文档库 最新最全的文档下载
当前位置:文档库 › 圆锥曲线 椭圆 专项训练(学生用}

圆锥曲线 椭圆 专项训练(学生用}

圆锥曲线  椭圆  专项训练(学生用}
圆锥曲线  椭圆  专项训练(学生用}

圆锥曲线 椭圆 专项训练

【例题精选】:

例1 求下列椭圆的标准方程: (1)与椭圆x y 22416+=有相同焦点,过点P (,)56; (2)一个焦点为(0,1)长轴和短轴的长度之比为t ;

(3)两焦点与短轴一个端点为正三角形的顶点,焦点到椭圆的最短距离为3。 (4)准线方程为x =??

?

??4132,,且经过点;

(5)e c ==08216.,.

例2 已知椭圆的焦点为2),1,0()1,0(21=-a F F ,。 (1)求椭圆的标准方程;

(2)设点P 在这个椭圆上,且||||PF PF 121-=,求:tg F PF ∠12的值。

例3 已知椭圆上横坐标等于焦点横坐标的点,其纵坐标的长等于短半轴长的2

3。

求:椭圆的离心率。

小结:离心率是椭圆中的一个重要内容,要给予重视。

例4 已知椭圆x

y

2

2

9

1+=,过左焦点F 1倾斜角为

π6

的直线交椭圆于A B 、两点。

求:弦AB 的长,左焦点F 1到AB 中点M 的长。

小结:由此可以看到,椭圆求弦长,可用弦长公式,要用到一元二次方程中有关根的性质。

例5 过椭圆14

16

2

2

=+

y

x

内一点M (2,1)引一条弦,使弦被M 平分,求此弦所在直线方程。

小结:有关中点弦问题多采用“点差法”即设点做差的方法,也叫“设而不求”。

例6 已知C y

x

B A 的两个顶点,是椭圆

、125

16

)5,0()0,4(2

2

=+

是椭圆

在第一象限内部分上的一点,求?ABC 面积的最大值。

小结:已知椭圆的方程求最值或求范围,要用不等式的均值定理,或判别式来求解。(圆中用直径性质或弦心距)。要有耐心,处理好复杂运算。

【专项训练】: 一、 选择题:

1.椭圆63222=+y x 的焦距是

( )

A .2

B .)23(2-

C .52

D .)23(2+

2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是 ( )

A .椭圆

B .直线

C .线段

D .圆

3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)

23,25(

-,则椭圆方程是( ) A .

14

8

2

2

=+

x

y

B .

16

10

2

2

=+

x

y

C .

18

4

2

2

=+

x

y

D .16

10

2

2

=+

y

x

4.方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是 ( )

A .),0(+∞

B .(0,2)

C .(1,+∞)

D .(0,1)

5. 过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一

焦点2F 构成2ABF ?,那么2ABF ?的周长是( ) A. 22 B. 2 C. 2 D. 1 6. 已知k <4,则曲线

1492

2

=+

y

x

1492

2

=-+

-k

y

k x

有( )

A. 相同的准线

B. 相同的焦点

C. 相同的离心率

D. 相同的长轴

7.已知P 是椭圆1361002

2=+y

x 上的一点,若P 到椭圆右焦点的距离是5

34,则点P 到左焦点的距离是 ( )

A .

5

16

B .5

66 C .

8

75 D .

8

77

8.若点P 在椭圆

122

2

=+y

x

上,1F 、2F 分别是椭圆的两焦点,且

9021=∠PF F ,则2

1PF F ?的面积是( )

A. 2

B. 1

C.

2

3 D.

2

1

9.椭圆144942

2

=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的

方程为

( )

A .01223=-+y x

B .01232=-+y x

C .014494=-+y x

D . 014449=-+y x

10.椭圆

1

4

16

2

2

=+

y

x

上的点到直线0

22=-

+y x 的最大距离是

( )

A .3

B .

11

C .2

2

D .10

二、 填空题: 11.椭圆

2

2

14

x

y

m +

=的离心率为

12

,则m = 。

12.设P 是椭圆

2

2

14

x

y +=上的一点,12,F F 是椭圆的两个焦点,则12PF PF 的最大值

为 ;最小值为 。

13.直线y=x -2

1被椭圆x 2+4y 2=4截得的弦长为 。

14、椭圆372122x y +=上有一点P 到两个焦点的连线互相垂直,则P 点的坐标是

三、解答题:(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.) 15.已知三角形ABC 的两顶点为(2,0),(2,0)B C -,它的周长为10,求顶点A 轨迹方程.

16、椭圆的一个顶点为A (2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.

17、中心在原点,一焦点为F 1(0,52

)的椭圆被直线y=3x -2截得的弦的中点横坐标是2

1

,求

此椭圆的方程。

1、F 2分别是椭圆

2

2

14

x

y +=的左、右焦点.

(Ⅰ)若r 是第一象限内该数轴上的一点,22

125

4

P F P F +=- ,求点P 的坐标;

(Ⅱ)设过定点M (0,2)的直线l 与椭圆交于同的两点A 、B ,且∠AoB 为锐角(其中O 为作标原点),求直线l 的斜率k 的取值范围.

19.在平面直角坐标系xOy 中,经过点(02),且斜率为k 的直线l 与椭圆2

2

12

x

y +=有两个不同

的交点P 和Q . (I )求k 的取值范围;

(II )设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A B ,,是否存在常数k ,使得向量

O P O Q + 与AB

共线?如果存在,求k 值;如果不存在,请说明理由.

20.椭圆12

2

22=+b

y a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐

标原点. (1)求

2

2

11b

a

+

的值;(2)若椭圆的离心率e 满足

3

3≤e ≤

2

2,求椭圆长轴的取值范围.

