文档库 最新最全的文档下载
当前位置:文档库 › 常用的二次曲面方程及其图形

常用的二次曲面方程及其图形

常用的二次曲面方程及其图形
常用的二次曲面方程及其图形

不变量法化简二次曲面

不变量法化简二次曲面 徐晓利摘要:二次曲面的化简是一项复杂又高难度的工作.本文主要总结了计算简便易掌握的不变量法,即运用变量和不变量化简二次曲面的方法,并举例讲解方法.关键词:二次曲面;化简;不变量二次曲面是解析几何的重点内容,也是高等代数这一模块中重要的二次型理论的经典应用.我们往往通过化简其方程,判别二次曲面的类型,并确定其几何形状.化简二次曲面,是二次曲面一般理论中最重要的内容,也是难点所在.坐标变换法(正交变换)是化简二次曲面方程普遍常用的方法,但是由于相关高等代数理论抽象难懂,计算过程复杂,课堂教学显得很是困难.在欧式坐标系中,二次曲面存在着许多不变量,总结归纳不变量关系与二次曲面标准方程之间联系,由此来进行化简.1二次曲面定义1在三维空间中,用三元二次方程来表示的曲面称为二次曲面.设二次曲面的一般方程为:(1.1).二次曲面方程中的常用记号:将的二次项部分记为,将的系数排成矩阵,叫做二次曲面的矩阵..2不变量法化简二次曲面定义2二次曲面的标准方程:无法再使用平移、旋转变换进行化简的方程.即满足以下三者的方程:1)方程中不包含交叉项xy,xz,yz;2)若方程中存在某一坐标的二次项,就不存在这一坐标的一次项;3)若方程中只存在某一坐标的一次项,且此时其中不存在.在高等代数课程中,有一个重要理论,称为二次型理论.二次型理论告诉我们,通过求解矩阵的特征方程,求相应特征根,最后得到唯一的标准形.这也就是我们常常所说的正交变换.二次曲面方程中也有

相应的二次型矩阵,从而二次曲面便能用此变换化简,在这里不加以展开.在变换中我们发现,二次曲面方程在直角坐标变换后,方程虽然发生了一定变化,但是决定二次曲面的几何特征的性质却没有任何变化,那些不变的性质我们可以采用不变量来刻画.这种不变量可以用二次曲面方程的系数来表达.我们称,不因直角坐标变化而发生改变的量为正交不变量.正交不变量在解析几何研究中十分重要的一项,为二次曲面和二次曲线的化简有着尤为重要的作用,下面我将证明二次曲面中的不变量.引理 1.是二次曲面的不变量.即是正交不变量.推论 1.二次曲面的特征方程和特征根在任意直角坐标变换下都不变.引理2.和在转轴变换下不变,称为半不变量.引理3.给定二次曲面方程(1)当时,是不变量;(2)当时,是不变量.任意一个二次曲面方程在选取适当的直角坐标变化后可以被分为5大类别,表示为化简的五个方程之一,下面我们利用二次曲面在转轴变化下的不变量与半不变量对二次曲面进行化简.定理1.不变量得简化方程:(1)当时,简化方程为;(2)当时,简化方程为;(3)当时,简化方程为;(4)当时,简化方程为;(5)当时,简化方程为.其中表示非零特征根.证明:从略.例1:化簡下面二次曲面方程,并判断出它为何种二次曲面.解:二次曲面的矩阵,分别计算不变量,得,,,.特征方程为,特征根为:,,.又由,所以二次曲面的简化方程为:,该曲面为椭圆柱面.例2:化简二次曲面方程.解:二次曲面的矩阵,分别计算不变量,得,,,由故二次曲面为中心二次曲面,特征方程为,特征根为:,,又所以二次曲面的简化方程为:,这是一个

10三维空间中二次方程与二次曲面概要.

