q -)q (q -)p [2(p =4c 4 c w2e2w1e1w1e1?+?+++ηδ 其中:衬砌圆环抗弯刚度取2 37 6.12326512 0.35×0.1103.45EI m KN ?=??= 衬砌圆环抗弯刚度折减系数取7.0=η;

盾构衬砌设计计算书

盾构隧道衬砌设计计算书 060987李博 一、设计资料 如图所示,为一软土地区地铁盾构隧道横断面,有一块封顶块K,两块邻接块L,两块标准块B 以及一块封底块D 六块管片组成。 q=20kN/m 2 j=7.2 j=8.9 部分数据 地面超载 2/20m kN q =超 地层基床系数 2/20000m kN k = 衬砌外径 m D 2.60= 衬砌内径 m D 5.5= 管片厚度 mm t 350= 管片宽度 m b 2.1=

管片裂缝宽度 允许值 []mm 2.0=v 接缝张开允许值 []mm 3=D 混凝土抗压强度 设计值 MPa f c 1.23= 混凝土抗压强度 设计值 MPa f t 89.1= 钢筋抗拉强度 设计值(II 级钢) MPa f y 300= 钢筋抗拉强度 设计值(II 级钢) MPa f y 300' = 管片混凝土 保护层厚度 mm a a s s 50' == 钢筋抗拉强度 设计值(I 级钢) MPa f y 210= 混凝土弹性模量 2 7 /1045.3m kN E ′= 钢筋弹性模量 (II 级钢) 28/100.2m kN E ′=钢 M30螺栓有效面 积 26.560mm A g = M30螺栓设计强 度 MPa R g 210= M30螺栓弹性模 量 28/101.2m kN E ′=螺栓 M30螺栓长度 cm l 5.18=螺栓 二、荷载计算 1、 自重 kN R D D g H h 81.1602)(41 220=×-=p g p 2、 竖向土压力 由于隧道上覆土层为灰色淤泥质粉质粘土,地层基床系数2 /20000m kN k =,推测应为硬黏性土,且隧道埋深超过隧道半径很多倍,故竖向土压力应按照太沙基公式计算。 衬砌圆环顶部的松弛宽度 m D B 73.6)4 8cot(200=+= j p 地面超载2 /20m kN q =超,且H q

钻孔桩钢筋笼吊筋吊环及孔口横担计算书

钢筋笼吊筋吊环及孔口横担计算书 1.计算依据 《桥梁钻孔桩施工设计图纸》; 《客货共线铁路桥涵施工技术指南》(TZ 203-2008); 《建筑施工计算手册》(第三版,江正荣); 2.计算说明 钢筋笼吊筋吊环及横担的设置按桩长60米以下设置横担1根,吊筋吊环2处;按桩长70米以上设置横担2根,吊筋吊环4处;吊筋吊环采用HPB300钢筋制作,孔口横担采用外径57mm ,壁厚5mm ,长度2.1m 的钢管。 吊环吊筋示意图 3.材料性能 3.1钢筋强度标准值与设计值 牌号 公称直径(mm ) 屈服强度标准 值2/mm N f yk 极限强度标准值2/mm N f stk 抗拉强度设计值2/mm N f yk HPB300 6-22 904.8 7.1 41081.58

3.2钢管的截面特性 3.3钢管强度设计值和弹性模量 4.钢筋笼吊筋吊环计算 4.1工况一 选本桥梁工程桩径1.25m 、桩长70m ,钢筋笼重量为7.188t ,采用HPB300 ?16mm 钢筋制作吊环4个,横担2根采用孔口横担采用外径76mm ;内径68mm ;壁厚5mm 的钢管。 4.1.1吊环的应力按下式计算: []σσ≤=nA G 9807 式中σ—吊环拉应力 —吊环的截面个数,一个吊环时为2;二个吊环时为4;四个吊环时为6; A —一个吊环的钢筋截面面积; G —构件的重量(t ); 9807—t (吨)换算成N (牛顿); —吊环的允许拉应力,一般不大于60N/mm2(已考虑超载系数、吸附系数、动力系数、钢筋弯折引起的应力集中系数、钢筋角度影响系数、钢筋代换等)。 []2/602/45.58201 6188.79807mm N mm N =<=??=σσ 满足要求 n []σ