圆锥曲线 椭圆 专项训练参考答案

【例题精选】: 例1(1)18

20

2

2

=+

y

x

(2)

1)1()1(2

22

2

2=-+-x t t

y

t (3)

19

12

19

12

2

2

2

2

=+

=+

x

y

y

x

(4)

.

119

1613

116

1913

2

2

2

2

=+

=+

y x

y

x

(5).

1100

36

136

100

2

2

2

2

=+

=+

y

x

y

x

例2 (1)

13

4

2

2

=+

x

y

(2

5

32

3

2524

4

94

25

|

|||2|

||

||

|cos 212

212

22

121=

-+

=

-+=

∠····可利用余弦定理求得

PF PF F F PF PF PF F

3

4tan 21=

∠PF F

例3 5

3=

e

例4 已知椭圆x

y

2

2

9

1+=,过左焦点F 1倾斜角为

π6

的直线交椭圆于A B 、两点。

求:弦AB 的长,左焦点F 1到AB 中点M 的长。

解: a b c ===3122,,

∴=++-=++=+=-=

∴=

+-=

+

-??

??

?

?==

+=-

直线的方程为代入得则··

A B y x x

y x

x x x x x A B k x x x x x M 33

22990

412

215032154

111332415422

33

2

2

2

2

12122

212

2

12

()

.

,||()()

()()

3

6)

2222

3(3

4)

()1(||2

2

21=

+-

=

-+=∴F M x x k M F

小结:由此可以看到,椭圆求弦长,可用弦长公式,要用到一元二次方程中有关根的性质。

例 5

x+2y-4=0

例6 解:设点坐标为C x y (,)11 则251640012

12

x y +=过A 、B 的直线方程是

x y 4

5

1+

=

即54200x y +-=

C x y d x y 点到直线的距离为54200542054

112

2

+-==

+-+||

)2045(214

5|

2045|452

1||2111221122-+=+-++=

=?∴y x y x d AB ABC S

···

40025162251612

12

12

1

2

=+≥x y x y ·=>>40001111x y x y (,)

∴≤x y 1110·2201040400401625)45(45112

1212

1111=?+≤

++=

+=

+∴y x y x y x y x

∴=

-=-=+=∴==

-S x y x y x y S ABC ABC ??12

202201021251625164002252

2102112

12

1212

11()()

,().

当且仅当在时,等号成立

时成立

即的最大值为

小结:已知椭圆的方程求最值或求范围,要用不等式的均值定理,或判别式来求解。(圆中

用直径性质或弦心距)。要有耐心,处理好复杂运算。 【专项训练】:

一、 选择题:ACD DABB BBD 填空题 11、3或3

16 12、 4 1 13、5

382 147

2

327232,,±

?

?

???-

±?? ?

?

?、 15、

3)

(x 15

9

2

2

±≠=+

y

x

16、解:(1)当

为长轴端点时, , ,椭圆的标准方程为:

(2

)当 为短轴端点时,

,椭圆的标准方程为:

17、设椭圆:

1

2

22

2=+b

y a

x (a >b >0),则a 2+b 2=50…①

又设A (x 1,y 1),B (x 2,y 2),弦AB 中点(x 0,y 0) ∵x 0=2

1,∴y 0=2

3-2=-2

1

由220022212122221222212

22222

2212213311b a y x b a x x y y k b x x a y y b x a

y b x

a y AB =?=?-=--=????????--=-?=+=+…②

解①,②得:a 2=75,b 2=25,椭圆为:25

75

2

2

x

y

+

=1

18、 (Ⅰ)易知2a =,1b =,3c =

∴1(3,0)F -,2(3,0)F .设(,)P x y (0,0)x y >>.则

22125(3,)(3,)34P F P F x y x y x y ?=-----=+-=- ,又22

14

x y +=,

联立222274

14

x y x y ?+=????+=??,解得2

2

113342x x y y =??=?????==

????,3(1,)2P . (Ⅱ)显然0x =不满足题设条件.可设l 的方程为2y kx =+,设11(,)A x y ,22(,)B x y .

联立22

2222

14(2)4(14)1612042x y x kx k x kx y kx ?+=??++=?+++=??=+?

∴122

1214x x k

=

+,122

1614k x x k

+=-

+由22

(16)4(14)120k k ?=-?+?>

2

2

163(14)0k k -+>,2

430k ->,得2

34

k >

.①

又A O B ∠为锐角cos 00AOB OA OB ?∠>??>

∴12120OA OB x x y y ?=+>

又2

12121212(2)(2)2()4y y kx kx k x x k x x =++=+++

∴1212x x y y +21212(1)2()4k x x k x x =++++22

2

1216(1)2()41414k k k k

k

=+?+?-

+++

2

22

12(1)21641414k k k k

k

+?=-

+++2

2

4(4)014k k

-=

>+

∴2

144

k -<<.②

综①②可知

2

344

k <<,∴k 的取值范围是33(2,)(

,2)

2

2

--

19.解:(Ⅰ)由已知条件,直线l 的方程为2y kx =+

代入椭圆方程得

2

2(2)12

x

kx ++

=.整理得22

122102k x kx ??+++= ???

直线l 与椭圆有两个不同的交点P 和Q 等价于222

1

844202k k k ???=-+=->

???

, 解得22

k <-或22

k >

.即k 的取值范围为22

22????--

+ ? ?

? ??

???

,,∞∞. (Ⅱ)设1122()()P x y Q x y ,,,,则1212()OP OQ x x y y +=++

,,

由方程①,122

4212k x x k

+=-+. ② 又1212()22y y k x x +=++. ③

而(20)(01)(21)A B AB =-

,,,,,.

所以O P O Q + 与AB

共线等价于12122()x x y y +=-+,将②③代入上式,解得22

k =

由(Ⅰ)知22

k <-

或22

k >

,故没有符合题意的常数k .

