文档库 最新最全的文档下载
当前位置:文档库 › 纤维素生物乙醇生产关键技术

纤维素生物乙醇生产关键技术

纤维素生物乙醇生产关键技术
纤维素生物乙醇生产关键技术

纤维素生物酒精生产关键技术简要分析

李 明 姚 珺 翁 伟 吴 彬 吴 畏

湖南农业大学工学院

摘 要:全球气候变暖和自然资源的枯竭,纤维素生物酒精研究是热点之一。纤维素生物质作为生产生物酒 精的原料,转化技术难度大,尚不成熟。该文主要对纤维素生物质生物酒精生产过程进行了分析, 提出有待解决的问题,并讨论关键技术。得出生物质机械化收集方式能有效保证生物质原料的数量 和减少原料成本;通过基因工程途径构建生产纤维素酶提高酶适应性和活性,加快水解效率和增强 耐热性能;开发节能精馏装置和注重转化后废物利用。农业工程、生物化学、基因工程等多学科的 综合发展将实现纤维素生物酒精工业化。

关键词:生物能源,生物酒精,生物质,纤维素,生产过程

0 引 言

由于温室气温排放导致全球气温变暖,自然石化资源短缺,生物能源成为世界上研究热点。中国是世界上消耗石油第二的国家,大约占全世界总量的6%[1]。国际能源中心(IEA)估计中国到2030年每天消耗1.4×107桶汽油;随着汽车工业的发展和普及,2020年,汽车的使用量从2004年大约2.4×107台增加到90-140×107台,运输所需的能源从现在比例约33%发展到57%左右,每天的所需量从目前的1.6×107桶到5.0×107桶。因此,到2030年,温室排放气体将增长至7.14Gt/年[2]。对石油的需求导致中国更加依赖进口石油,2030年,75%的石油将依靠进口[2]。因此,中国面临能源需求、国家能源安全和环境污染的挑战。中国作为发展中发展最快,世界上人口最多的国家,在经济快速发展和国际地位大幅提升的基础,应该发挥其主导作用,制定研究政策和目标,开发利用可持续“中性碳”能源,其中包括生物酒精的生产和使用[3]。

纤维素生物质转化成生物酒精是世界上生物能源发展的热点研究之一[4-8]。纤维素生物质主要包括农业残渣(水稻、玉米等秸秆)、森林残渣(树枝、锯末)、废弃物(废纸)、草本植物(芦竹)和木质植物(麻疯树、杨树),资源非常丰富,中国仅秸秆一年约有8.4 亿吨[9],林木废弃物约2亿吨[10];到2030年,每年农作物残渣量达5.53EJ;森林残渣达0.9EJ(3/4来自木材加工,1/4来自森林残枝残叶);加上生物质能源种植(每公顷平均产量15吨干,10%的土地可以作为种植面积[10]),统计计算,每年可以提供约23EJ的能源,相当于6000亿升的石油。而根据IEA的预测,2030年中国需要12.4EJ 的交通运输液体能源[1]。如果能够充分利用木质纤维素生物质,提高转化技术,生成酒精,中国可以足够满足运输能源的需求。通过转化生成生物酒精使用是中性碳排放过程,减少温室气体排放,有利于环境和资源的平衡利用。

世界上纤维素生物质转化生物酒精的技术基本上处于研究阶段[11-15]。我国在纤维素生物质转化生物酒精的技术方面起步较晚,还是处于初步研究阶段[16-17]。本文主要对纤维素生物质生物酒精生产过程中关键技术进行简要分析,指出存在的难点和可能性的解决方法以便进一步深入研究。

1 纤维素生物酒精生产

1.1 纤维素生物质作为生物酒精原料的特征

糖类和淀粉转化酒精的工程通过发酵,在世界上已经实用化;草本纤维素和木材纤维素转化酒精正处于实用化过程研究阶段。从生物质转化为生物酒精的容易程度来比较可以得出:糖类 > 淀粉 > 草本纤维素 > 木材纤维素[4]

淀粉:葡萄糖分子同序排列

纤维素:葡萄糖分子交错排列

图1 淀粉和纤维素分子简图

淀粉和纤维素都是由葡萄糖组成的多分子高聚体。但是淀粉和纤维素的葡萄糖分子的结构不相同,如图1所示。淀粉容易生物化学分解,但是纤维素大分子是由葡萄糖脱水,通过B一1,4葡萄糖苷键连接而成的直链结晶性聚合体。在常温下不发生水解,高温下水解也很缓慢。另外,纤维素生物质中半纤维素由不同类型的单糖构成的异质多聚体,包括木糖、阿伯糖、甘露糖和半乳糖等。半纤维素木聚糖在木质组织中约占总量的20%~40%,它结合在纤维素微纤维的表面,并且相互连接(如图2)。其三,草本和木质纤维素表面因为酚类聚合物木质素的存在,更加难以分解。因此从纤维素生物质转化为酒精,由于半纤维素和木质素的存在,普通的发酵法不能够顺利完成生物酒精的生成[12-14]。

图 2 纤维素、半纤维素和木质素图

1.2 纤维素生物酒精生产过程及有待解决的问题 从纤维素生物质转化为生物酒精的整个加工过程,如图3所示,大致可以分为六个过程。

首先是生物质的收集、水分调节和粉碎;然后是生物酒精生成过程,包括前处理、糖化、发酵和脱水;比如采用进行水热处理、碱化或微生物处理等的前处理措施来使纤维素易于糖化分解;其次,纤维素和半纤维素的糖化处理;接着采用酵母等微生物作用,产生酒精的过程,即发酵过程;然后,进行酒精和水分离,蒸馏脱

水过程,完成生物酒精的生成;最后,废水和废弃物处理。

1.2.1 生物质利用

世界上对生物质的种类开发[21]和数量估算[9-10]等研究比较多,但关于生物质利用收集运输[22]等相关研究不是太多。很多研究者提出了生物质收集的问题,但没有进行较深入的研究。主要存在以下问题:1)季节性和地域性强;2)能量密度低;3)输送成本高。 1.2.2 前处理、糖化技术开发

现在研究集中在生物酒精的转化过程中前处理分离木质素、纤维素糖化技术的开发和提高发酵效率[12-16]。按前处理技术分类,可以分为:1)物理方法(粉碎、爆碎和水热处理等);2)化学方法(酸处理、碱化处理);3)微生物方法(酵素、微生物菌类利用)。同样按糖化技术可以分为三类::1)物理方法(水热处理等);2)化学方法(酸处理);3)微生物方法(酵素、微生物菌类利用)。

按照前处理和糖化综合技术可分成6大类,对比结果如表1。其中前5种方法,基本完成实验研究,处于应用初试阶段,但可以看出各种方法各有优点和缺点,在现有的工艺条件下,还没有最佳的生产工艺;微生物菌处理+微粉碎+酵素法是虽然处理速度慢,但能量效益和转化效果有望比较理想,环境负荷特低,所以前景最好,但各阶段都处于开发中。总体上,尚未有最佳的纤维素生物酒精的加工工艺。

图 3 生物酒精生产过程

方法处理速度能量效率转化效果环境负荷浓硫酸法快好一般非常高二段稀硫酸法快一般差高加压热水法非常快一般非常差低稀硫酸+酵素法慢好较好高微粉碎+酵素法

慢不好较好低微生物菌处理+微粉碎+酵素法

良好(期待中)

较好

表 1 前处理糖化方法比较

1.2.3 发酵过程

如图4所示,三种转化过程。

图4 酒精生成流程图

1)传统方法:即纤维素酶法水解与乙醇发酵分步进行,水解和发酵都在最合适的温度下进行,但在酶解过程中分解糖没有利用反而反馈抑制酶的活性。 2)同时糖化和发酵:同时糖化和发酵即纤维素酶解与葡萄糖的乙醇发酵在同一个反应器中进行,酶解过程中产生的葡萄搪被微生物所迅速利用,解除了葡萄糖对纤维素酶的反馈抑制作用,提高了酶解效率。要求纤维素酶生产成本和周期的降低,能同时发酵五碳糖和六碳糖的转基因酵母,优化的预处理手段以及连续工艺的开发和使用;但存在水解和发酵所需的最佳温度不能匹配。

