文档库 最新最全的文档下载
当前位置:文档库 › 面板数据讲义20091124

面板数据讲义20091124

面板数据讲义20091124
面板数据讲义20091124

面板数据模型与应用

1.面板数据定义

panel data的中译:面板数据、桌面数据、平行数据、纵列数据、时间序列截面数据、混合数据(pool data)、固定调查对象数据。

面板数据定义

(1)面板数据定义为相同截面上的个体在不同时点的重复观测数据。

(2)称为纵向(longitudinal)变量序列(个体)的多次测量。

面板数据从横截面(cross section)看,是由若干个体(entity, unit, individual)在某一时点构成的截面观测值,从纵剖面(longitudinal section)看每个个体都是一个时间序列。

1

图1 N=7,T=50的面板数据示意图

2

面板数据用双下标变量表示。例如

y i t, i = 1, 2, …, N; t = 1, 2, …, T

i对应面板数据中不同个体。N表示面板数据中含有N个个体。t对应面板数据中不同时点。T表示时间序列的最大长度。若固定t不变,y i ., ( i = 1, 2, …, N)是横截面上的N个随机变量;若固定i不变,y. t, (t = 1, 2, …, T)是纵剖面上的一个时间序列(个体)。

例1:1996-2002年中国东北、华北、华东15个省级地区的居民家庭固定价格的人均消费(CP)和人均收入(IP)数据见5panel02.wf1。数据是7年的,每一年都有15个数据,共105组(个)观测值。

3

人均消费和收入两个面板数据都是平衡(balance)面板数据,各有15个时间序列数据。人均消费和收入的面板数据从纵剖面观察分别见图2和图3。从横截面观察分别见图4和图5。横截面数据散点图的表现与观测值顺序有关。图4和图5中人均消费和收入观测值顺序是按地区名的汉语拼音字母顺序排序的。

图2 15个省级地区的人均消费序列(纵剖面)图3 15个省级地区的人均收入序列

4

5

2000

4000600080001000012000140002

46

8

10

12

14

2000

4000600080001000012000140002

46

8

10

12

14

图4 7个时点人均消费横截面数据(含15个地区) 图5 7个时点人均收入横截面数据(含15个地区) (每条连线数据表示同一年度15个地区的消费值) (每条连线数据表示同一年度15个地区的收入值)

用CP 表示消费,IP 表示收入。AH, BJ, FJ, HB, HLJ, JL, JS, JX, LN, NMG , SD, SH, SX, TJ, ZJ 分别表示安徽省、北京市、福建省、河北省、黑龙江省、吉林省、江苏省、江西省、辽宁省、内蒙古自治区、山东省、上海市、山西省、天津市、浙江省。

图6 人均消费对收入的面板数据散点图(15个时间序列叠加)

6

7

2000

4000

6000

8000

10000

12000

2000

4000

6000

8000100001200014000

IP(1996-2002)

CP1996CP1997CP1998CP1999CP2000CP2001CP2002

图7 人均消费对收入的面板数据散点图(7个截面叠加)

8

图8 北京和内蒙古1996-2002年消费对收入散点图 图9 1996和2002年15个地区的消费对收入散点图

2.面板数据模型分类

用面板数据建立的模型通常有3种,即混合回归模型、固定效应回归模型和随机效应回归模型。

2.1 混合回归模型(Pooled model)。

如果一个面板数据模型定义为,

y it = α+X it 'β+εit, i = 1, 2, …, N; t = 1, 2, …, T(1)

其中y it为被回归变量(标量),α表示截距项,X it为k?1阶回归变量列向量(包括k个回归量),β为k?1阶回归系数列向量,εit为误差项(标量)。则称此模型为混合回归模型。混合回归模型的特点是无论对任何个体和截面,回归系数α和β都相同。

如果模型是正确设定的,解释变量与误差项不相关,即Cov(X it,εit) = 0。那么无论是N→∞,还是T→∞,模型参数的混合最小二乘估计量(Pooled OLS)都是一致估计量。

9

2.2 固定效应回归模型(fixed effects regression model)。

固定效应模型分为3种类型,即个体固定效应回归模型、时点固定效应回归模型和个体时点双固定效应回归模型。下面分别介绍。

2.2.1个体固定效应回归模型(entity fixed effects regression model)

如果一个面板数据模型定义为,

y it = αi+X it 'β +εit, i = 1, 2, …, N; t = 1, 2, …, T(2)

其中αi是随机变量,表示对于i个个体有i个不同的截距项,且其变化与X it有关系;y it为被回归变量(标量),εit为误差项(标量),X it为k?1阶回归变量列向量(包括k个回归量),β为k?1阶回归系数列向量,对于不同个体回归系数相同,则称此模型为个体固定效应回归模型。

αi作为随机变量描述不同个体建立的模型间的差异。因为αi是不可观测的,且与可观测的解释变量X it的变化相联系,所以称(2)式为个体固定效应回归模

10

11

型。

个体固定效应回归模型也可以表示为

y it = α1 + α2 D 2 + … +αN D N + X it 'β +εit , t = 1, 2, …, T (3) 其中

D i =?