20、[解析]:设),(),,(2211y x P y x P ,由OP ⊥ OQ ? x 1 x 2 + y 1 y 2 = 0

01)(2,1,121212211=++--=-=x x x x x y x y 代入上式得: 又将代入

x y

-=1

12

22

2=+

b

y a

x 0)1(2)(2

2

2

2

2

2

=-+-+?b a x a x b a ,,

2,02

2

221b

a a

x x +=

+∴>?

2

22

2

21)1(b

a b a x x +-=

代入①化简得

2

112

2

=+

b

a

.

(2)

,

3

22

12

113

112

22

22

22

22

?

-

≤∴

-

==

a

b a

b a

b a

c e

又由(1)知1

22

2

2

-=

a

a b

2

62

52

34

5321

21

2

12

2

≤?≤≤?

-≤

∴a a

a ,∴长轴 2a ∈ [

6

,

5].

圆锥曲线基础练习题及答案

圆锥曲线基础练习题及答案 一、选择题: x2y2 ??1上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为 1.已知椭圆2516 A.2B. C.D.7 2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 x2y2x2y2x2y2x2y2 ??1B.??1 C.??1或??1 D.以上都不对A.916251625161625 3.动点P到点M及点N的距离之差为2,则点P的轨迹是 A.双曲线 B.双曲线的一支 C.两条射线D.一条射线 4.抛物线y2?10x的焦点到准线的距离是 51 B.C. D.102 5.若抛物线y2?8x上一点P到其焦点的距离为9,则点P的坐标为 A. A .,那么k? 三、解答题

11.k为何值时,直线y?kx?2和曲线2x2?3y2?6有两个公共点?有一个公共点?没有公共点? 12.在抛物线y?4x上求一点,使这点到直线y?4x?5的距离最短。 13.双曲线与椭圆有共同的焦点F1,F2,点P是双曲线的渐近线与椭圆的一个交点, 求渐近线与椭圆的方程。 2 2214.已知双曲线x?y?1的离心率e?2,过A,B的直线到原点的距离是.223ab 求双曲线的方程;已知直线y?kx?5交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值. 2y2 1 经过坐标原点的直线l与椭圆?1相交于A、B两2 点,若以AB为直径的圆恰好通过椭圆左焦点F,求直线l的倾斜角. 16.已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭 圆交于P和Q,且OP⊥OQ,|PQ|= ,求椭圆方程. 参考答案 1.D 点P到椭圆的两个焦点的距离之和为

圆锥曲线基础测试题大全

圆锥曲线基础测试题大 全 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

(北师大版)高二数学《圆锥曲线》基础测试试题 一、选择题 1.已知椭圆116 252 2=+ y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .7 2. 椭圆32x 2+16 y 2 =1的焦距等于( )。 A .4 B 。8 C 。16 D 。123 3.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程 为 ( ) A .116922=+ y x B .1162522=+y x C .1162522=+y x 或125 162 2=+y x D .以上都不对 4.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 ( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 5.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于( ) A .2 B .3 C .2 D .3 6.抛物线x y 102=的焦点到准线的距离是 ( ) A .2 5 B .5 C . 2 15 D .10 7. 抛物线y 2=8x 的准线方程是( )。 (A )x =-2 (B )x =2 (C )x =-4 (D )y =-2 8.已知抛物线的焦点是F (0,4),则此抛物线的标准方程是( ) (A )x 2=16y (B )x 2=8y (C )y 2=16x (D )y 2=8x 9.经过(1,2)点的抛物线的标准方程是( ) (A )y 2=4x (B )x 2=21y (C ) y 2=4x 或x 2=2 1y (D ) y 2=4x 或x 2=4y 10.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( ) A .(7, B .(14, C .(7,± D .(7,-± 11.椭圆mx 2+y 2=1的离心率是 2 3 ,则它的长半轴的长是( ) (A )1 (B )1或2 (C )2 (D )2 1 或1 13. 抛物线y =-8 x 2 的准线方程是( )。

(完整word版)圆锥曲线练习题含答案

圆锥曲线专题练习 一、选择题 1.已知椭圆 116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .7 2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( ) A . 116922=+y x B .1162522=+y x C .1162522=+y x 或125 162 2=+y x D .以上都不对 3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 ( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 4.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于( ) A .2 B .3 C .2 D .3 5.抛物线x y 102 =的焦点到准线的距离是 ( ) A . 25 B .5 C .2 15 D .10 6.若抛物线2 8y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( ) A .(7, B .(14, C .(7,± D .(7,-± 7.如果22 2 =+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .()+∞,0 B .()2,0 C .()+∞,1 D .()1,0 8.以椭圆 116 252 2=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A . 1481622=-y x B .127922=-y x C .1481622=-y x 或127 92 2=-y x D .以上都不对 9.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若∠2 1π = Q PF ,则双曲线的离心率 e 等于( ) A .12- B .2 C .12+ D .22+ 10.21,F F 是椭圆17 92 2=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则Δ12AF F 的面积为( ) A .7 B . 47 C .2 7 D .257 11.以坐标轴为对称轴,以原点为顶点且过圆09622 2 =++-+y x y x 的圆心的抛物线的方程() A .2 3x y =或2 3x y -= B .2 3x y = C .x y 92 -=或2 3x y = D .2 3x y -=或x y 92 =

圆锥曲线 椭圆 专项训练(学生用}

圆锥曲线 椭圆 专项训练 【例题精选】: 例1 求下列椭圆的标准方程: (1)与椭圆x y 22416+=有相同焦点,过点P (,)56; (2)一个焦点为(0,1)长轴和短轴的长度之比为t ; (3)两焦点与短轴一个端点为正三角形的顶点,焦点到椭圆的最短距离为3。 (4)准线方程为x =?? ? ??4132,,且经过点; (5)e c ==08216.,. 例2 已知椭圆的焦点为2),1,0()1,0(21=-a F F ,。 (1)求椭圆的标准方程; (2)设点P 在这个椭圆上,且||||PF PF 121-=,求:tg F PF ∠12的值。 例3 已知椭圆上横坐标等于焦点横坐标的点,其纵坐标的长等于短半轴长的2 3。 求:椭圆的离心率。 小结:离心率是椭圆中的一个重要内容,要给予重视。