3)基因转化微生物直接生成:通过某些微生物的直接发酵可以转换为酒精。要求微生物既能产生纤维素酶系水解纤维素又能发酵糖产生乙醇。此方法不需添加额外的酶,但后者需要酶基因的转入,是一种有前景的方法。

1.2.4 蒸馏、脱水

在这个环节主要要提取高度酒精,去水化;在此过程中主要要注意减少能源消耗。 1.2.5 废水、废物处理

减少环境污染,提高废弃物利用,开发肥料、饲料和燃料利用,并力求低能源消耗和低成本。 2 关键技术讨论

2.1 生物质收集区域规划和机械化开发

图5 生物质作业机械

要使生物酒精工业工厂化生产,首先保证充足的生物质原料;将分散性、季节性和区域性强的生物质进行收集,各个地区的生物质种类及数量、质量都是不相同的,因此进行区域规划,来有效实现区域作业。如美国NREL研究得出50Km 范围内所消耗的能量和成本是比较合适的 [23] 。

其次是大力开发生物质收集机械自动化,可以提高生产率,减少成本和解决季节性强等要求。如图5,稻杆作业机械。

2.2 酒精转化新研究技术分析

综合前处理糖化和发酵三种转化过程,酸化转化过程比较简单,但生成后的废物、废水处理造成的环境负担并不符合未来的发展方向;如图6所示理想的纤维素生产生物酒精的过程[21, 25]

图 6 最佳转化技术

在此过程中,主要是前处理加热或酸化处理中,容易产生芳香族化合物等抑制物质[24];纤维素酶的利用率低[25]等主要问题,主要解决办法包括:

1)试图从其他物种中寻找更符合工业应用以及更具有应用前景的纤维素酶,提高酶的适应性,加快水解效率和增强耐热性能。

2)应用微生物酶工程技术,通过分子演化和设计来提高酶的功能性;通过强化的低成本发酵来生产酶制剂;通过基因工程途径构建生产纤维素酶提高酶活性。主要包含三个研究方向:(a)根据对纤维素结构和催化机理的研究,合理地设计每一种纤维素酶;(b)对纤维素酶的定向进化,根据随机突变或分子重组的方法筛选改造后的纤维素酶;(c)重组纤维素酶体系,提高纤维素对不溶性纤维素的水解速率或程度。

3)通过智能控制技术对酶解/发酵过程进行智能化在线监控,可以实时精确地优化动态反应条件,提高酶解/发酵效率。

4)研究开发适合该体系的高效生物反应器和建立描述反应动力学的数学模型对提高效率、掌握过程的机理及指导过程放大都将有重要的意义。

5)开发节能浓缩、脱水装置,开发膜分离精馏技术。

2.3 废水、废物处理

完成酒精转化后,废水、废物处理是容易忽视的研究内容;为了不增加二次环境污染,这个环节必须而且要对纤维素生物酒精的生命周期评价起较重要的作用,因此,必须考虑作为燃料能源利用,肥料开发和排水处理。

3 结 论

纤维素生物质作为生物酒精原料,在转化成生物酒精的六个过程中,由于纤维素生物质的分散性和不连续性,使生物质收集方式的改变能有效减少生物酒精转化成本[18-19];前处理中,纤维素表面包围的木质素的脱离和分离技术,是纤维素生物质转化生物酒精的关键问题之一[14];糖化过程中,设法高速分解纤维素结晶体;发酵工程中,开发半纤维素高效发酵的微生物和转化生物酒精的微生物;膜分离脱水技术等高浓度酒精分离技术;除此之外,生物酒精的品质规格及计量标准以及对社会、环境和经济的综合调查也是有待研究的课题。随着生物化学、分子生物学以及基因工程等多种交叉学科的快速发展,不久将来纤维素生物酒精会实现工业化,

有效解决世界上燃料不足的难题。

参考文献:

[1] Yang B. Lu Yanpin. The promise of cellulosic ethanol production in China[J]. Journal of Chemical Technology and Biotechnology. 2007(82):6–10.

[2] IEA, World Energy Outlook 2009. International Energy Agency, Paris.

[3] 哥本哈根世界气候大会报道[EB/OL].https://www.wendangku.net/doc/033950618.html,/world/special/gebenhagenqihou, 2009, 12,18.

[4] Lynd LR, Cushman JH, Nichols RJ and Wyman CE, Fuel ethanol from cellulosic biomass[J].

Science 251:1318–1323 (1991).

[5] Balat M, Balat H. Recent trends in global production and utilization of bio-enthanol fule[J].

Applied Energy, 86:2273–2282.doi:10.1016/j.apenergy.2009.03.015.

[6] Yuan J S, Tiller K H, AI-Ahmad H, Stewart N R, Stewart Jr C N. Plants to power: bioenergy to fuel the future[J]. Trends in Plant Science, 13(8):421–429.doi:10.1016/j.tplants.2008.06.001.

[7] Wyman CE, Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power. Biotechnol Prog 19:254–262 (2003).

[8] Schmer M R, Vogel K P, Mitchell R B and Perrrin R K. Net energy of cellulosic ethanol from

switchgrass. PNAS 105:464–469(2008).

[9] 毕于运,高春雨,王亚静,等. 中国秸秆资源数量估算[J]. 农业工程学报,2009,25(12):211–217.

[10] 宋安东,裴广庆,王风芹,等. 中国燃料乙醇生产用原料的多元化探索[J].

农业工程学报,2008,24(3):302–307.

[11] Himmel M E, Ding S Y, Johnson D K, Adney WS, Nimlos M R, Brady J W, Foust T D: Biomass recalcitrance: engineering plants and enzymes for biofuels production[J]. Science 2007, 315:804–807.

[12] Chen F, Dixon RA: Lignin modification improves fermentable sugar yields for biofuel

production[J]. Nat Biotechnol 2007, 25:759–761.

[13] Nguyen QA, Tucker MP, Keller FA, Eddy FP: Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 2000, 84– 86:561–576.

[14] Wang G.S. Wang, X.J. Pan, J.Y. Zhu, R. Gleisner and D. Rockwood. Sulfite pretreatment to

overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of

hardwoods, Biotechnol. Progr. 2009, 25:1086–1093.

[15] Watanabe H. The study of factors influencing the depolymerisation of cellulose using a solid

catalyst in ionic liquids[J]. Carbohydrate Polymers (Article in Press).

[16] 王伟东,王小芬,王彦杰,等. 接种木质纤维素分解复合菌系对堆肥发酵进程的影响[J].

农业工程学报,2008,24(7):193–198.

[17] 路 鹏,江 滔,李国学.木质纤维素乙醇发酵研究中的关键点及解决方案[J].农业工程学报,2006,22(9):237–240.

[18] 王芳,黎夏,陈健飞,等.农田生物质能集约利用空间优化决策[J]. 农业工程学报,2009,25(9):232–236.

[19] Saka K, Imou K, Yokohama Sh, et al. Study on rice collection system for bioethanol production[J]. Journal of Japan Society of Energy and Resources, 2008,29(6): 8–12.

(in Japanese with English abstract)

[20] 上田充美.近藤昭彦.エコバイオエネルギーの最前線[M]. CMC出版, 2005.(in Japanese)

[21] Simmons B A, Loque D, BlanchH W. Next-generation biomass feedstocks for biofuel production[J].

Genome Biology 2008, 9:242.( doi:10.1186/gb-2008-9-12-242)

[22] 芋生憲司.エタノール原料としての未利用バイオマスの収集.運搬[J]. 農業機械学会誌, 2010,72(1):4–7.

[23] Aden A, Ruth M, Ibsen K, et al. Biomass to ethanol process design and economics utilizing

cocurrent dilute acid prehydrolysis and enzymatic hydrolysis for corn stover[R]. Technical Report of National Renewable Energy Laboratory 2002; NREL/TP-510-32438, available from

http://www.nrel. gov/ docs/fy02osti/32438.pdf .