??= 其他,,个个体如果属于第,...,,,021N i i , 设定个体固定效应回归模型的原因如下。假定有面板数据模型 y it = β0 + β1 x it +β2 z i +εit , i = 1, 2, …, N ; t = 1, 2, …, T (4) 其中β0为常数,不随时间、截面变化;z i 表示随个体变化,但不随时间变化的难以观测的变量。上述模型可以被解释为含有N 个截距,即每个个体都对应一个不同截距的模型。令αi = β0 +β2 z i ,于是(4)式变为

y it = αi+β1 x it +εit, i = 1, 2, …, N; t = 1, 2, …, T(5)

这正是个体固定效应回归模型形式。对于每个个体回归函数的斜率相同(都是β1),截距αi却因个体不同而变化。可见个体固定效应回归模型中的截距项αi中包括了那些随个体变化,但不随时间变化的难以观测的变量的影响。αi是一个随机变量。

以案例1为例,省家庭平均人口数就是这样的一个变量。对于短期面板来说,这是一个基本不随时间变化的量,但是对于不同的省份,这个变量的值是不同的。

以案例1为例(file:panel02)得到的个体固定效应模型估计结果如下:

12

图10 个体固定效应回归模型的估计结果

13

2.2.2 时点固定效应回归模型(time fixed effects regression model)

如果一个面板数据模型定义为,

y it = γt+X it 'β+εit, i = 1, 2, …, N(6)

其中γt是模型截距项,随机变量,表示对于T个截面有T个不同的截距项,且其变化与X it有关系;y it为被回归变量(标量),εit为误差项(标量),满足通常假定条件。X it为k?1阶回归变量列向量(包括k个回归变量),β为k?1阶回归系数列向量,则称此模型为时点固定效应回归模型。

时点固定效应回归模型也可以加入虚拟变量表示为

y it = γ1 + γ2W2 + … +γ T W T + X it 'β+εit, i = 1, 2, …, N; t = 1, 2, …, T(7)

其中

14

15

W t =?

??= 。,个截面其他个截面)(,;,...,,t t T t 不属于第如果属于第021

设定时点固定效应回归模型的原因。假定有面板数据模型

y it = β0 + β1 x it +β2 z t +εit , i = 1, 2, …, N ; t = 1, 2, …, T (8) 其中β0为常数,不随时间、截面变化;z t 表示随不同截面(时点)变化,但不随个体变化的难以观测的变量。上述模型可以被解释为含有T 个截距,即每个截面都对应一个不同截距的模型。令γt = β0 +β2 z t ,于是(8)式变为 y it = γt + β1 x it +εit , i = 1, 2, …, N ; t = 1, 2, …, T (9) 这正是时点固定效应回归模型形式。对于每个截面,回归函数的斜率相同(都是β1),γt 却因截面(时点)不同而异。可见时点固定效应回归模型中的截距项γt 包括了那些随不同截面(时点)变化,但不随个体变化的难以观

测的变量的影响。 t是一个随机变量。

以案例1为例,“全国零售物价指数”就是这样的一个变量。对于不同时点,这是一个变化的量,但是对于不同省份(个体),这是一个不变化的量。

16

图11 17

2.2.3 个体时点双固定效应回归模型(time and entity fixed effects regression model)

如果一个面板数据模型定义为,

y it = αi+γt+X it 'β+εit, i = 1, 2, …, N; t = 1, 2, …, T(11)

其中y it为被回归变量(标量);αi是随机变量,表示对于N个个体有N个不同的截距项,且其变化与X it有关系;γt是随机变量,表示对于T个截面(时点)有T 个不同的截距项,且其变化与X it有关系;X it为k?1阶回归变量列向量(包括k 个回归量);β为k?1阶回归系数列向量;εit为误差项(标量)满足通常假定(εit?X it,αi,γt) = 0;则称此模型为个体时点固定效应回归模型。

个体时点固定效应回归模型还可以表示为,

y it = α1+α2D2 +…+αN D N+γ2W2 +…+γ T W T + X it 'β+εit, t = 1, 2, …, (12)

18

19

其中

D i =??

?= 其他,

,

个个体如果属于第,...,,,021N i i ,

(13) W t =?