例4 已知椭圆x y 2 2 9 1+=,过左焦点F 1倾斜角为 π6 的直线交椭圆于A B 、两点。 求:弦AB 的长,左焦点F 1到AB 中点M 的长。 小结:由此可以看到,椭圆求弦长,可用弦长公式,要用到一元二次方程中有关根的性质。 例5 过椭圆14 16 2 2 =+ y x 内一点M (2,1)引一条弦,使弦被M 平分,求此弦所在直线方程。 小结:有关中点弦问题多采用“点差法”即设点做差的方法,也叫“设而不求”。 例6 已知C y x B A 的两个顶点,是椭圆 、125 16 )5,0()0,4(2 2 =+ 是椭圆 在第一象限内部分上的一点,求?ABC 面积的最大值。 小结:已知椭圆的方程求最值或求范围,要用不等式的均值定理,或判别式来求解。(圆中用直径性质或弦心距)。要有耐心,处理好复杂运算。

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22221x y a b -=(a>0,b>0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于 ( C ) (A)3 (B)2 (C)5 (D )6 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF = (A). 2 (B). 2 (C).3 (D ). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A.2 B.3 C.5 D .10 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直线 AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A . 3 B .22 C.13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D.直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 2 5 D.5 2

圆锥曲线练习题及答案

… 圆锥曲线测试题(文) 时间:100分钟 满分100分 一、选择题:(每题4分,共40分) 1.0≠c 是方程 c y ax =+2 2 表示椭圆或双曲线的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .不充分不必要条件 、 2.如果抛物线y 2 =ax 的准线是直线x =-1,那么它的焦点坐标为 ( ) A .(1, 0) B .(2, 0) C .(3, 0) D .(-1, 0) 3.直线y = x +1被椭圆x 2 +2y 2 =4所截得的弦的中点坐标是( ) A .( 31, -3 2 ) B .(- 32, 3 1 ) C.( 21, -31) D .(-31,2 1 ) 4.一抛物线形拱桥,当水面离桥顶2m 时,水面宽4m ,若水面下降1m ,则水面宽为( ) A .6m B . 26m C . D .9m 5. 已知椭圆15922=+y x 上的一点P 到左焦点的距离是3 4 ,那么点P 到椭圆的右准线的距离是( ) A .2 B .6 C .7 D . 143 — 6.曲线 2 25 x + 2 9 y =1与曲线 2 25k x -+ 2 9k y -=1(k <9 )的( ) A.长轴长相等 B.短轴长相等 C.离心率相等 D.焦距相等 7.已知椭圆 2 5 x + 2 m y =1的离心率 e= 5 ,则m 的值为( ) A .3 B. 25 3 或 3 8.已知椭圆C 的中心在原点,左焦点F 1,右焦点F 2均在x 轴上,A 为椭圆的右顶点,B 为 椭圆短轴的端点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB ,则此椭圆的离心率等于( ) A . 12 B C .1 3 D 9 2)0>>n m 的曲线在同一坐标系 >

圆锥曲线基本题型总结

圆锥曲线基本题型总结:提纲: 一、定义的应用: 1、定义法求标准方程: 2、涉及到曲线上的点到焦点距离的问题: 3、焦点三角形问题: 二、圆锥曲线的标准方程: 1、对方程的理解 2、求圆锥曲线方程(已经性质求方程) 3、各种圆锥曲线系的应用: 三、圆锥曲线的性质: 1、已知方程求性质: 2、求离心率的取值或取值范围 3、涉及性质的问题: 四、直线与圆锥曲线的关系: 1、位置关系的判定: 2、弦长公式的应用: 3、弦的中点问题:

4、韦达定理的应用: 一、定义的应用: 1. 定义法求标准方程: (1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处 理) 1.设F1, F2 为定点,|F1F2| =6,动点M满足|MF1| + |MF2| = 6,则动点M的轨 迹是() A.椭圆 B.直线 C.圆 D.线段【注:2a>|F1 F2| 是椭圆,2a=|F1 F2|是线段】 2. 设 B - 4,0) , C4,0),且厶ABC的周长等于18,则动点A的轨迹方程为) x2 y2 y2 x2 A.25+ -9 = i y z0) B.25^9 = 1 徉0) x2 y2 y2 x2 C.^+16= 1 y z 0) D£+_9 = 1 y z 0) 【注:检验去点】 3. 已知A0, - 5)、B0,5) ,|PA| - |PB| = 2a,当a= 3 或 5 时,P点的轨迹为) A. 双曲线或一条直线 B. 双曲线或两条直线 C. 双曲线一支或一条直线