[24] Heer D, Sauer U, Identification of furfural as a key toxin in lignocellulosic hydrolysates and

evolution of a tolerant yeast strain [J]. Microb Biotechnol 2008, 1:497-506.

[25] Hisano H, Nandakumar R and Wang ZY, Genetic modification of lignin biosynthesis for improved

biofuel production [J]. In Vitro Cell. Dev. Biol.—Plant, 2009, 45: 306-313.

Doi: 10.1007/s11627-009-9219-5.

基金项目:国际科技合作计划项目(SR0460),海智计划2009(HW9001,HW9002)。

作者简介:

李 明(1975-),男,博士,副教授,湖南岳阳人。长沙 湖南农业大学工学院,410128。Email: liming@https://www.wendangku.net/doc/033950618.html,

纤维素生物乙醇生产关键技术

纤维素生物酒精生产关键技术简要分析 李 明 姚 珺 翁 伟 吴 彬 吴 畏 湖南农业大学工学院 摘 要:全球气候变暖和自然资源的枯竭,纤维素生物酒精研究是热点之一。纤维素生物质作为生产生物酒 精的原料,转化技术难度大,尚不成熟。该文主要对纤维素生物质生物酒精生产过程进行了分析, 提出有待解决的问题,并讨论关键技术。得出生物质机械化收集方式能有效保证生物质原料的数量 和减少原料成本;通过基因工程途径构建生产纤维素酶提高酶适应性和活性,加快水解效率和增强 耐热性能;开发节能精馏装置和注重转化后废物利用。农业工程、生物化学、基因工程等多学科的 综合发展将实现纤维素生物酒精工业化。 关键词:生物能源,生物酒精,生物质,纤维素,生产过程 0 引 言 由于温室气温排放导致全球气温变暖,自然石化资源短缺,生物能源成为世界上研究热点。中国是世界上消耗石油第二的国家,大约占全世界总量的6%[1]。国际能源中心(IEA)估计中国到2030年每天消耗1.4×107桶汽油;随着汽车工业的发展和普及,2020年,汽车的使用量从2004年大约2.4×107台增加到90-140×107台,运输所需的能源从现在比例约33%发展到57%左右,每天的所需量从目前的1.6×107桶到5.0×107桶。因此,到2030年,温室排放气体将增长至7.14Gt/年[2]。对石油的需求导致中国更加依赖进口石油,2030年,75%的石油将依靠进口[2]。因此,中国面临能源需求、国家能源安全和环境污染的挑战。中国作为发展中发展最快,世界上人口最多的国家,在经济快速发展和国际地位大幅提升的基础,应该发挥其主导作用,制定研究政策和目标,开发利用可持续“中性碳”能源,其中包括生物酒精的生产和使用[3]。 纤维素生物质转化成生物酒精是世界上生物能源发展的热点研究之一[4-8]。纤维素生物质主要包括农业残渣(水稻、玉米等秸秆)、森林残渣(树枝、锯末)、废弃物(废纸)、草本植物(芦竹)和木质植物(麻疯树、杨树),资源非常丰富,中国仅秸秆一年约有8.4 亿吨[9],林木废弃物约2亿吨[10];到2030年,每年农作物残渣量达5.53EJ;森林残渣达0.9EJ(3/4来自木材加工,1/4来自森林残枝残叶);加上生物质能源种植(每公顷平均产量15吨干,10%的土地可以作为种植面积[10]),统计计算,每年可以提供约23EJ的能源,相当于6000亿升的石油。而根据IEA的预测,2030年中国需要12.4EJ 的交通运输液体能源[1]。如果能够充分利用木质纤维素生物质,提高转化技术,生成酒精,中国可以足够满足运输能源的需求。通过转化生成生物酒精使用是中性碳排放过程,减少温室气体排放,有利于环境和资源的平衡利用。 世界上纤维素生物质转化生物酒精的技术基本上处于研究阶段[11-15]。我国在纤维素生物质转化生物酒精的技术方面起步较晚,还是处于初步研究阶段[16-17]。本文主要对纤维素生物质生物酒精生产过程中关键技术进行简要分析,指出存在的难点和可能性的解决方法以便进一步深入研究。 1 纤维素生物酒精生产 1.1 纤维素生物质作为生物酒精原料的特征 糖类和淀粉转化酒精的工程通过发酵,在世界上已经实用化;草本纤维素和木材纤维素转化酒精正处于实用化过程研究阶段。从生物质转化为生物酒精的容易程度来比较可以得出:糖类 > 淀粉 > 草本纤维素 > 木材纤维素[4] 。 淀粉:葡萄糖分子同序排列 纤维素:葡萄糖分子交错排列 图1 淀粉和纤维素分子简图

香山会议第510次-合成生物学与中药资源的可持续利用

合成生物学与中药资源的可持续利用 ——香山科学会议第510次学术讨论会综述 中药资源是中医药的物质基础,是大自然和传统文化赋予我们的珍贵宝藏,几千年的积累为人们的生产生活提供了丰富的药物基础保障。但是随着社会的发展、需求量不断增大,加之对合理开发利用中药资源的认识不足,使中药资源的可持续发展和利用面临巨大的压力。分子生物学和生物化学技术的不断发展,使得药用植物次生代谢产物生物合成途径逐渐得以解析,通过挖掘活性成分生物合成的相关元件,利用合成生物学方法对植物中现有的、天然的生物系统进行重新设计,实现药用植物的定向遗传育种,通过培育高产目标活性成分的药用植物,能有效降低中药制剂生产过程的提取成本并缓解对药用植物资源的压力。同时,利用生物系统整合优化在微生物体内重建药用植物次生代谢产物的生成模块,可以实现珍稀活性成分的异源高效合成,为单一成分中药以及中药提取物生产提供原料,缓解其对中医临床用药以及中药资源的压力。2014年11月11~12日,香山科学会议在北京香山饭店召开了主题为“合成生物学与中药资源的可持续利用”的第510次学术讨论会。中国中医科学院黄璐琦研究员、中科院上海植物生理生态所陈晓亚研究员、中科院上海生物工程研究中心杨胜利研究员、中科院天津工业生物技术研究所张学礼研究员担任

会议执行主席。来自大专院校、科研院所的40多位专家学者围绕(1)药用植物次生代谢途径及其调控研究;(2)合成生物学研究方法和思路;(3)合成生物学在药用植物活性成分生产中的应用等中心议题进行深入的探讨。 黄璐琦研究员作了题为“合成生物学与中药资源的可持续利用”的主题评述报告,结合正在开展的中药资源普查试点工作认真阐述了中药资源的重要性以及中药资源事业发展所面临的重大科学问题,他指出“供不应求”是导致目前中药原料市场种种问题的根本原因之一,也从某种程度上制约了整个中医药行业的发展,给自然环境带来了巨大的生态压力,急需要采取相关措施予以改善。随后从种源、种群、种植、新药资源开发及生物技术五个方面介绍了目前为保障中药资源可持续利用所做的相关工作。报告针对合成生物学在中药资源活性成分合成中的应用,介绍了国内外科学家在青蒿素、紫杉醇、丹参酮等生物合成途径中的最新进展,以及发展中药资源合成生物学研究的关键环节。最后,黄璐琦研究员探讨了中药资源未来的发展,提出了未来的方向是中药材饮片以“道地”为基础的定点栽培、中成药工业原料以“有效成分”为目标的定向培育以及合成生物学“不种而获”的协同发展。 一、药用植物次生代谢途径及其调控研究

酒精生产总物料衡算

1、全厂物料衡算内容:原料消耗计算、中间产物量计算、成品及副产品量计算。 2、生产工艺流程图:生产工艺采用改良湿法、双酶糖化、连续发酵和半直接式三塔蒸馏流程,如图 燃料酒精 图改良湿法双酶糖化连续发酵燃料酒精流程示意图 3、工艺技术指标及基础数据 (1)生产规模:10000t/a燃料酒精 空压机 过滤器 酶母种 DDGS 分子筛脱水*杂醇油 原料(玉米) 摇瓶培养 斜面试管 无菌空气 车间