??=

。,个截面其他个截面)(,;,...,,t t T t 不属于第如果属于第021

(14)

如果模型形式是正确设定的,并且满足模型通常的假定条件,对模型(12)进行混合OLS 估计,全部参数估计量都是不一致的。正如个体固定效应回归模型可以得到一致的、甚至有效的估计量一样,一些计算方法也可以使个体时点双固定效应回归模型得到更有效的参数估计量。

以例1为例得到的截面、时点固定效应模型估计结果如下:

回归系数为0.67,这与个体固定效应回归模型给出的估计结果0.70基本一致。

20

面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)

面板数据分析简要步骤与注意事项(面板单位根检验—面板协整—回归分析) 面板数据分析方法: 面板单位根检验—若为同阶—面板协整—回归分析 —若为不同阶—序列变化—同阶建模随机效应模型与固定效应模型的区别不体现为R2的大小,固定效应模型为误差项和解释变量是相关,而随机效应模型表现为误差项和解释变量不相关。先用hausman检验是fixed 还是random,面板数据R-squared值对于一般标准而言,超过0.3为非常优秀的模型。不是时间序列那种接近0.8为优秀。另外,建议回归前先做stationary。很想知道随机效应应该看哪个R方?很多资料说固定看within,随机看overall,我得出的overall非常小0.03,然后within是53%。fe和re输出差不多,不过hausman检验不能拒绝,所以只能是re。该如何选择呢? 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993)很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al.(2002)的改进,提出了检验面板单位根的LLC法。Levin et al.(2002)指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250之间,截面数介于10~250之间)的面板单位根检验。Im et al.(1997)还提出了检验面板单位根的IPS法,但Breitung(2000)发现IPS法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。 由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher和PP-Fisher5种方法进行面板单位根检验。 其中LLC-T、BR-T、IPS-W、ADF-FCS、PP-FCS、H-Z分别指Levin,Lin&Chu t*

面板数据分析简要步骤与注意事项面板单位根面板协整回归分析

面板数据分析简要步骤与注意事项 面板单位根—面板协整—回归分析) 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实 际意义的。这种情况称为称为虚假回归或伪回归( spurious regression )。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。单位根检验方法的文献综述:在非平稳的面板数据渐进过程中 ,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布 , 这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002) 的改进, 提出了检验面板单位根的LLC法。Levin et al. (2002)指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25?250之间,截面数介于10?250之间)的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的 IPS 法, 但 Breitung(2000) 发现 IPS 法对限定性趋势的设定极为敏感 , 并提出了面板单位根检验的 Breitung 法。Maddala and Wu(1999)又提出了 ADF-Fisher 和 PP-Fisher 面板单位根检验方法。 由上述综述可知,可以使用 LLC、IPS、Breintung 、ADF-Fisher 和 PP-Fisher5 种方法进行面板单位根检验。其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS、H-Z 分 别指 Levin, Lin & Chu t* 统计量、 Breitung t 统计量、 lm Pesaran & Shin W 统 量、计 ADF- Fisher Chi-square 统计量、PP-Fisher Chi-square 统计量、Hadri Z 统计 量,并且 Levin, Lin & Chu t* 统计量、 Breitung t 统计量的原假设为存在普通的单位根过程, lm Pesaran & Shin W 统计量、 ADF- Fisher Chi-square 统计量、 PP-Fisher Chi-square 统计量的原假设为存在有效的单位根过程, Hadri Z 统计量的检验原假设为不存在普通的单位根过程。 有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验 LLC(Levin-Lin-Chu )检验和不同根单位根检验 Fisher-ADF 检验(注:对普通序列(非面板序列)的单位根检验方法则常用 ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我 们说此序列是平稳的,反之则不平稳。 如果我们以 T(trend )代表序列含趋势项,以 I (intercept )代表序列含截距项, T&I 代表两项都含,N (none)代表两项都不含,那么我们可以基于前面时序图得出的结论,在单位根检验中选择相应检验模式。 但基于时序图得出的结论毕竟是粗略的,严格来说,那些检验结构均需一一检验。具体操作可以参照李子奈的说法:ADF检验是通过三个模型来完成,首先从含有截距和趋势项的模型开始,再检验只含截距项的模型,最后检验二者都不含的模型。并且认

计量经济学面板数据模型讲义(4-7)