D. 双曲线一支或一条射线【注:2av|F1 F2|是双曲线,2a=|F1 F2|是射线,注意一支与两支的判断】

x直线和椭圆(圆锥曲线)常考题型

1 直线和圆锥曲线常考题型分析 运用的知识: 1、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-; 两条直线垂直,则直线所在的向量120v v = 2、韦达定理:若一元二次方程20(0)ax bx c a ++=≠有 两个不同的根12,x x ,则1212,b c x x x x a a +=-=。 3、中点坐标公式:1212 ,y 22 x x y y x ++==,其中,x y 是点1122(,)(,)A x y B x y ,的中点坐标。 4、弦长公式:若点1122(,)(,)A x y B x y ,在直线 (0)y kx b k =+≠上, 则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一, AB = 或者 AB = 例题1、已知直线:1l y kx =+与椭圆22 : 14x y C m +=始终有交点,求m 的取值范围 例题2、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。 设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。 由2 (1) y k x y x =+?? =? 消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得 2242(21)4410k k k ?=--=-+> 即21 04 k << ② 由韦达定理,得:212221 ,k x x k -+=-121x x =。 则线段AB 的中点为22 211 (,)22k k k --。 线段的垂直平分线方程为:2 21112()22k y x k k k --=-- 令y=0,得021122x k = -,则2 11 (,0)22 E k - ABE ?为正三角形, ∴211( ,0)22E k -到直线AB 的距离d AB 。 AB =22 1 k k = + d = 2 1 k += 解得k = 此时053x =。 例题3、已知椭圆C :22 221(0)x y a b a b +=>>的离心率 为 2 ,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0) 。 (I )求椭圆的方程; (II )若直线:(2) l x t t =>

(完整word版)圆锥曲线经典练习题及答案

一、选择题 1. 圆锥曲线经典练习题及解答 大足二中 欧国绪 直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到 1 l 的距离为其短轴长的丄,则该椭圆 4 的离心率为 1 (A ) ( B ) 3 (C ) I (D ) 2. 设F 为抛物线 c : y 2=4x 的焦点, 曲线 k y= ( k>0)与C 交于点P , PF 丄x 轴,则k= x (B )1 3 (C)— 2 (D )2 3?双曲线 2 x C : T a 2 y_ 1(a 0,b 0)的离心率为2,焦点到渐近线的距离为 '、3,贝U C 的 焦距等于 A. 2 B. 2、2 C.4 D. 4?已知椭圆 C : 0)的左右焦点为 F i ,F 2,离心率为 丄3,过F 2的直线l 3 交C 与A 、 B 两点, 若厶AF i B 的周长为4、、3,则 C 的方程为() 2 A. x_ 3 B. 2 x 2彳 xr y 1 C. 2 x 12 D. 2 x 12 5. y 2 b 2 线的一个焦点在直线 2 A.— 5 6.已知 已知双曲线 2 x ~2 a 1( a 0, b 0)的一条渐近线平行于直线 I : y 2x 10,双曲 2 B — 20 2 为抛物线y 2 ' 1 20 F l 上, 2 y 5 则双曲线的方程为( 也 1 100 A , B 在该抛物线上且位于x 轴的两侧, c 3x 2 1 C.— 25 占 八、、 的焦点, uu uuu OA OB A 、2 (其中O 为坐标原点),则 - 1^/2 8 7.抛物线 =X 2的准线方程是 4 (A) y (B) 2 (C) ) D M 辽 .100 25 ABO 与 AFO 面积之和的最小值是( ) x 1 (D)

高考数学专题复习与策略专题平面解析几何突破点圆锥曲线中的综合问题专题限时集训理

专题限时集训(十五)圆锥曲线中的综合问题 [建议用时:45分钟] 1.(2016·中原名校联盟二模)已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点分别为F 1, F 2,点B (0,3)为短轴的一个端点,∠OF 2B =60°. 图15-4 (1)求椭圆C 的方程; (2)如图15-4,过右焦点F 2,且斜率为k (k ≠0)的直线l 与椭圆C 相交于D ,E 两点,A 为椭圆的右顶点,直线AE ,AD 分别交直线x =3于点M ,N ,线段MN 的中点为P ,记直线PF 2的斜率为k ′.试问k ·k ′是否为定值?若为定值,求出该定值;若不为定值,请说明理由. [解] (1)由条件可知a =2,b =3,故所求椭圆方程为x 24+y 2 3=1.4分 (2)设过点F 2(1,0)的直线l 的方程为y =k (x -1). 由????? y =k x -1,x 24+y 23 =1,可得(4k 2+3)x 2-8k 2x +4k 2 -12=0.5分 因为点F 2(1,0)在椭圆内,所以直线l 和椭圆都相交,即Δ>0恒成立.设点E (x 1,y 1), D (x 2,y 2), 则x 1+x 2=8k 2 4k 2+3,x 1x 2=4k 2 -124k 2+3.6分 因为直线AE 的方程为y =y 1x 1-2(x -2),直线AD 的方程为y =y 2 x 2-2 (x -2), 令x =3,可得M ? ? ??? 3, y 1x 1-2,N ? ????3,y 2x 2-2,所以点P 的坐标? ????3,12? ????y 1x 1-2+y 2x 2-2.8分 直线PF 2的斜率为k ′=12? ?? ??y 1 x 1-2+y 2x 2-2-0 3-1 =14·x 1y 2+x 2y 1-2y 1+y 2x 1x 2-2x 1+x 2+4=14·2kx 1x 2-3k x 1+x 2+4k x 1x 2-2x 1+x 2+4

圆锥曲线高考题汇编[带详细解析]

第八章 圆锥曲线方程 ●考点阐释 圆锥曲线是解析几何的重点容,这部分容的特点是: (1)曲线与方程的基础知识要求很高,要求熟练掌握并能灵活应用. (2)综合性强.在解题中几乎处处涉及函数与方程、不等式、三角及直线等容,体现了对各种能力的综合要求. (3)计算量大.要求学生有较高的计算水平和较强的计算能力. ●试题类编 一、选择题 1.(2003京春文9,理5)在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +b y 2=0(a >b >0)的曲线大致是( ) 2.(2003京春理,7)椭圆?? ?=+=? ? sin 3cos 54y x (?为参数)的焦点坐标为( ) A.(0,0),(0,-8) B.(0,0),(-8,0) C.(0,0),(0,8) D.(0,0),(8,0) 3.(2002京皖春,3)已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点.如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( ) A.圆 B.椭圆 C.双曲线的一支 D.抛物线 4.(2002全国文,7)椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 等于( ) A.-1 B.1 C.5 D. - 5 5.(2002全国文,11)设θ∈(0, 4 π ),则二次曲线x 2cot θ-y 2tan θ=1的离心率的取值围为( ) A.(0, 2 1 ) B.( 22 ,21) C.( 2,2 2 ) D.( 2,+∞) 6.(2002文,10)已知椭圆222253n y m x +和双曲线22 2 232n y m x -=1有公共的焦点,那么双曲线的渐近线方程是( ) A.x =± y 2 15 B.y =± x 2 15