(2)生产方法:改良湿法、、双酶糖化、连续发酵和塔蒸馏。 (3)生产天数:300d/a (4)燃料酒精日产量:34t (5)燃料酒精年产量:10200t (6)产品质量:国际燃料酒精,乙醇含量鸠上(V)。 (7)主原料:国内酒精企业玉米粉(脱胚去皮)淀粉含量68%利用率为80%-92%, 水分14% (8)酶用量:耐高温a -淀粉酶用量8u/g原料,糖化酶用量为100u/g原料,酒母糖化醪用糖化酶量200u/g原料。 (9)硫酸铵用量:8kg/t酒精(提供氮源)。 (10)硫酸用量:t酒精(调节pH)。 二、10000t/a玉米淀粉燃料酒精厂全厂总物料衡算 1、原料消耗计算 现以生产%( V)成品酒精1000kg作为计算的基准。 (1)淀粉原料生产乙醇的总化学反应式为: (C6H10O5)糖化阶段:n+n H2O n C6H12O62C2H5OH+2CO 2(4 —2— 1) (C6H10O5)n+nH 2。nC6H12O6 (4 —2 —2) 162 18 180 发酵阶段: C6H12O6 2C2H5OH+2CO2 (4 —2 —3) 180 2 X 46 2 X 44 (2)每生产1000kg燃料酒精的理论淀粉消耗量:由式(4 —2-2)和(4 —2 —3)可求得理论上生产1000kg燃料酒精(%(V)的燃料酒精相当于%(W))所消耗淀粉量为: 1000 99.18% ------ 1746.5kg 2 46 (3)生产1000kg燃料酒精实际淀粉耗量:实际上,整个年产过程经历的各工序,如原料处理、发酵及蒸馏等,要经过复杂的物理化学和生物化学反应,所以产品得率必然低于理论产率。据实际生产经验,生产中各过程各阶段淀粉损失率如表4—1所示。 表4—1 生产过程淀粉损失一览表

纤维素制取乙醇技术

纤维素制取乙醇技术 1引言 能源和环境问题是实现可持续发展所必须解决的问题。从长远看液体燃料短缺将是困扰人类发展的大问题。在此背景下,生物质作为唯一可转化为液体燃料的可再生资源,正日益受到重视。所以生物质制液体燃料的技术很有发展前途,这中间又以生物质制燃料乙醇技术备受关注。 现有工业化燃料乙醇生产均以糖或粮食为原料[1,2],其优点是工艺成熟,但是产量受原料的限制,难以长期满足能源需求;从长远考虑,以纤维素(包括农作物秸秆、林业加工废料、甘蔗渣及城市垃圾等)为原料生产燃料乙醇,可能是解决原料来源和进行规模化生产的主要途径之一。 我国有发展纤维素制乙醇的有利条件,每年仅农作物秸秆就有7亿多吨(干重)[3],而我国粮食资源并不丰富,因此将农林废弃物转化为燃料乙醇,形成产业化利用,非常适合我国的国情,从能源安全角度上看也是十分有利的,而且可消除由焚烧秸秆造成的环境问题。 2纤维素制取乙醇基本原理[4] 纤维素废弃物的主要有机成分包括半纤维素、纤维素和木质素3部分。前二者都能被水解为单糖,单糖再经发酵生成乙醇,而木质素不能被水解,且在纤维素周围形成保护层,影响纤维素水解。 半纤维素是由不同多聚糖构成的混合物,聚合度较低,也无晶体结构,故较易水解。半纤维素水解产物主要是木糖,还包括少量的阿拉伯糖、葡萄糖、半乳糖和甘露糖,含量因原料不同而不同。普通酵母不能将木糖发酵成乙醇,因此五碳糖的发酵成为研究的热点。 纤维素的性质很稳定,只有在催化剂存在下,纤维素的水解反应才能显著地进行。常用的催化剂是无机酸和纤维素酶,由此分别形成了酸水解和酶水解工艺,其中的酸水解又可分为浓酸水解工艺和稀酸水解工艺。纤维素经水解可生成葡萄糖,易于发酵成乙醇。 木质素含有丰富的酚羟基、醇羟基、甲氧基和羰基等活性基团,可以发生氧化、还原、磺甲基化、烷氧化和烷基化等改性反应。通过木质素改性和综合利用,可提取许多高附加值的化学产品,为提高木质纤维素生产燃料乙醇的经济性开辟了新的途径,日益受到科技工作者的重视[5,6]。 3纤维素生产乙醇工艺 3.1水解工艺 3.1.1浓酸水解 浓酸水解在19世纪即已提出[7],它的原理是结晶纤维素在较低温度下可完全溶解在硫酸中,转化成含几个葡萄糖单元的低聚糖。把此溶液加水稀释并加热,经一定时间后就可把低聚糖水解为葡萄糖。 浓酸水解的优点是糖的回收率高(可达90%以上),可以处理不同的原料,相对迅速(总共10-12h),并极少降解[8],但对设备要求高,且酸必须回收。 图1为Arkenol公司的浓酸水解流程[9]。该流程中对生物质原料采用两级浓酸水解工艺,水解中得到的酸糖混合液经离子排斥法[10]分为净化糖液和酸液。糖液中还含有少量酸,可用石灰中和,生成的石膏在沉淀槽和离心机里分离。分离得到的稀硫酸经过脱水浓缩后可回到水解工段中再利用。华东理工大学开发了双极膜电渗析法分离水解液中的糖和酸,同时对水解液的无机酸和有机酸进行回收。 通过实验验证了使用双极性膜电渗析法进行生物质水解液的糖酸分离在技术上是可行的[11]。 据Arkenol公司中试装置的实验结果[9],该水解工艺可得12%-15%浓度的糖液,纤维素的转化率稳定在70%,最佳条件下可达到80%,酸回收率也可达到97%。

合成生物学中的DNA合成、组装及应用

合成生物学中DNA的合成、组装和应用 摘要 近年来,以微芯片为基础的基因合成技术发生了令人振奋的新发展,基因合成技术具有显著增加产量和降低基因合成成本的潜力,连同更高效的酶促修复技术和基因组装技术,这些新技术正推动合成生物学走向更高水平。 1.基因合成(不确定的地方全部原文标黄) 传统的寡核苷酸合成是用微升体积的溶液在小柱上进行合成。化学物和溶剂过柱后,逐步诱导核苷酸单体添加,形成增长的寡核苷酸链。依据标准的亚磷酰胺化学法,每轮反应包括以下四个步骤:1).脱保护;2).偶联;3). 封闭;4).氧化。过去几十年,商业上主要用固相亚磷酰胺化学法合成DNA。但由于化学反应效率上的局限,合成的寡核苷酸长度大部分不能超过150-200个碱基。如果超过这一长度,每步化学反应的副反应和低效率都会显著影响到序列的完整和产物 的产率。 传统上,以DNA聚合酶或连接酶为基础的装配方式的基因构建以柱合成的寡核苷酸为(Traditionally, column-synthesized oligos are used as building blocks for gene construction using either DNA polymerase based or DNA ligase based assembly methods.)目前对基因装配技术有许多细节上的评价在文献里都能找到。能在一些综述里找到对当前基因装配技术更详细的评估。但是,由于柱基础的寡核苷酸合成花费高、生产量有限,这些都使大规模的基因合成和基因组装配

在这个新的合成生物学时代遇到瓶颈。 微阵列芯片作为一个不昂贵的寡核苷酸高密度阵列近年来引起了广泛的关注。 在微阵列芯片上进行合成允许小型化和平行方式产生大量的独特寡核苷酸序列(Synthesis on microarrays allow large numbers of unique oligo sequences to be generated in a miniaturized and parallel fashion),而且在产量、试剂消耗、花费上都有很大优势。与早期的微阵列合成寡核苷酸池进行基因装配相比,后来的微阵列在质量、效率、寡核苷酸合成与基因组装自动化上都有了令人激动的发展。图1总结出了进步之处。 用微阵列技术进行基因合成也有一定的挑战性。最大的挑战就是微阵列产生序列相对质量较差。在平面表面合成的寡核苷酸更容易出错,通常错误率大于柱合成的寡核苷酸。其中一个原因是脱保护剂/脱三苯甲基剂造成的迁延照射(即延长的暴露)使得“脱嘌呤”。通过优化试剂流动和反应条件,安捷伦科技的Leproust小组改进了反应过程,使高保真合成寡核苷酸池提高到200个碱基。另一个(错误率高的)原因是微阵列芯片合成中所谓的“边缘效应”。微阵列芯片合成大体上依靠于硅晶片上的直接且有空间性限制反应的具体机制。比如,安捷伦公司用喷墨印刷技术分配微微升溶剂到芯片上指定的位置。联川生物(LC Sciences)和美国昂飞公司(Affymetrix)在微流体系统中用激发光化学控制解封步骤(deblocking step)。CombiMatrix 公司用可编程的微电极阵列在需要的点上进行氧化还原反应。这些例