面板数据模型 1.面板数据定义。 时间序列数据或截面数据都是一维数据。例如时间序列数据是变量按时间得到的数据;截面数据是变量在截面空间上的数据。面板数据(panel data)也称时间序列截面数据(time series and cross section data)或混合数据(pool data)。面板数据是同时在时间和截面空间上取得的二维数据。面板数据示意图见图1。面板数据从横截面(cross section)上看,是由若干个体(entity, unit, individual)在某一时刻构成的截面观测值,从纵剖面(longitudinal section)上看是一个时间序列。 面板数据用双下标变量表示。例如 y i t, i= 1, 2, …, N; t = 1, 2, …, T N表示面板数据中含有N个个体。T表示时间序列的最大长度。若固定t不变,y i ., ( i= 1, 2, …, N)是横截面上的N个随机变量;若固定i不变,y. t, (t = 1, 2, …, T)是纵剖面上的一个时间序列(个体)。 图1 N=7,T=50的面板数据示意图 例如1990-2000年30个省份的农业总产值数据。固定在某一年份上,它是由30个农业总产总值数字组成的截面数据;固定在某一省份上,它是由11年农业总产值数据组成的一个时间序列。面板数据由30个个体组成。共有330个观测值。 对于面板数据y i t, i= 1, 2, …, N; t = 1, 2, …, T来说,如果从横截面上看,每个变量都有观测值,从纵剖面上看,每一期都有观测值,则称此面板数据为平衡面板数据(balanced panel data)。若在面板数据中丢失若干个观测值,则称此面板数据为非平衡面板数据(unbalanced panel data)。 注意:EViwes 3.1、4.1、5.0既允许用平衡面板数据也允许用非平衡面板数据估计模型。 例1(file:panel02):1996-2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(不变价格)和人均收入数据见表1和表2。数据是7年的,每一年都有15个数据,共105组观测值。 人均消费和收入两个面板数据都是平衡面板数据,各有15个个体。人均消费和收入的

历届诺贝尔经济学奖得主及其主要贡献

历届诺贝尔经济学奖得主及其主要贡献(1969—2015) 诺贝尔经济学奖的由来 诺贝尔经济学奖(The Prize in Economic Sciences),是由瑞典银行在1968年,为纪念诺贝尔而增设的并非诺贝尔遗嘱中提到的五大奖励领域之一,全称为“纪念阿尔弗雷德-诺贝尔瑞典银行经济学奖(The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel)”,通常称为诺贝尔经济学奖(Nobel economics prize),也称瑞典银行经济学奖。 1969年(瑞典银行的300周年庆典)第一次颁奖,由挪威人弗里希和荷兰人扬-廷贝亨共同获得,美国经济学家萨缪尔森、弗里德曼等人均获得过此奖。 2015年诺贝尔经济学奖将于斯德哥尔摩时间10月12日13时(北京时间12日19时)举行。 经济学奖并非根据阿尔弗雷德-诺贝尔的遗嘱所设立的,但在评选步骤、授奖仪式方面,与诺贝尔奖相似。奖项由瑞典皇家科学院每年颁发一次,遵循对人类利益做出最大贡献的原则给奖。 诺贝尔经济学奖可以颁发给单个人,也可以最多由三人分享,其主要目的是表彰获奖者在宏观经济学、微观经济学、新的经济分析方法等领域所作的贡献。今年的诺贝尔经济学奖奖金仍为1000万瑞典克朗(约合140万美元)。 “诺贝尔经济学奖”历届获奖者名单 从1969年至2015年诺贝尔经济学奖已经颁发了47次,获奖者人数达76人,其中包括美国著名的经济学家萨缪尔森、弗里德曼。 1969年 拉格纳·弗里希(RAGNAR FRISCH)挪威人 简·丁伯根(JAN TINBERGEN)荷兰人 主要贡献:他们发展了动态模型来分析经济进程。前者是经济计量学的奠基人,后者经济计量学模式建造者之父。 1970年 保罗·安·萨默尔森(PAUL A SAMUELSON )美国人 主要贡献:他发展了数理和动态经济理论,将经济科学提高到新的水平。他的研究涉及经济学的全部领域。 1971年 西蒙·库兹列茨(SIMON KUZNETS )美国人 主要贡献:在研究人口发展趋势及人口结构对经济增长和收入分配关系方面做出了巨大贡献。 1972年 约翰·希克斯(JOHN R. HICKS)英国人 肯尼斯·约瑟夫·阿罗(KENNETH J. ARROW)美国人 主要贡献:他们深入研究了经济均衡理论和福利理论。 1973年 华西里·列昂惕夫(W ASSIL Y LEONTIEF)苏联人 主要贡献:发展了投入产出方法,该方法在许多重要的经济问题中得到运用。 1974年 弗·冯·哈耶克(FRIEDRICH AUGUST VON HAYEK)澳大利亚人