文科圆锥曲线专题练习及问题详解

文科圆锥曲线 1.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32a x =上一点,12PF F ?是底角为30的等腰三 角形,则E 的离心率为( ) () A 12 () B 23 () C 3 4 () D 4 5 【答案】C 【命题意图】本题主要考查椭圆的性质及数形结合思 想,是简单题. 【解析】∵△21F PF 是底角为0 30的等腰三角形, ∴322c a = ,∴e =3 4 , ∴0260PF A ∠=,212||||2PF F F c ==,∴2||AF =c , 2.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =;则C 的实轴长为( ) ()A ()B ()C 4 ()D 8 【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题. 【解析】由题设知抛物线的准线为:4x =,设等轴双曲线方程为:222x y a -=,将4x =代入等轴双曲线方程解 得y =||AB =a =2, ∴C 的实轴长为4,故选C. 3.已知双曲线1C :22 221(0,0)x y a b a b -=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距 离为2,则抛物线2C 的方程为 (A) 2x y = (B) 2x y = (C)28x y = (D)216x y = 考点:圆锥曲线的性质 解析:由双曲线离心率为2且双曲线中a ,b ,c 的关系可知a b 3=,此题应注意C2的焦点在y 轴上,即(0,p/2)到直线x y 3=的距离为2,可知p=8或数形结合,利用直角三角形求解。 4.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 (A ) 2211612x y += (B )221128x y += (C )22184x y += (D )22 1124 x y += 【命题意图】本试题主要考查了椭圆的方程以及性质的运用。通过准线方程确定焦点位置,然后借助于焦距和准线求解参数,,a b c ,从而得到椭圆的方程。 【解析】因为242c c =?=,由一条准线方程为4x =-可得该椭圆的焦点在x 轴上县2 2448a a c c =?==,所以2 2 2 844b a c =-=-=。故选答案C 5.已知1F 、2F 为双曲线22 :2C x y -=的左、右焦点,点 P 在C 上,12||2||PF PF =,则12cos F PF ∠=

圆锥曲线练习试题与详细答案

圆锥曲线归纳总结 ——for Yuri 第22sin cos θθ+部分:知识储备 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-=+ (3)弦长公式 直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离: 12AB x =-=或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1) 椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n + =>>≠且 距离式方程2a = 参数方程:cos ,sin x a y b θθ== (2) 双曲线的方程的形式有两种

标准方程:22 1(0)x y m n m n + =?< 距离式方程 :2a = (3) 三种圆锥曲线的通径 椭圆:22b a ;双曲线:2 2b a ;抛物线:2p (4) 圆锥曲线的定义 黄楚雅,分别回忆第一定义和第二定义! (5) 焦点三角形面积公式: P 在椭圆上时,122tan 2F PF b θ?=S P 在双曲线上时,122cot 2 F PF b θ ?=S (其中222 1212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠===?) (6) 记住焦半径公式: ①椭圆焦点在时为0a ex ±,焦点在y 轴上时为0a ey ± ②双曲线焦点在x 轴上时为0||e x a ± ③抛物线焦点在x 轴上时为0||2p x + ,焦点在y 轴上时0||2 p y + 3333333333333333333333333333333333333333333333333华丽的分割线3333333333333333333333333333333333333333333333333333333 第0sin xdx π ?部分:三道核心例题 例1.椭圆长轴端点为,A B ,O 为椭圆中心,F 为椭圆的右焦点,且1AF FB ?=, 1OF =。 (1)求椭圆的标准方程; (2)记椭圆的上顶点为M ,直线交椭圆于,P Q 两点,问:是否存在直线 l

圆锥曲线椭圆双曲线抛物线知识点总结例题习题精讲详细答案

【椭圆】 一、椭圆的定义 1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数 )2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆。这两个定点叫椭圆的焦点, 两焦点的距离叫作椭圆的焦距。 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形。 二、椭圆的方程 1、椭圆的标准方程(端点为a 、b ,焦点为c ) (1)当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; (2)当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 2、两种标准方程可用一般形式表示:22 1x y m n += 或者 mx 2+ny 2=1

三、椭圆的性质(以122 22=+b y a x )0(>>b a 为例) 1、对称性: 对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴为对称轴的轴对称图形; 并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。 2、范围: 椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。 3、顶点: ①椭圆的对称轴与椭圆的交点称为椭圆的顶点。 ②椭圆122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别 为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。a 和b 分别叫做椭圆的长半轴长和短半轴长。