酒精生产工艺知识题纲

酒精生产工艺知识题纲 一、酒精的主要用途和加工方法 酒精作为一种重要的基础化工原料,广泛地应用国民经济的许多部门。在食品工业中,酒精是配制各类白酒、果酒等酒类饮品的原料;在化工行业,利用酒精可以加工乙醛、乙醇、冰醋酸、乙醚等化工产品;在医药工业中,用酒精配制消毒剂和提取医药制剂;酒精是一种很好的有机溶剂,可应用在油漆和化妆品生产行业中。 随着世界范围的能源危机和环境状况的日益恶化,酒精作为燃料替代品,其潜在的价值不可限量。以发酵法生产的燃料乙醇,具有和矿物燃料相似的燃料性能,但其生产原料为生物源,是一种可再生的能源。燃料酒精具有环保效应(相对于其它汽油合成物,加10%酒精的乙醇汽油,可减少污染微粒、一氧化碳和氮化物的排放量,减少温室效应),形成一个稳定的粮食转化市场(能利用不能食用的粮食作原料),可解决能源安全问题。 目前酒精生产工艺主要有化学合成法和发酵法两大类。发酵法是世界上酒精生产的主要方法。我们讲的酒精生产工艺就是指发酵法酒精生产工艺。 所谓发酵法,就是利用微生物--酵母菌在无氧条件下将糖转化为酒精的生产方法。 发酵法又分为固体发酵法、半固体发酵法和液体发酵法三种。目前,固体发酵法和半固体发酵法在我国主要是用于生产白酒。一般产量较小,生产工艺较古老,劳动强度大。而在现代大生产中,都采用液体发酵法生产酒精,它与固体发酵法相比,具有生产成本低、生产周期短、连续化、设备能自动化,大大减轻劳动强度等优点。 不论是固体、半固体、液体发酵法,都是利用淀粉作原料,经过微生物发酵转化为糖。再由糖转化为酒精。在转化过程中发生一系列极其复杂的生化反应。 在转化时原料中的可溶性淀粉。在糖化酶的作用下,将可溶性淀粉转化为可发酵的糖,再在酒化酶作用下,将糖水解成酒精并放出二氧化碳。 发酵法酒精生产的主要化学反应式 (C5H10O6)n+n H2O 水解 n C6H12O6 n C6H12O6发酵 2C2H5O H+2C O2+热量 二、酒精生产的主要原料 糖质原料:糖蜜、甜菜、甘蔗等 淀粉质原料: (1)、谷物原料:玉米、高粱、小麦、大米、黑麦等。 (2)、薯类原料:甘薯、木薯、马铃薯等。 纤维质原料:农作物秸秆及下脚料、木材加工下脚料、城市生活垃圾。 其它原料:亚硫酸盐废液、乳清等。 三、玉米主要化学成分、加工利用及其酒精生产工艺概述 在世界人类作物中,玉米的种植面积和总产量仅次于小麦和水稻而居第三位,平均单产则居首位。以北美洲最多,我国玉米的栽种面积和总产量均世界第二位(美国为玉米第一生产大国,年产2亿多吨,占世界总产量的40%多)。 玉米子粒就干玉米而言,含淀粉60~65%、蛋白质8~10%、水份14%、脂肪3.5~4.5%、灰分1.5%、纤维素2.5%、半纤维素5%、糖分2.5%。 玉米的深加工产品主要为:(1)、利用玉米中的淀粉糖化可生产麦芽糖、变性淀粉、

纤维素乙醇技术

生物能源新突破——纤维素乙醇技术 作者:康泰斯 关键字:纤维素乙醇,康泰斯,生物能源 纤维素生物质是由纤维素(30-50%),半纤维素 (20-40%),和木质素(15-30%)组成的复杂材 料。纤维质生物质中的糖以纤维素和半纤维素的 形式存在。纤维素中的六碳糖和和玉米淀粉中含 有的葡萄糖一样,可以用传统的酵母发酵成乙 醇。而半纤维素中含有的糖主要为五碳糖,传统 的酵母无法经济地将其转化为乙醇每一种植物 的确切成分都不尽相同。纤维素存在于几乎所有 的植物生命体中,是地球上最丰富的分子。一直 以来,将纤维质生物质转化成乙醇是科学家们面对的巨大挑战。酸、高温等苛刻的条件都曾经被用来尝试将纤维素分子打断、水解成单一的糖。 随着石油资源的逐渐枯竭和环境的日益恶化,大力推广使用可再生能源技术已成为许多国家能源发展战略的重要组成部分,以减少对化石能源的依赖和温室气体的排放。 被纤维素乙醇技术,是一种高端的清洁能源技术,因为它可以被用来替代传统的粮食乙醇技术,利用地球上广泛存在的纤维素质生物原料生产清洁的乙醇燃料,被寄予了很高的期望。 作为纤维素乙醇领域研发的领头羊之一,M&G (Gruppo Mossi and Ghisolfi)集团在过去几年中,对包括生物质原材料的收集和运输,能源作物的选择和种植、预处理,水解或酶解,混合糖的发酵等纤维素乙醇生产的各主要技术环节进行了广泛而且深入的研究,取得了巨大的进展,已经开发了专有的一体化纤维素乙醇生产技术PROESATM,并于去年开始在欧洲建设年产四万吨的纤维素制乙醇的工业化示范装置。与其它现有和正在开发中的工艺相比,M&G技术的独特的预处理工艺和酶解工艺,可以显著降低投资和生产成本,同时可以适用包括农业废弃物、林业废弃物、糖业废弃物以及能源作物等等来源广泛的多种生物质原料,应用地域没有限制,具有非常好的经济性和地域适应性。 M&G集团的年产4万吨纤维素乙醇工业示范项目,位于意大利北部城市CRESCENTINO,将利用当地的农业废弃物(麦草、秸秆等)以及能源作物作为原料。目前项目进展顺利,预计将于2011年底投入运行。整个装置由M&G集团的全资子公司康泰斯CHEMTEX全球工程有限公司负责设计和建设。装置建成后,将对从原料供应、生产到产品应用的整个产业链进行示范,并为将该技术进一步放大到年产15万吨到20万吨年做准备。

木薯为原料的酒精酿造工艺

木薯为原料的酒精酿造 工艺 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

以木薯为原料的酒精酿造工艺木薯具有良好的加工性能,也不与粮食作物争地,是一种有很大发展潜力的酒精生产再生资源,将其应用到发酵工业,具有广阔的发展前景。据相关资料显示广西的木薯产量较大,全国60%的木薯淀粉是由广西生产,广西对于生产木薯酒精具有独特的优势。以木薯为原料进行酒精发酵的工艺较成熟。本文简述了木薯原料预处理、液化、酶糖化、发酵酒精生产工艺。木薯是热带和亚热带广泛种植的粮食和经济作物,适应性很强,耐旱、耐瘠、耐水,对土地的质量要求不高,是可在任何土质中生长的作物。我国南方盛产木薯,产量高,淀粉含量高。木薯的块根淀粉含量达25%-30%左右,木薯干淀粉含量达70%左右,是被誉为“淀粉之王”。木薯已被世界公认是具有很大发展潜力、很有前途的酒精生产的可再生资源。近年来,随着木薯原料用于生产酒精渐渐收到人民的重视,国内外学者都致力于木薯生产酒精工艺的研究。下面就木薯原料预处理、液化、酶糖化、发酵酒精生产工艺这四个方面进行简单的介绍。 一、原料的预处理 原料在进行正式生产之前,必须预处理,以保证生产的正常进行和提高生产的效益,预处理包括除杂和粉碎两个工序。木薯在收获和干燥过程中,经常会惨夹进泥土、沙石、粗纤维,金属杂质等杂质,这些杂质如果没有在正式投入生产之前清除,将严重影响生产的正常进行。石块和金属杂质会使粉碎机的筛板磨损或损坏,造成生产的中断;机械设备运转部位,会因泥沙的存在而加速磨损,泥沙等杂质也会影响正常的发酵过程。所以用木薯原料生产酒精前,必须进行除杂,以保证生产的正常进行和提高生产的效益。 2、原料的粉碎木薯原料粉碎可以使原料的颗粒变小,原料的细胞组织部分破坏,淀粉颗粒部分外泄,增加原理的表面积,在进行水热处理时,加快原料的吸水速度,降低水