面板数据分析步骤

转载:面板数据分析的思路和Eviews操作: 面板数据一般有三种:混合估计模型;随机效应模型和固定效应模型。首先,第一步是作固定效应和随机效应模型的选择,一般是用Hausman检验。 如果你选用的是所有的企业,反映的是总体的效应,则选择固定效应模型,如果你选用的是抽样估计,则要作Hausman检验。这个可以在Eviews 5.1里头做。 H0:应该建立随机效应模型。 H1:应该建立固定效应模型。 先使用随机效应回归,然后做Hausman检验,如果是小概率事件,拒绝原假设则应建立固定效应模型,反之,则应该采用随机效应模型进行估计。 第二步,固定效应模型分为三种:个体固定效应模型、时刻固定效应模型和个体时刻固定效应模型(这三个模型的含义我就不讲了,大家可以参考我列的参考书)。如果我们是对个体固定,则应选择个体固定效用模型。但是,我们还需作个体固定效应模型和混合估计模型的选择。所以,就要作F值检验。相对于混合估计模型来说,是否有必要建立个体固定效应模型可以通过F检验来完成。 H0:对于不同横截面模型截距项相同(建立混合估计模型)。SSEr H1:对于不同横截面模型的截距项不同(建立时刻固定效应模型)。SSEu

F统计量定义为:F=[( SSEr - SSEu)/(T+k-2)]/[ SSEu/(NT-T-k)] 其中,SSEr,SSEu分别表示约束模型(混合估计模型的)和非约束模型(个体固定效应模型的)的残差平方和(Sum squared resid)。非约束模型比约束模型多了T–1个被估参数。需要指出的是:当模型中含有k 个解释变量时,F统计量的分母自由度是NT-T- k。通过对F统计量我们将可选择准确、最佳的估计模型。 在作回归是也是四步:第一步,先作混合效应模型:在cross-section 一栏选择None ,Period也是None;Weights是cross-section Weights,然后把回归结果的Sum squared resid值复制出来,就是SSEr 第二步:作个体固定效用模型:在cross-section 一栏选择Fixed ,Period也是None;Weights是cross-section Weights,然后把回归结果的Sum squared resid值复制出来,就是SSEu 第三步:根据公式F=[( SSEr - SSEu)/(T+k-2)]/[ SSEu/(NT-T-k)]。计算出结果。其中,T为年数,不管我们的数据是unbalance还是balance 看observations就行了,也即Total pool (balanced) observations:的值,但是如果是balance我们也可以计算,也即是每一年的企业数的总和。比如说我们研究10年,每一年又500加企业,则NT=10×500=5000。K为解释变量,不含被解释变量。 第四步,根据计算出来的结果查F值分布表。看是否通过检验。检验准则:当F> Fα(T-1, NT-T-k) , α=0.01,0.05或0.1时,拒绝原假设,则结论是应该建立个体固定效应模型,反之,接受原假设,则不能建立个体固定效应模型。

面板数据的分析步骤

面板数据的分析步骤 面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结,和大家分享一下,也希望大家都进来讨论讨论。 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。 单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。 由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。 其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square 统计量、Hadri Z统计量,并且Levin, Lin & Chu t* 统计量、Breitung t统计量的原假设为存在普通的单位根过程,lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量的原假设为存在有效的单位根过程,Hadri Z统计量的检验原假设为不存在普通的单位根过程。 有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验LLC (Levin-Lin-Chu)检验和不同根单位根检验Fisher-ADF检验(注:对普通序列(非面板序列)的单位根检验方法则常用ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我们

面板数据分析方法步骤

1.面板数据分析方法步骤 面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结,和大家分享一下,也希望大家都进来讨论讨论。 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。 单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。 由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。 其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、

面板数据分析方法步骤全解

面板数据分析方法步骤全解 面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结, 和大家分享一下,也希望大家都进来讨论讨论。 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈 曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归, 尽管有较高的R 平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正 含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势 以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时 有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性, 我们必须对各面板序 列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项, 从而为进一步的单位根检验的检验模式做准备。 单位根检验方法的文献综述:在非平稳的面板数据渐进过程中丄evin

an dLi n(1993)很早就发现这些估计量的极限分布是高斯分布,这些结 果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002的改进,提出了检验面板单 位根的LLC法。Levin et al. (2002)指出,该方法允许不同截距和时间趋 势,异方差和高阶序列相关,适合于中等维度(时间序列介于25?250 之间,截面数介于10?250之间)的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的IPS法,但Breitung(2000)发现IPS法对 限定性趋势的设定极为敏感,并提出了面板单位根检验的Breit ung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位 根检验方法。 由上述综述可知,可以使用LLC IPS Breintung、ADF-Fisher和 PP-Fisher5种方法进行面板单位根检验。 其中LLC-T、BR-T IPS-W、ADF-FCS PP-FCS H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、Im Pesaran & Shin W 统计量、 ADF- Fisher Chi-square统计量、PP-FisherChi-square统计量、Hadri Z 统计量,并且Levin, Lin & Chu t*统计量、Breitung t统计量的原假设 为存在普通的单位根过程,Im Pesaran & Shin W统计量、ADF- Fisher Chi-square统计量、PP -Fisher Chi-square统计量的原假设为存在有效 的单位根过程,Hadri Z统计量的检验原假设为不存在普通的单位根 过程。