专题突破练27 圆锥曲线中的定点、定值与存在性问题

专题突破练27 圆锥曲线中的定点、定值与存在性问题 1.(2020山东德州二模,20)已知椭圆C :x 2 a 2 + y 2b 2=1(a>b>0)与圆x 2+y 2=43 b 2 相交于M ,N ,P ,Q 四点,四边形 MNPQ 为正方形,△PF 1F 2的周长为2(√2+1). (1)求椭圆C 的方程; (2)设直线l 与椭圆C 相交于A 、B 两点,D (0,-1),若直线AD 与直线BD 的斜率之积为16 ,证明:直线恒过定点. 2.(2020河南、广东等五省联考,19)已知点P 在圆O :x 2+y 2=9上,点P 在x 轴上的投影为Q ,动点M 满足4PQ ????? =3√2MQ ?????? . (1)求动点M 的轨迹E 的方程; (2)设G (-3,0),H (3,0),过点F (1,0)的动直线l 与曲线E 交于A 、B 两点,问直线AG 与直线BH 的斜率之比是否为定值?若为定值,求出该定值;若不为定值,试说明理由. 3.(2020山东德州一模,20)已知抛物线E :x 2=2py (p>0)的焦点为F ,圆M 的方程为:x 2+y 2-py=0,若直线x=4与x 轴交于点R ,与抛物线交于点Q ,且|QF|=5 4 |RQ|. (1)求出抛物线E 和圆M 的方程; (2)过焦点F 的直线l 与抛物线E 交于A ,B 两点,与圆M 交于C ,D 两点(A ,C 在y 轴同侧),求证:|AC|·|DB|是定值. 4. (2020河北衡水中学高三下学期十调,理19)已知圆C 1:x 2+y 2=2,圆C 2:x 2+y 2=4,如图,C 1,C 2分别交x 轴正半轴于点E ,A.射线OD 分别交C 1,C 2于点B ,D ,动点P 满足直线BP 与y 轴垂直,直线DP 与x 轴垂直. (1)求动点P 的轨迹C 的方程; (2)过点E 作直线l 交曲线C 于点M ,N ,射线OH ⊥l 于点H ,且交曲线C 于点Q.问:1|MN |+1 |OQ |2 的值是否是定值?如果是定值,请求出该定值;如果不是定值,请说明理由. 5.(2020北京丰台一模,20)已知椭圆C :y 2 a 2+x 2b 2=1(a>b>0)的离心率为 √2 2 ,点P (1,0)在椭圆C 上,直线 y=y 0与椭圆C 交于不同的两点A ,B. (1)求椭圆C 的方程;

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧,且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|. 2. (Ⅰ建立适当的坐标系,求动点M的轨迹C的方程. (Ⅱ过点D且不与l1、l2垂直的直线l交(Ⅰ中的轨迹C于E、F两点;另外平面上的点G、H满足: 求点G的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在轴上,离心率,已知点到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆的一条准线方程是其左、右顶点分别 是A、B;双曲线的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB 并延长交椭圆C1于点N,若. 求证: 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为 a. (1)用半焦距c表示椭圆的方程及tg;

(2)若2 <3 ,求椭圆率心率 e 的取值范围 . 5. 已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为 (1)求椭圆的方程 (2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C D两点问:是否存在k的值,使以CD为直径的圆过E点?请说明理由 6. 在直角坐标平面中,的两个顶点的坐标分别为,,平 面内两点同时满足下列条件: ①;②;③∥ (1)求的顶点的轨迹方程; (2)过点的直线与(1)中轨迹交于两点,求的取值范围 7. 设,为直角坐标平面内x轴.y轴正方向上的单位向量,若 ,且 (Ⅰ)求动点M(x,y的轨迹C的方程; (Ⅱ)设曲线C上两点A.B,满足(1直线AB过点(0,3),(2若,则OAPB为矩形,试求AB方程.

圆锥曲线练习题附答案

圆锥曲线练习题附答案公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

圆锥曲线 一、填空题 1、对于曲线C ∶1 42 2-+-k y k x =1,给出下面四个命题: ①由线C 不可能表示椭圆; ②当1<k <4时,曲线C 表示椭圆; ③若曲线C 表示双曲线,则k <1或k >4; ④若曲线C 表示焦点在x 轴上的椭圆,则1<k <2 5 其中所有正确命题的序号为_____________. 2、已知椭圆)0(122 22>>=+b a b y a x 的两个焦点分别为21,F F ,点P 在椭圆上, 且满足021=?PF ,2tan 21=∠F PF ,则该椭圆的离心率为 3.若0>m ,点?? ? ??25,m P 在双曲线15422=- y x 上,则点P 到该双曲线左焦点的距离为 . 4、已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 . 5、已知点P 是抛物线24y x =上的动点,点P 在y 轴上的射影是M ,点A 的 坐标是(4,a ),则当||a >4时,||||PA PM +的最小值是 . 6. 在ABC 中,7 ,cos 18 AB BC B ==- .若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e = . 7.已知ABC ?的顶点B ()-3,0、C ()3,0,E 、F 分别为AB 、AC 的中点,AB 和AC 边上的中线交于G ,且5|GF |+|GE |=,则点G 的轨迹方程为

8.离心率3 5 = e ,一条准线为x =3的椭圆的标准方程是 . 9.抛物线)0(42<=a ax y 的焦点坐标是_____________; 10将抛物线)0()3(42≠-=+a y a x 按向量v =(4,-3)平移后所得抛物线的焦点坐标为 . 11、抛物线)0(12 <= m x m y 的焦点坐标是 . 12.已知F 1、F 2是椭圆2 2 22)10(a y a x -+=1(5<a <10=的两个焦点,B 是短轴的 一个端点,则△F 1BF 2的面积的最大值是 13.设O 是坐标原点,F 是抛物线)0(22>=p px y 的焦点,A 是抛物线上的一点,与x 轴正向的夹角为60°,则||OA 为 . 14.在ABC △中,AB BC =,7 cos 18 B =- .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = . 二.解答题 15、已知动点P 与平面上两定点(A B 连线的斜率的积为定值 12 -. (Ⅰ)试求动点P 的轨迹方程C. (Ⅱ)设直线1:+=kx y l 与曲线C 交于M 、N 两点,当|MN |=3 2 4时,求直线l 的方程.