三维空间中二次方程与二次曲面 张晓青(2010073060029) 指导教师:李厚彪 【摘要】 利用正交变换可以将二次型化为标准型,在三维空间中一个二次方程对应着一种 二次曲面.在研究二次方程的几何意义时,先将二次方程进行正交变换进而研究所得到的标准型对应的几何图形,可以证明所得的几何图形是一个与原几何图形相同但位于特殊位置的图形,具有一定的对称性,为研究带来方便.这种正交变换法适用于一般情况具有探究价值,本文基于教材,进一步讨论正交变换后不同的标准型与几何图形的关系,并附有图解. 【关键词】正交表换 二次方程 二次曲面 1 引 言 教材第六章二次型与二次曲面的几何应用中告诉我们不同的标准型的参数对应17种不同的几何图形,那么它们究竟是什么样的曲面图形呢?接下来我们一一讨论. 2.正 文 如果线性变换=X CY 中的系数举矩阵C 是正交矩阵,则称这个线性变换为正交变换 对n 维实向量T 12(,,,)n a a a =α,T 12(,,,)n b b b =β,设A 为n 阶正交矩阵,作正交变 换 =X A α,=Y A β, 则 T T T T (,)(,)()()( ,).= ====X Y A αA βA αA βαΑA βαβ αβ 即,正交变换保持向量内积不变,因为也就保持向量的长度与夹角不变.于是在正交变换下, 几何图形的形状不会发生改变. 设 222 12311122233312121313 2323112233(,,)222? f x x x a x a x a x a x x a x x a x x b x b x b x c =+++++++++ (1.1) 则方程123(,,)0f x x x =在几何空间中表示一个二次曲面. 令11 121321 222331 32 33a a a a a a a a a ?? ? = ? ???A ,123x x x ?? ?= ? ???X ,123b b b ?? ?= ? ??? b 则(1.1)式可记为 T T ()f c =++X X AX b X (1.2) 下面,令T ()g =X X AX 1. 作正交变换=X CY ,其中T 123(,,)y y y =Y ,则 223''' 112233112233()f y y y b y b y b y c λλλ=++++++X (1.3)

常见的空间曲面与方程

常见的空间曲面与方程 常见的空间曲面有平面、柱面、锥面、旋转曲面和二次曲面。 1. 平面 空间中平面的一般方程为 0a x b y c z d +++= 其中,,a b c 均为常数,且,,a b c 不全为零。 例如,1x y z ++=(图8-6(a )),0x =(图8-6(b ))均表示空间中的平面, z yoz 平面(x =0) y y x 图8-6(a ) 图8-6 (b) 图8-6 2. 柱面 与给定直线L 平行的动直线l 沿着某给定的曲线C 移动所得到空间曲面,称为柱面, l 为母线,C 为准线。 如图8-7所示 图8-7 图8-8

例如,222x y R +=表示空间中母线平行于z 轴,准线是xoy 平面上的圆222x y R +=的 圆柱面的方程,简称圆柱面图(8-8)。 3. 二次曲面 三元二次方程 222 1231 2 31230a x a y a z b x y b y z b z x c x c y c z d +++ ++++++= 所表示的曲面称为二次曲面,其中,,(1,2,3),i i i a b c i d =均为常数,且,,i i i a b c 不全为0. 二次曲面有以下几种标准形式,它们分别为: 球面: 图8-9 椭球面:222 2221(,,0)x y z a b c a b c ++=>图8-10 图8-9 图8-10 单叶双曲面:222 2221(,,0)x y z a b c a b c -+=>图8-11 双叶双曲面:222 2221(,,0)x y z a b c a b c +-=->图8-12 2222(0)x y z R R + += >x z

高数下册常用常见知识点

高等数学下册常用常见知识点 第八章 空间解析几何与向量代数 (一) 向量及其线性运算 1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面; 2、 线性运算:加减法、数乘; 3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式; 4、 利用坐标做向量的运算:设),,(z y x a a a a = ,),,(z y x b b b b = , 则 ),,(z z y y x x b a b a b a b a ±±±=± , ),,(z y x a a a a λλλλ= ; 5、 ; 6、 7、 向量的模、方向角、投影: 1) 向量的模: 2 22z y x r ++= ; 2) 两点间的距离公式: 2 12212212)()()(z z y y x x B A -+-+-= 3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,, 4) 方向余弦:r z r y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα 5) 投影:?cos Pr a a j u =,其中?为向量a 与u 的夹角。 | (二) (三) 数量积,向量积 1、 数量积:θcos b a b a =? 1)2 a a a =? 2)?⊥b a 0=?b a z z y y x x b a b a b a b a ++=? 2、 向量积:b a c ?=