《计量经济学》谢识予分章练习题

计量经济学分章练习题 第一章习题 一、判断题 1. 投入产出模型和数学规划模型都是计量经济模型。(X ) 2. 弗里希因创立了计量经济学从而获得了诺贝尔经济学奖。(V ) 3. 丁伯根因创立了建立了第1个计量经济学应用模型从而获得了诺贝尔经济学奖。(V ) 4. 格兰杰因在协整理论上的贡献而获得了诺贝尔经济学奖。(V ) 5. 赫克曼因在选择性样本理论上的贡献而获得了诺贝尔经济学奖。(V ) 二、名词解释 1 ?计量经济学,经济学的一个分支学科,是对经济问题进行定量实证研究的技术、方法和相关 理论。 2. 计量经济学模型,是一个或一组方程表示的经济变量关系以及相关条件或假设,是经济问题 相关方面之间数量联系和制约关系的基本描述。 3?计量经济检验,由计量经济学理论决定的,目的在于检验模型的计量经济学性质。通常最主 要的检验准则有随机误差项的序列相关检验和异方差性检验,解释变量的多重共线性检验等。 4?截面数据,指在同一个时点上,对不同观测单位观测得到的多个数据构成的数据集。 5?面板数据,是由对许多个体组成的同一个横截面,在不同时点的观测数据构成的数据。 三、单项选择题 1. 把反映某一单位特征的同一指标的数据,按一定的时间顺序和时间间隔排列起来,这样的数 据称为(B ) A.横截面数据C.面板数据 B.时间序列数据D.原始数据 2.同一时间、不同单位按同一统计指标排列的观测数据称为( C ) A.原始数据 B .时间序列数据 C?截面数据 D .面板数据 3.不同时间、不同单位按同一统计指标排列的观测数据称为( D A.原始数据 B .时间序列数据 C?截面数据 D .面板数据 4.对计量经济模型进行的结构分析不包括(D ) A.乘数分析 B .弹性分析 C.比较静态分析 D .随机分析 5.一个普通家庭的每月所消费的水费和电费是( B ) A.因果关系 B .相关关系 C?恒等关系 D .不相关关系 6.中国的居民消费和GDP^( C )

第三讲 面板数据线性回归模型_n

第三讲 面板数据线性回归模型估计、检验和应用 单因素误差面板数据线性回归模型 对于面板数据y i 和X i ,称 it it it y u α′=++X βit i it u v μ=+ 1,,;1,,i N t T =="" 为单因素误差面板数据线性回归模型,其中,i μ表示不可观测的个体特殊效应,it v 表示剩余的随机扰动。 案例:Grunfeld(1958)建立了下面的投资方程: 12it it it it I F C u αββ=+++ 这里,I it 表示对第i 个企业在t 年的实际总投资,F it 表示企业的实际价值(即公开出售的股份),C it 表示资本存量的实际价值。案例中的数据是来源于10个大型的美国制造业公司1935-1954共20年的面板数据。 在Stata 中设定面板数据(GRUNFELD.dta ) . xtset FN YR panel variable: FN (strongly balanced) time variable: YR, 1935 to 1954 delta: 1 unit 混合回归模型 假设1 u ~ N (0, σ2I NT ) 对于面板数据y i 和X i ,无约束的线性回归模型是 y i = Z i δi + u i i =1, 2, … , N (4.1) 其中'i y = ( y i 1, … , y iT ),Z i = [ ιT , X i ]并且X i 是T×K 的,'i δ是1×(K +1)的,u i 是T×1的。 注意:各个体的回归系数δi 是不同的。 如果面板数据可混合,则得到有约束模型 y = Z δ + u (4.2) 其中Z ′ = ('1Z ,'2Z , … ,'N Z ),u ′ = ('1u ,'2u , … ,' N u )。 在假设1下,对于Grunfeld 数据,建立的混合回归模型 Stata 命令:. regress I F C