精选圆锥曲线专项训练

精选圆锥曲线专项训练 一、 填空题 1、椭圆的中心在原点,有一个焦点F (,)01-,它的离心率是方程25202 x x -+=的一个根,椭圆的方程是 ; 2、若椭圆x k y e 2 2 8 9 112 ++ == 的离心率, 则实数k 的值是 ; 3、过椭圆 x y F 2 2 1 36 25 1+ =的焦点作直线交椭圆于A 、B 二点,F 2是此椭圆的另一焦点,则 ?ABF 2的周长为 ; 4、椭圆372122x y +=上有一点P 到两个焦点的连线互相垂直,则P 点的坐标是 ; 5、抛物线292 y x =上一点M 到准线的距离为738 ,则点M 到抛物线顶点的距离是 。 6、焦点在直线34120x y --=上的抛物线的标准方程为 。 7、抛物线y Px 22=上一点M m (,)4到焦点距离等于6,则m = 。 8、一动点到y 轴的距离比到点( 2,0 )的距离小2,这动点的轨迹方程是 。 9、抛物线y ax a =<402 ()的焦点坐标为 。 10、在抛物线y x 22=上求一点P ,使点P 到直线x y -+=30的距离最短。 11、若抛物线的准线方程为2310x y +-=,焦点为(,)-21,则抛物线的对称轴方程是 12、P 1P 2是抛物线的通径,Q 是准线与对称轴的交点,则∠=P QP 12 。 13、双曲线 x y 2 2 25 9 1- =上一点 P ,到一个焦点的距离为12,则P 到另一个焦点的距离为 14、以230x y ±=为渐近线,且经过点(1 , 2)的双曲线是 。 15、双曲线的离心率e =2,则它的一个顶点把焦点之间的线段分成长、短两段的比是 。 16、双曲线x y 2 2 3 1- =的渐近线中,斜率较小的一条渐近线的倾斜角为 17、已知双曲线的渐近线方程为340x y ±=,一条准线的方程为5330y +=,求这双曲线方程 18、与双曲线x y 2 2 36 4 1- =共轭的双曲线方程是 ,它们的焦点所在的圆方程

圆锥曲线基础测试题大全

(北师大版)高二数学《圆锥曲线》基础测试试题 一、选择题 1.已知椭圆 116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .7 2. 椭圆32x 2+16 y 2 =1的焦距等于( )。 A .4 B 。8 C 。16 D 。123 3.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( ) A . 116922=+y x B .1162522=+y x C .1162522=+y x 或125 162 2=+y x D .以上都不对 4.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 ( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 5.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于 ( ) A .2 B .3 C .2 D .3 6.抛物线x y 102=的焦点到准线的距离是 ( ) A .25 B .5 C .215 D .10 7. 抛物线y 2=8x 的准线方程是( )。 (A )x =-2 (B )x =2 (C )x =-4 (D )y =-2 8.已知抛物线的焦点是F (0,4),则此抛物线的标准方程是( ) (A )x 2=16y (B )x 2=8y (C )y 2=16x (D )y 2=8x 9.经过(1,2)点的抛物线的标准方程是( ) (A )y 2=4x (B )x 2= 21y (C ) y 2=4x 或x 2=2 1 y (D ) y 2=4x 或x 2=4y 10.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( ) A .(7, B .(14, C .(7,± D .(7,-±

最新高考数学二轮专题综合训练-圆锥曲线(分专题-含答案)

圆锥曲线综合训练题 一、求轨迹方程: 1、(1)已知双曲线1C 与椭圆2C :22 13649 x y +=有公共的焦点,并且双曲线的离心率1e 与椭 圆的离心率2e 之比为7 3,求双曲线1C 的方程. (2)以抛物线2 8y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0, 27e = 由127 3 e e = 得13e =设双曲线的方程为2 2 221(,0)y x a b a b -=>则22222 13 139a b a b a ?+=??+=? ? 解得229,4a b == 双曲线的方程为 22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00 62 2 x x y y +? =????=??,∴00262x x y y =-??=?. 代入2008y x =得:2 412y x =-.此即为点P 的轨迹方程. 2、(1)ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=5 3 sinA,求点A 的轨迹方程. 解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a , 8=c ,有6=b ,故其方程为 ()0136 1002 2≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有???????='='33 y y x x ,代入①,得A 的轨迹方程为 ()01324 9002 2≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).

圆锥曲线经典题型总结(含答案)

圆锥曲线整理 1.圆锥曲线的定义: (1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d . 圆锥曲线的定义是本部分的一个重点内容,在解题中有广泛的应用,在理解时 要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12 222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。 (3)抛物线:开口向右时22(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。 注意:1.圆锥曲线中求基本量,必须把圆锥曲线的方程化为标准方程。 2.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): 椭圆:由x 2 ,y 2分母的大小决定,焦点在分母大的坐标轴上。 双曲线:由x 2 ,y 2项系数的正负决定,焦点在系数为正的坐标轴上; 抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 3.与双曲线x 2a 2- y 2 b 2 =1有相同渐近线的双曲线方程也可设为x 2a 2- y 2 b 2 =λ(λ≠0), 渐近线方程为y =±b a x 的双曲线方程也可设为x 2a 2- y 2 b 2 =λ(λ≠0).要求双曲线x 2a 2- y 2b 2 =λ(λ≠0)的渐近线,只需令λ=0即可. 4.直线与圆锥曲线的位置关系的判断是利用代数方法,即将直线的方程与圆锥曲线的方程联立,根据方程组解的个数判断直线与圆锥曲线的位置关系. 解决直线与圆锥曲线问题的通法 (1)设方程及点的坐标. (2)联立直线方程与曲线方程得方程组,消元得方程. (3)应用韦达定理及判别式. (4)结合已知、中点坐标公式、斜率公式及弦长公式求解. 5.若直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),且直线P 1P 2的斜率为 k ,则弦长|P 1P 2|=1+k 2|x 1-x 2|= 1+1 k 2|y 1-y 2|(k ≠0).|x 1-x 2|,|y 1-y 2|

相关文档
相关文档 最新文档