盾构机吊装计算书

附件6:计算书 1.单件最重设备起吊计算 (1)单件设备最大重量:m=120t。 (2)几何尺寸:6240mm×6240mm×3365mm。 (3)单件最重设备吊装验算 图1 中盾吊装示意图 工况:主臂(L)=30m;作业半径(R)=10m 额定起重量Q=138t(参见性能参数表) 计算:G=m×K1+q =120×1.1+2.5=134.5t 式中:m=单件最大质量;K1=动载系数,取1.1倍;q=吊索具质量,吊钩2t+索具0.5t;额定起重量Q=138t>G=134.5t(最大) 故:能满足安全吊装载荷要求。 为此选择XGC260履带式起重机能满足盾构机部件吊装要求。 2 钢丝绳选择与校核

图2钢丝绳受拉图 主吊索具配备:(以质量最大120t为例) 主吊钢丝绳规格:6×37-65.0 盾构机最大重量为120t,吊具重量为2.5t. 总负载Q =120t+2.5t=122.5t 主吊钢丝绳受力P:P=QK/(4×sina) =34.57t a=77°(钢丝绳水平夹角),K-动载系数1.1 钢丝绳单根实际破断力S =331t 钢丝绳安全系数=331 /34.57=9.575,大于吊装规范要求的8倍安全系数,满足吊装安全要求。 (详见《起重机设计规范》(GB/T3811-2008)符合施工要求)。 3.吊扣的选择与校核 此次吊装盾构机,选用了6个55T的“?”型美式卸扣连接盾构机前盾、中盾的起吊吊耳与起吊钢丝绳,设每个卸扣所承受的负荷为H’,则 H’=K1×Q÷4 式中K1:动载系数,取K1=1.1,Q:前盾的重量。则H’=K1×Q÷4=1.1×120÷4=33T<55T 因此所选用的6个该型号“?”型美式卸扣工作能力是足够的,可以使用。 吊装器具选择如下: (1)美式弓型2.5寸55t卸扣6只。 (2)6×37+1-∮65钢丝绳4根,2根用于主钩吊装,两根用于辅助翻身。规格为Φ22×10m、Φ22×12m、Φ25×14m的钢丝绳数根。安全负荷为55t,满足施工

大型构件吊装标准计算书

吊装计算 1.1.1立柱吊装就位 (1)吊装设备选型 吊装设备选型按重量最大的预制立柱考虑,最重约为129t,吊装最大相对高度按15m 考虑(立柱最大高度为13.597m,承台预埋钢筋伸出0.42m,求得吊装最大相对高度为13.597+0.42=14.017m)。 考虑选用1 台250t 履带吊,配合翻转台将立柱翻转竖立,然后履带吊吊装、旋转、就位。根据《建筑机械使用安全技术规程》(JGJ33-2001)第4.2.10条款的要求:起重机带载行走时,载荷不得超过允许起重量的70%。 工况一:吊臂长选定为30m,配合翻转台翻转时最大作业半径按12.0m考虑,带载不走行作业,额定起重量92.3t。单机吊装按立柱重量的一半即64.5t考虑,250t吊钩重量4.11t,共计68.61t﹤92.3t,满足吊装要求。 工况二:吊臂长选定为30m,整体起吊立柱时最大作业半径按8.0m考虑,带载不走行作业,额定起重量154.3t。单机吊装立柱重量129t,250t吊钩重量4.11t,共计133.11t ﹤154.3t,满足吊装要求。 表错误!文档中没有指定样式的文字。-2 QUY250履带吊起重性能表

(2)钢丝绳选择 查《路桥施工计算手册》附表3-34,钢丝绳选用公称直径为72mm 、规格6×61 结构、公称抗拉强度为1700MPa 的钢丝绳,钢丝绳破断力P 为3300kN ,考虑钢丝绳之间荷载不均匀系数α按6×61钢丝绳取0.80,钢丝绳的安全系数K 按机动起重设备取6,则: 钢丝绳的容许破断拉力.0.803300 =4406b P S kN K α?==g 履带吊起吊时立柱预制节段最大自重Q 取129t ,按2个吊点平均承受构件荷载,每个吊点按4根钢丝绳计算(钢丝绳采用单根绕环),钢丝绳与水平面的夹角θ按不小于60°考虑,则钢丝绳内力: 112901186440sin 24sin 60 b Q S kN S kN n θ===≤=?g g ,满足要求。

相关文档