面板数据分析方法步骤全解

[经验分享] [讨论]面板数据分析方法步骤全解[复制链接] 本文来自: 人大经济论坛EViews专版版,详细出处参考:https://www.wendangku.net/doc/0a4705003.html,/forum.php?mod=viewthread&tid=473282&page=1&fromuid=3089628 面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结,和大家分享一下,也希望大家都进来讨论讨论。 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。 单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。 由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。 其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量、Hadri Z统计量,并且Levin, Lin & Chu t* 统计量、Breitung t统计量的原假设为存在普通的单位根过程,lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量的原假设为存在有效的单位根过程,Hadri Z统计量的检验原假设为不存在普通的单位根过程。 有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验LLC (Levin-Lin-Chu)检验和不同根单位根检验Fisher-ADF检验(注:对普通序列(非面板序

短学期Eviews讲义

一、一些前期知识 1.数据的类型 时间序列、截面数据、面板数据 2.数据前期处理 数据一般要经过价格调整,如GDP、工业增加值、农业增加值、进出口以及资本存量。以当年价格计算的GDP叫名义GDP,以某一年不变价格计算的GDP叫实际GDP。GDP缩减指数=名义GDP/实际GDP(也叫平减指数,表现的是国内生产总值中隐含的价格因素,从生产的角度看,由于GDP是国民经济各个行业增加值的加总,因此缩减指数包含的价格是国民经济各个产业部门的综合价格;从使用角度看,它从产品形态上反映了GDP用于最终消费、资本形成和净出口的货物及服务总量,因此缩减指数包含的价格为相应的消费价格指数、固定资产投资价格指数和进出口价格指数等的加权平均价格指数。)。在统计年鉴中有两种GDP指数(不是GDP平减指数),一种是以上一年为基期(100),另一种是以某一年为基期(100),它们可以相互换算(这两种GDP指数实际上相当于以不变价格计算的GDP 的环比发展速度和定基发展速度)。如1982年的指数(下表第二列)=1978年指数×1979年指数×1980年指数×1981年指数÷(100×100×100)[等号右边1979、1980、1981三年的指数是第三列中数据,1978年指数是100]。1982年的实际GDP=1978年的GDP×1982年指数(以1978=100)÷100,则GDP1982年缩减指数=1982年的名义GDP÷1982年的实际GDP,要求某年实际GDP,只需该年名义GDP÷该年GDP缩减指数即可。(注意:若想以1990基期计算其他年份GDP,需要以1990年为100,算出各年GDP指数,然后以1990年名义GDP乘以各年GDP指数)。进出口,若是以美元表示,则需每年进出口额乘以该年汇率再除以GDP缩减指数来调整。对于生产函数中的资本,要用资本存量,统计年鉴中只有固定资产投资,需将其换算为资本存量,方法见《数量经济技术经济研究》2008 年第10 期单豪杰《对中国资本存量K的再估算:1952-2006年》或《经济研究》2003年第7期张军等《对中国资本存量K的再估计》。对收入和支出,可用居民消费价格指数来进行调整。 数据来源(中国统计年鉴2009) 3.经济模型建立后的检验 经济意义检验(符号、大小及系数之间的关系);统计检验(拟合优度、显著性检验);计量经济学检验(序列相关、异方差、多重共线性、随机解释变量);预测检验。 4.模型的形式

面板数据分析方法步骤

面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结,和大家分享一下,也希望大家都进来讨论讨论。 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。 单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。Im et al. (1997) 还提出了检验

【信息化-精编】面板数据相关讲义

面板数据相关讲义

面板数据I——变截距模型 1.1PooledCrossSection数据 Pooledcrosssection数据是指不同时点(可能)不同截面的数据。而面板数据是指不同时点相同截面的数据。在面板数据中,同一截面不同时点的观测值不会是独立的。因为,这些数值可能受到共同因素的影响。Paneldata也叫做longitudinaldata。 混合数据增加了样本容量,因此提高了估计的精度和检验功效。同时,混合数据也被用于考察变量分布随着时间的变化,或者变量之间的关系随着时间的变化规律。考察的方法是加入时间虚拟变量。 例:NationalOpinionResearchCenter’sGeneralSocialSurvey搜集了1972~1984年妇女就业、家庭等相关数据。利用数据分析家庭小孩个数的变化规律。控制变量包括:教育程度、年龄、种族、地区、生活环境(农村、城镇、小城市等)。(数据文件:fertil1.raw)kids=β0+β1educ+β2age+β3age2+β4race+β5farm+β6town +β7D74+β8D76+β9D78+β10D80+β11D82+β12D84+u t 例:接受教育程度对工资的影响以及工资的性别差异(;datafile:cps78_85.raw) 模型设定: log(wage)=β0+β1y85+β2educ+β3y85 educ+β4exper+β5union +β6female+β7y85female+u t 模型估计: 结论分析: 例:废物焚化厂对周边房屋价格的影响(;datafile:kielmc.raw)