大小:θsin b a ,方向:c b a ,,符合右手规则 1)0 =?a a 2)b a //? =?b a z y x z y x b b b a a a k j i b a =? 运算律:反交换律 b a a b ?-=? (四) 曲面及其方程 1、 ] 2、 曲面方程的概念: ),,(:=z y x f S 3、 旋转曲面:(旋转后方程如何写) yoz 面上曲线0),(:=z y f C , 绕y 轴旋转一周: 0),(22=+±z x y f 绕 z 轴旋转一周: 0),(22=+±z y x f 4、 柱面:(特点) 0),(=y x F 表示母线平行于z 轴,准线为?????==0 0),(z y x F 的柱面 5、 @ 6、 二次曲面(会画简图) 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 2222=++c z b y a x

6.5二次曲面方程的化简与位置确定

§6.5 二次曲面方程的化简与位置确定 本节重点:掌握利用不变量化简二次曲面的方法并能确定新坐标系的位置 一 有心二次曲面 对于有心二次曲面,取其一个中心为新坐标原点' O ,这时在新坐标系下,' O 的坐标为 )0,0,0(,它满足关于中心的方程 ?????=+++=+++=+++0 00'34''33''32''31 ' 24''23''22''21'14''13''12''11a z a y a x a a z a y a x a a z a y a x a (6.5.1) 把)0,0,0(代入(6.5.1)便得到' 34 '24'14a a a ==,因此有 6.5.1定理 若取有心二次曲面的一个中心为原点,则这个二次曲面在这个坐标系下的一次项系数为0。 结合上节结果得到,若二次曲面是有心二次曲面,则取其一个中心为新原点,对应于两个相异特征根21,λλ的两个单位特征向量为新坐标向量→→' ',j i ,取另一个坐标向量为 →→→ ?=' ''j i k ,那么在这个新坐标系下,二次曲面的方程为 0' 442'32'22'1=+++a z y x λλλ 其中3λ是这个二次曲面的另一个特征根,至于' 44a 可用下面方法得到 (1) 用中心的坐标表示' 44a , 因为转轴不改变常数项,因此常数项由移轴决定,由(6.3.20)可得 ),,(000'44z y x F a = 其中),,(000z y x 是新原点上的坐标。但因为 ),,(),,(),,(),,(),,(0004000300002000010000z y x F z y x F z z y x F y z y x F x z y x F +++= 而),,(000z y x 是二次曲面中心,因此)3,2,1(),,,(000=i z y x F i 因此 ),,(0004'44z y x F a = (2) 用不变量求' 44a 若二次曲面是中心二次曲面,则3I 是其中心方程组的系数行列式,因此03≠I ,即

二次曲面上课教案

第六章 二次曲面的一般理论 教学目的: 本章讨论了一般二次曲面的渐近方向、中心、切线、切平面、径面奇向、主径面与主方向等重要概念,从不同角度对二次曲面进行了分类. 研究了二次曲面的几何性质,并通过坐标变换和不变量、半不变量两种形式,化二次曲面的一般方程为规范方程,对二次曲面进行了分类和判定,是二次曲面理论的推广和扩充. 教学重难点: 通过坐标变换和运用不变量、半不变量化二次曲面的一般方程为规范方程,既是重点又是难点. 基本概念 二次曲面: 在空间,由三元二次方程 022222244342414231312233222211=+++++++++a z a y a x a yz a xz a xy a z a y a x a (1) 所表示的曲面. 虚元素:空间中,有序三复数组),,(z y x 叫做空间复点的坐标,如果三坐标全是实数,那么它对应的点是实点,否则叫做虚点 二次曲面的一些记号 ≡ ),,(z y x F 44 342414231312233222211222222a z a y a x a yz a xz a xy a z a y a x a +++++++++ 141312111),,(a z a y a x a z y x F +++≡ 242323122),,(a z a y a x a z y x F +++≡ 343323133),,(a z a y a x a z y x F +++≡ 443424144),,(a z a y a x a z y x F +++≡ yz a xz a xy a z a y a x a z y x 231312233222211222),,(+++++≡Φ z a y a x a z y x 1312111),,(++≡Φ z a y a x a z y x 2322122),,(++≡Φ

相关文档
相关文档 最新文档