中国纤维素乙醇市场调查与发展前景研究报告(2015版)

深圳市深福源信息咨询有限公司 客服电话:400-001-7350据国际能源署 (IEA)统计,截至目前共有102 个纤维素项目,有3个示范项目已运转,8个项目在建,预计至2016 年将有15 个项目投产。 2013年美国使用30%的玉米生产了3 949 万t 燃料乙醇,使美国石油对外依存度降低6%,降低汽油消费价格0.5?1.5 美元/加仑,燃料乙醇替代了源于4.62 亿桶原油精炼的汽油,这些原油相当于美国从委内瑞拉和伊拉克进口量的总和,燃料乙醇行业创造8.6 万个直接工作岗位、30 万个间接就业岗位和440 亿美元GDP,上缴83 亿美元税收,对农业纯收入贡献1 310 亿美元。预计2014 年全球纤维素乙醇产能将超过30 万t/年。2014年美国将有6 个纤维素乙醇工厂完成建设。 另据不完全统计,目前我国纤维素乙醇产能12.5万吨/年,而真正规模量产的纤维素乙醇产能仅6万吨。 第一章纤维素乙醇概述 第一节简介 一、定义 二、工艺流程 第二节发展历史 第二章2013-2014年全球纤维素乙醇行业发展现状分析 第一节 2013-2014年全球纤维素乙醇发展概况 第二节 2013-2014年全球主要国家纤维素乙醇行业发展情况分析 一、美国 二、法国 三、德国 四、巴西 第三节2013-2014年国际纤维素乙醇研究政策、规划与行动 一、美国 1、纤维素乙醇路线图 2、国家生物能源行动计划 3、美国复兴与再投资计划 4、美国清洁能源与安全法案 5、美国纤维素乙醇研发的其他资助计划 6、美国在建的纤维素乙醇项目 二、加拿大 三、欧盟

深圳市深福源信息咨询有限公司 客服电话:400-001-7350 四、瑞典 五、其他国家 1、日本 2、西班牙 3、印度 第三章 2013-2014年中国纤维素乙醇行业市场动态分析 第一节2013-2014年中国纤维素乙醇市场分析 第二节纤维素乙醇市场规模 一、2013-2014年中国纤维素乙醇产能统计分析 二、2011-2014年中国纤维素乙醇产量统计分析 第三节 2011-2014年中国纤维素乙醇销量分析 第四节 2013-2014年纤维素乙醇产业化进展分析 第四章2013-2014年国内外纤维素乙醇行业发展对比分析 第一节2013-2014年纤维素乙醇行业发展分析 一、2013-2014年全球纤维素乙醇行业发展分析 二、2013-2014年国内纤维素乙醇行业现状分析 第二节2013-2014年纤维素乙醇市场现状 一、市场概述 二、市场规模 第三节2013-2014年纤维素乙醇行业国内与国外情况对比分析 一、燃料乙醇国内外对比 二、纤维素乙醇行业国内外对比 第五章2013-2014年纤维素乙醇产品制造技术工艺发展 第一节行业技术发展分析 一、纤维素乙醇技术发展现状 二、2013-2014年纤维素乙醇研究新进展 第二节纤维素乙醇研究进展与关键技术分析 第三节技术发展趋势 一、纤维素乙醇研发值得关注的问题与新兴技术 二、中国纤维素乙醇的发展潜力 三、针对纤维素乙醇发展的前景分析与争议 第六章2011-2013年中国纤维素乙醇行业主要数据监测分析 第一节 2011-2013年行业偿债能力分析 第二节2011-2013年行业盈利能力分析 第三节 2011-2013年行业发展能力分析 第四节 2011-2013年行业企业数量及变化趋势 第七章2013-2014年纤维素乙醇行业竞争分析 第一节行业集中度分析 第二节行业竞争格局 第三节区域竞争格局 第八章2013-2014年中国纤维素乙醇企业竞争策略分析

代谢工程与合成生物学作业-生物元件

合成生物学之生物部件 622 (山东大学生命科学学院,济南,250100) 摘要:合成生物学强调“设计”和“重设计”,其目的是通过人工设计和构建自然界中不存在的生物系统来解决能源、材料、健康和环保等问题,其工程化的思想和标准化的工具一经兴起变得到全世界范围的广泛关注。生物系统的层次化结构是合成生物学本质化的典型体现,合成生物学系统中最简单最基本生物模块被称为生物部件(part),它是自下而上的研究策略中基础部分,本文回顾了合成生物学中常用的生物部件级标准化使用方法,着重介绍了启动子和核糖开关的相关研究进展。 关键词:合成生物学生物部件生物元件 1953年,年轻的J.D.Watson和F. Crick从DNA的X射线的X衍射图上解读了双螺旋结构,隐藏了几十亿年的生物密码逐渐露出端倪。2003年人类基因组计划顺利完成,此后包括人类在内的各种生物的图谱纷纷出炉,生物遗传密码的神秘面纱正在被迅速揭开。生物学由定性描述转向定量计算,从分析到设计,进入系统和合成生物学(synthetic biology)的的时代。 目前合成生物学的定义还处于多元化阶段,比较全面地可以概括为:合成生物学是指按照一定的规律和现有的知识,设计和建造新的生物部件、装置和系统,或重新设计已有的天然系统为人类的特殊目的服务。从这个定义来看,合成生物学包含自下而上的研究策略和自上而下的研究策略,对于前者的探索是艰深而富有划时代意义的。合成生物学最终期望是借鉴电子学的方法能能像“搭积木”一样构建基因线路,而这最基本的就是模块化元件。 我们称具有标准接口、功能相对独立生物大分子、信号转导路径、基因线路等为“模块”(module)或生物积块(BioBrick),模块的规模可大可小,大致可分为部件(part)、装置(device)、系统(System)及多细胞体系等几个层次,其中最基础的就是生物部件。模块化设计体现了合成生物学的精髓,模块往往具有信息隐藏,内聚耦合,封闭性开放性的特性。常见的生物部件按照功能可以分为启动子(promoter)、核开关(Riboswithch)、RBS、终止子、操纵子、蛋白编码基因(CDS)、报告基因、标签组件、操纵子等,当然这些分类层侧不是绝对的。