面板数据分析方法总结

面板数据分析方法总结 这是我在查阅各种资料后得出的关于面板数据的总结,最近在做面板的实证论文,所以需要这个,欢迎大家继续扩充,只要是关于面板的都行,关于具体如何在Eviews6中实现的更好,不甚感激。 ---------- *横截面的异方差与序列的自相关性是运用面板数据模型时可能遇到的最为常见的问题,此时运用OLS可能会产生结果失真,因此为了消除影响,对我国东、中、西部地区的分析将采用不相关回归方法( SeeminglyUnrelated Regression, SUR)来估计方程。而对于全国范围内的估计来说,由于横截面个数大于时序个数,所以采用截面加权估计法(Cross SectionWeights, CSW) 。 *一般而言,面板数据可用固定效应(fixed effect) 和随机效应(random effect) 估计方法,即如果选择固定效应模型,则利用虚拟变量最小二乘法(LSDV) 进行估计;如 果选择随机效应模型,则利用可行的广义最小二乘法(FGLS) 进行估计(Greene ,2000) 。它可以极大限度地利用面板数据的优点,尽量减少估计误差。至于究竟是采用固定效应还是随机效应,则要看Hausman 检验的结果。 *单位根检验:在进行时间序列的分析时,研究者为了避免伪回归问题,会通过单位根检验对数据平稳性进行判断。但对于面板数据则较少关注。随着面板数据在经济领域应用,对面板数据单位根的检验也逐渐引起重视。面板数据单位根的检验主要有Levin、L in 和Chu 方法(LLC 检验) (1992 ,1993 ,2002) 、Im、Pesaran 和Shin 方法( IPS 检验) (1995 ,1997) 、Maddala 和Wu 方法(MW检验) (1999) 等。 *协整检验:协整检验是考察变量间长期均衡关系的方法。在进行了各变量的单位根检验后,如果各变量间都是同阶单整,那么就可以进行协整检验了。面板协整检验理论目前还不成熟,仍然在不断的发展过程中,目前的方法主要有: (1)Kao(1999)、Kao and Chiang(2000)利用推广的DF和ADF检验提出了检验面板协整的方法,这种方法零假设是没有协整关系,并且利用静态面板回归的残差来构建统计量。 (2)Pedron(i1999)在零假设是在动态多元面板回归中没有协整关系的条件下给出了七 种基于残差的面板协整检验方法。和Kao的方法不同的是,Pedroni的检验方法允许异质面板的存在。 (3)Larsson et a(l2001)发展了基于Johansen(1995)向量自回归的似然检验的面板协整检验方法。这种检验的方法是检验变量存在共同的协整的秩。 *一般的顺序是:先检验变量的平稳性,当变量均为同阶单整变量时,再采用协整检验以判别变量间是否存在长期均衡关系。如果变量间存在长期均衡的关系,我们可以通过误差修正模型(ECM) 来检验变量间的长期因果关系;如变量间不存在协整关系,我们将 对变量进行差分,然后通过向量自回归模型(VAR),检验变量间的短期因果关系。 关于平稳性检验和协整检验、因果检验流程图

计量经济学面板数据模型讲义(4-7)

计量经济学面板数据模型讲义(4-7)

面板数据模型 1.面板数据定义。 时间序列数据或截面数据都是一维数据。例如时间序列数据是变量按时间得到的数据;截面数据是变量在截面空间上的数据。面板数据(panel data)也称时间序列截面数据(time series and cross section data)或混合数据(pool data)。面板数据是同时在时间和截面空间上取得的二维数据。面板数据示意图见图1。面板数据从横截面(cross section)上看,是由若干个体(entity, unit, individual)在某一时刻构成的截面观测值,从纵剖面(longitudinal section)上看是一个时间序列。 面板数据用双下标变量表示。例如 y i t, i = 1, 2, …, N; t = 1, 2, …, T N表示面板数据中含有N个个体。T表示时间序列的最大长度。若固定t不变,y i ., ( i = 1, 2, …, N)是横截面上的N个随机变量;若固定i不变,y. t, (t= 1, 2, …, T)是纵剖面上的一个时间序列(个体)。

图1 N=7,T=50的面板数据示意图 例如1990-2000年30个省份的农业总产值数据。固定在某一年份上,它是由30个农业总产总值数字组成的截面数据;固定在某一省份上,它是由11年农业总产值数据组成的一个时间序列。面板数据由30个个体组成。共有330个观测值。 对于面板数据y i t, i = 1, 2, …, N; t = 1, 2, …, T来说,如果从横截面上看,每个变量都有观测值,从纵剖面上看,每一期都有观测值,则称此面板数据为平衡面板数据(balanced panel data)。若在面板数据中丢失若干个观测值,则称此面板数据为非平衡面板数据(unbalanced panel data)。

相关文档
相关文档 最新文档