工业生产酒精工艺流程

木薯生产酒精工艺流程 1、原料除杂:对木薯进行初步除杂,除去泥块、石子、绳线等杂物及金属体。 2、原料粉碎:是为了减少蒸煮时间、便于机械化和连续化生产及提高淀粉出酒率等。木薯干的水分较低,淀粉含量高,容易破碎。采用一级粉碎,负压送料。 3、拌料预煮:拌料水用蒸馏室冷却余水,水温控制在70℃左右,温度过低,加热时震动大,对原料的均匀糊化不利,温度过高,料液粘稠。料水比控制在1:2.5~3。拌料完成后,加ɑ-淀粉酶(加入量为0.2L/T淀粉原料)液化15min,主要目的是降低预煮醪的粘度,对浓醪发酵有利。 4、蒸煮:液化完成后,迅速将醪液升温至92℃,蒸煮时间应在90min 以上。蒸煮醪要呈微黄色,不含颗粒,定时检测化验。 5、糖化:先准备好20倍糖化酶的稀释液,再将蒸煮液经由真空冷却器进入已彻底冷却并杀菌的糖化罐内,控制温度为58~60℃,同时按100u/g 原料流加糖化酶进行糖化,时间应保持30min。糖化指标为:总糖10-13;总还原糖5-6;糖化率45%;酸度4.3。 6、发酵:将糖化醪液冷却后泵入发酵罐内,同时加入10%酒母醪进行发酵,发酵温度30~34℃,发酵时间控制在50h左右。发酵成熟醪检测指标为:酸度≤6.2,残糖≤1%,残余还原糖≤0.3%,酒精份10~12%(v/v)。 7、蒸馏工序:发酵成熟醪液经预热器加热后,从粗馏塔顶部进入,粗馏塔塔底通入蒸汽,控制粗塔塔底温度为108℃-111℃,顶温为96~98℃,酒精糟液从粗馏塔底部排出进入污水处理场进行处理。酒精含量约50%的粗酒精蒸气从粗馏塔顶部进入精馏塔中部,精塔底温为108~109℃,中温为84~85℃,进行精馏,精塔底部废水排入污水处理场,然后再经水洗、脱醇等工序制成成品,成品酒精和杂醇油分别经冷却进入成品储罐。

康泰斯公司纤维素乙醇技术

PROESA纤维素乙醇技术――生物能源的重大突破 康泰斯建设世界最大规模的纤维素乙醇工业示范装置 随着石油资源的逐渐枯竭和环境的日益恶化,大力推广使用可再生能源技术已成为许多国家能源发展战略的重要组成部分,以减少对化石能源的依赖和温室气体的排放。生物乙醇是一种可再生的能源,燃烧过程所排放的CO2和含硫化合物均低于汽油燃烧所排放的CO2和含硫化合物,而且乙醇燃烧产生的CO2和作为原料的生物生长所消耗的CO2在数量上基本持平,这对减少大气污染和抑止“温室效应”意义重大。乙醇汽油燃烧比普通汽油更完全,汽车尾气中CO2含量可降低30%左右,燃料乙醇也因此被称为“清洁燃料”,而推广使用乙醇汽油已经成为世界各国减小对化石燃料依赖和温室气体排放的重要举措。 美国在20多年前即推广车用乙醇汽油,2008年,乙醇产量达到90亿加仑,是世界上最大的燃料乙醇生产和消费国。美国发展灵活燃料汽车(FFV)和中至高含量乙醇汽油调合基础设施,截至2009年2月中旬,已有700万辆燃用乙醇汽油的汽车在美国上路;巴西自1975年开始实施“乙醇替代计划”,目前已使温室气体排放量减少了20%,巴西是世界上第二大的燃料乙醇生产和消费国,也是唯一不使用纯汽油作为汽车燃料的国家,2008年乙醇生产量为64亿加仑。日本和欧盟也一直在积极发展车用乙醇汽油。 由于原油进口的依存度逐年上升。环境问题日益严重,中国政府也非常清楚地认识到,生物乙醇是一种可再生资源,使用车用乙醇汽油代替部分汽油,有利于环境改善、并且可有效解决农产品的转化、促进农业生产的良性循环境,其意义重大。因此《国民经济和社会发展第十一个五年计划纲要》中提出,要开发燃料乙醇等石油替代品。“十五”期间即批准在吉林、河南及安徽等省分别建设年产数十万吨乙醇项目,作为国家新兴能源试点示范的重点工程,已取得了良好的社会效益。 根据2007年制订的《可再生能源中长期发展规划》,到2010年,中国的燃料乙醇年利用量为200万吨,到2020年,生物燃料乙醇年利用量将达到1000 万吨。 传统的生物乙醇生产技术使用淀粉质和糖质原料作为生产原材料。由于国际油价和粮价高涨,包括玉米乙醇燃料在内的以粮食为原料的生物燃料产业在全球各地备受争议。纤维素乙醇技术,是一种高端的清洁能源技术,因为它可以被用来替代传统的粮食乙醇技术,利用地球上广泛存在的纤维素质生物原料生产清洁的乙醇燃料,被寄予了很高的期望。在中国,纤维素乙醇也将是实现2020年燃料乙醇利用1000万吨的目标的主要方向,具有至关重要的地位。目前全球已形成纤维素乙醇开发热。业界预计,该产业在全球有着750亿美元的市场规模。国内外的公司纷纷投巨资进入这一领域,争取技术有所突破,占领制高点。 作为纤维素乙醇领域研发的领头羊之一,康泰斯(Chemtex)及其母公司M&G (Gruppo Mossi and Ghisolfi)集团在过去几年中,对包括生物质原材料的收集和运输,能源作物的选择和种植、预处理,酶解,混合糖的发酵等纤维素乙醇生产的各主要技术环节进行了广泛而且深入的研究,取得了巨大的进展,已经开发

合成生物学与工业生物技术

合成生物学与工业生物技术 ◆杨 琛 姜卫红 杨 晟 赵国屏 中国科学院上海生命科学研究院植物生理生态研究所,上海200032 收稿日期:200928210 修回日期:200929227联系作者:姜卫红,研究员,whjiang@sibs .ac .cn 。 摘 要 合成生物学是近年来发展起来的新 兴学科,因其具有重要的研究意义和巨大的应用开发潜力而备受关注,发展极为迅速。本文对合成生物学的国内外研究概况、发展方向及其对工业生物技术领域的推动作用进行了概述。 关键词:合成生物学 工业生物技术中图分类号:Q812 文献标识码:A 文章编号:100922412(2009)0520038203 近年来,系统生物学理论与工程生物技术的发展使得合成生物学这一新兴研究领域应运而生,并取得重要进展。合成生物学是在基因组技术为核心的生物技术基础上,以系统生物学思想为指导,综合生物化学、生物物理和生物信息技术,利用基因和基因组的基本要素及其组合,设计、改造、重建或制造生物分子、生物体部件、生物反应系统、代谢途径与过程乃至具有生命活力的细胞和生物个体。合成生物学研究既是生命科学和生物技术在分子生物学和基因工程水平上的自然延伸,又是在系统生物学和基因组综合工程技术层次上的整合性发展。其主要目标,一方面是希望可以根据人类的意愿从头设计,合成新的生命过程或生命体;另一方面,是利用合成生物学的方法,将“综合、整体”的思路真正引入现代工业生物技术和生物医学等领域,通过对现有生物体的有目标的改造,以有助于解决人类发展面临的若干重大挑战,譬如合成新医药材料和新药品、生产生物燃料、清理有毒废物、减少二氧化碳排放等。因此,合成生物学具有重要的研究意义和巨大的应用开发潜力。 一、国内外研究概况 合成生物学首先被应用在天然药物的生物合 成、生物能源和生物基化学品领域,如:美国杜邦公司利用大肠杆菌合成了重要的工业原料1,32丙二醇;L iao 等在大肠杆菌中重构了异丁醇产生途径[1]; 2006年,美国加州大学Berkeley 分校的Keasling 实 验室将多个青蒿素生物合成基因导入酵母菌中产生了青蒿酸,并通过对代谢途径(网络)不断改造和优化,使产量实现了若干数量级的提高,具有了工业生产的潜力[2],该重要进展是合成生物学在工业应用中的一个标志性突破。 近年来,利用人工化学合成的手段合成生物遗传物质的研究进展非常迅速。2002年,美国W i m mer 实验室首次化学合成了脊髓灰质炎病毒的c DNA ,并反转录成有感染活性的病毒RNA ,开辟了利用已知基因组序列,不需要天然模板,从化学单体合成感染性病毒的道路[3]。2008年Venter 实验室合成了有 582970个碱基对的生殖道支原体(M ycoplas m a gen i 2ta lium )全基因组 [4] 。为了突出这是人工合成的基因 组,他们在基因组的多处插入了“水印”序列。至此,人工化学合成病毒和细菌基因组均已实现,这为运用合成生物学方法改造、构建新型细菌,以合成目标产物、降解有害物质等方面开辟了新的途径。 目前,美国约有20个实验室从事生命系统设计和合成生物学相关的研究,主要包括开发特殊和通用的标准合成元件、反向工程和重新设计已知的生物部件、发展设计方法和工具以及人工重新合成简单的微生物等。从2004年开始,每年召开合成和系统生物学的会议,促进了交流与合作,推动了这个新兴学科的迅速发展。欧盟国家中的剑桥大学和苏黎世大学的两个实验室也在开展合成生物学研究,目前正积极呼吁更多的实验室参与同美国的竞争。 我国科学工作者自20世纪70年代以来大力推进基因工程、蛋白质工程和代谢工程等技术的发展。近10年,又启动了基因组和生物信息的研究以及系统生物学的研究工作。因此,我们有条件及时进入合成生物学的研究领域,发展合成生物学技术,服务于我国生命科学和社会经济的发展。但是,如上所述,合成生物学并非简单的生物技术或生物工程的

纤维素乙醇的研究进展

纤维素乙醇的研究进展 燃料乙醇作为可再生的生物能源之一,其发展前景是十分广阔的。然而,纵观世界各国燃料乙醇发展的历程和现状,可以看出燃料乙醇生产过程的经济性始终是突出问题,其生产成本一直难以同成品油的价格相竞争,其中原料成本和能耗成本占燃料乙醇生产总成本的比例高达90%。因此使用木质纤维素类物质作为燃料乙醇的生产原料,逐步替代日益减少的石油资源,是各国政府的战略发展目标[77]。国内外纤维素乙醇的进展 早在20世纪70年代的第一次石油危机时,美国就开始了用秸秆等木质纤维素类物质生产乙醇的研究。在政府大力倡导下,酒精燃料在美国燃料市场上份额已达8%。第一家商业性转化纤维质为酒精工厂1998年l0月由B C International在路易斯安那Jennings破土动工,该厂以蔗渣和稻壳为原料,年产酒精20×106加仑。2006年1月,布什总统提出“先进能源计划”,为美国能源部的清洁能源研究增加22%的投入。因此2007年2月28日美国能源部部长宣布:在今后4年中,能源部将投资3.85亿美元,用于支持包括上述两家加拿大和西班牙公司在内的6个非传统原料(木片、秸秆、柳枝稷等)生物精炼化工厂项目[77]。 在巴西在生产纤维素乙醇方面也走在了世界前列,政府一方面制定政策限制石油消费,一方面开辟大量土地种植糖蔗,利用榨汁后蔗渣发酵生产燃料酒精[78]。在巴西,3/4新车既可以使用乙醇又可以使用汽油作燃料。2003年巴西的双燃料汽车还只占市场总销量的6%,2005年就高达73%。此外,加拿大艾欧基(Iogen)公司和西班牙的Abengoa生物能源公司都在积极尝试大规模工业化生产纤维素乙醇。 我国国内很早关注纤维素乙醇的生产研究,中国科学院早在1980年在广州召开“全国纤维素化学学术会议”,把开发利用纤维素资源作为动力燃料提到议事日程[79]。进入“九五”、“十五”期间,秸秆转化乙醇技术再次受到国家重视。华东理工大学能源化工系颜涌捷教授及其课题组开发的纤维素废弃物稀盐酸水解法制取乙醇技术,被列为国家863重点科研项目。进行了该技术项目的工业性试验,现已在上海郊区集贤建成了年产燃料乙醇600t的实验装置。中国科学院过程工程研究所已在山东泽生生物科技有限公司建立了年产3000t秸秆酶解发酵燃料乙醇产业化示范工程。河南天冠集团用秸秆生产乙醇的年产300t乙醇的中试

合成生物学:产化学物质和生物燃料的微生物的设计工具

《应用微生物学》课程作业 姓名:学号:班级: 合成生物学:产化学物质和生物燃料的微生物的设计工具Synthetic biology Tools to design microbes for the production of chemicals and fuels 文献来源:Biotechnology Advances 31 (2013) 811–817 ABSTRACT The engineering of biological systems to achieve specific purposes requires design tools that function in a predictable and quantitative manner. Recent advances in the field of synthetic biology, particularly in the programmable control of gene expression at multiple levels of regulation, have increased our ability to efficiently design and optimize biological systems to perform designed tasks. Furthermore, implementation of these designs in biological systems highlights the potential of using these tools to build microbial cell factories for the production of chemicals and fuels. In this paper, we review current developments in the design of tools for controlling gene expression at transcriptional, post-transcriptional and post-translational levels, and consider potential applications of these tools. Keywords: Synthetic biology Expression control Metabolic engineering Biofuel Biochemical Microbial cell factory 摘要 为实现一些特定目的,微生物系统工程需要一些设计工具,这些工具以某种可预测的、定量的方式起作用。在合成生物学的领域,特别是多水平调控基因表达的可编程控制方面的进展,这使我们设计、优化完成设计任务的生物系统的能力增强了。此外,这些设计在生物系统中的实现,凸显了利用这些工具建造用于生产化学物质和生物燃料的微生物细胞工厂的潜力。在这篇论文中,我们回顾了和在转录、转录后、翻译后三个水平调控基因表达的设计工具相关的内容的最新进展,并且这些工具的潜在应用价值。 关键词:合成生物学表达调控代谢工程生物燃料生物化学微生物细胞工厂 1、介绍 由于天然化石资源的有限性和当前的环境问题,生物合成化学物质和生物燃料作为一种可选择的工业化合成途径,正在稳固地引起人们的兴趣(Ganesh et al., 2012; Jang et al., 2012; Zhang et al., 2012b)。为解决这些问题,合成生物学在重新设计现有的生物系统

泰国纤维素乙醇与广西纤维素乙醇发展状况的调查研究

泰国纤维素乙醇与广西纤维素乙醇发展状况的调查研究 【摘要】能源危机是当今各国都要面对的事实,部分国家已认识到,发展燃料乙醇是实施能源战略和应对国际能源危机的重要途径,纤维素乙醇因其环保和可再生性,越来越受到世界各国的关注和重视。本文通过对广西与泰国民众进行调查,得到了较客观真实的数据和资料,分析对比两地纤维素乙醇产业的发展状况及前景。 【关键词】纤维素乙醇;异同;优势 0前言 我国早已意识到,作为一个人口大国将要面临的能源危机,因此,近几年来把发展纤维素乙醇列入国家能源战略之一,而作为这场能源战略的前沿,广西已受到各方越来越多的关注。泰国2001年成立了酒精(燃料乙醇)委员会,把工业部门连接起来建立了酒精政府框架,成为亚洲第一个由政府开展全国生物燃料项目的国家。广西与泰国在气候、地域等方面有诸多相似之处,对该行业的实际情况进行探究,找出优势与不足,取长补短,促进交流与合作,谋求共赢,十分有必要。 1广西纤维素乙醇现状 1.1原料 广西地处热带、亚热带,高温多雨平、雨水相当丰富,适合生长的作物种类相当繁多。甘蔗主要分布于南宁、来宾、玉林、柳州、贵港、崇左等地,而种植面最广的当属贵港;木薯主要集中于武鸣、北海等地,甘蔗渣和木薯渣正是生产纤维素乙醇的主要原料。此外,还有玉米、高粱秸秆、稻壳、草皮、城市绿化废弃物等,均可大量收集,原料方面相对国内其它地方有一定优势。 1.2运输收集成本 收集成本。广西在收集成本上却无优势,主要集中在两个方面;收集周期跟植物生长周期走,如玉米秸秆、甘蔗渣等必须在收割季节后才可以收集,时间空档时原料供应不足,影响了乙醇的持续生产和企业的正常运营。二、据了解生产一吨纤维素乙醇大概需要五吨的原料,用量大而原料地分散,要在一定的区域里满足企业的日常需求量,实现正常生产,难度较大,成本高。 运输成本。由于原料地过于分散,收集足够的原料必需要扩大收集半径,运输路线加长以胶近年油价的飙升、空车作业等因素,令运输成本居高不下。 1.3投资

相关文档