文档库 最新最全的文档下载
当前位置:文档库 › 【2017年整理】地基承载力计算方法

【2017年整理】地基承载力计算方法

【2017年整理】地基承载力计算方法
【2017年整理】地基承载力计算方法

一.地基承载力计算方法:按《建筑地基基础设计规范》(GBJ7-89)

1.野外鉴别法

岩石承载力标准值f k(kpa)

注:1.对于微风化的硬质岩石,其承载力取大于4000kpa时,应由试验确定;

2.对于强风化的岩石,当与残积土难于区分时按土考虑。

碎石承载力标准值f k(kpa)

注:1.表中数值适用于骨架颗粒空隙全部由中砂、粗砂或硬塑、坚硬状态的粘土或稍湿的粉土所充填的情况;

2.当粗颗粒为中等风化或强风化时,可按其风化程度适当降低承载力,当颗粒间呈半胶结状时,可适当提高承载力;

3.对于砾石、砾石土均按角砾查承载力。

2.物理力学指标法

粉土承载力基本值f(kpa)

注:1.有括号者仅供内插用;

2.折算系数§=0。

粘性土承载力基本值f(kpa)

注:1.有括号者仅供内插用;

2.折算系数§=0.1。

沿海地区淤泥和淤泥质土承载力基本值f(kpa)

注:对于内陆淤涨和淤泥质土,可参照使用。

红粘土承载力基本值f(kpa)

注:1.本表仅适用于定义范围内的红粘土;

2.折算系数§=0.4。

素填土承载力基本值f(kpa)

注:本表只适用于堆填时间超过10年的粘性土,以及超过5年的粉土;所查承载需经修正计算。3.标准贯入试验法

砂土承载力标准值f k(kpa)

注:1.砾砂不给承载力; 2.粉细砂按粉砂项给承载力;3.中粗砂按中砂项给承载力;

4.细中砂按细砂项给承载力;

5.粗砾砂按粗砂项给承载力;

6.N63.5需修正后查承载力.

粘性土承载力标准值f k(kpa)

注:N63.5需经修正后查承载力。

花岗岩风化残积土承载力基本值f(kpa)

注:花岗岩风化残积土的定名:

2mm含量≥20%为砾质粘性土;

2mm含量<20%为砂质粘性;

2mm含量=0为粘性土

二.标准贯入击数修正方法

1.国标方法

N=aN′

2.公路方法

当触探杆长度≤21m时按国标;

当触探杆长度≥21m时按下式计算:

N L=(0.784-0.004L)Ns

式中:N L表示校正后的击数

Ns表示实际击数

L表示触探杆长度

三.土的部分特征参考值

注:括号内为海南地区经验值

粘性土的内摩擦角φ(度)和粘聚力c(kpa)参考值

四.土的分类

粉土密实度和湿度分类

粘性土状态分类

五.工程降水方法

聚乙烯(PE)简介

1.1聚乙烯

化学名称:聚乙烯

英文名称:polyethylene,简称PE

结构式:

聚乙烯是乙烯经聚合制得的一种热塑性树脂,也包括乙烯与少量α-烯烃的共聚物。聚乙烯是五大合成树脂之一,是我国合成树脂中产能最大、进口量最多的品种。

1.1.1聚乙烯的性能

1.一般性能

聚乙烯为白色蜡状半透明材料,柔而韧,比水轻,无嗅、无味、无毒,常温下不溶于一般溶剂,吸水性小,但由于其为线性分子可缓慢溶于某些有机溶剂,且不发生溶胀。工业上为使用和贮存的方便通常在聚合后加入适量的塑料助剂进行造粒,制成半透明的颗粒状物料。PE易燃,燃烧时有蜡味,并伴有熔融滴落现象。聚乙烯的性质因品种而异,主要取决于分子结构和密度,也与聚合工艺及后期造粒过程中加入的塑料助剂有关。

2.力学性能

PE是典型的软而韧的聚合物。除冲击强度较高外,其他力学性能绝对值在塑料材料中都是较低的。PE密度增大,除韧性以外的力学性能都有所提高。LDPE 由于支化度大,结晶度低,密度小,各项力学性能较低,但韧性良好,耐冲击。HDPE支化度小,结晶度高,密度大,拉伸强度、刚度和硬度较高,韧性较差些。相对分子质量增大,分子链间作用力相应增大,所有力学性能,包括韧性也都提高。几种PE的力学性能见表1-1。

表1-1 几种PE力学性能数据

3.热性能

PE受热后,随温度的升高,结晶部分逐渐熔化,无定形部分逐渐增多。其熔点与结晶度和结晶形态有关。HDPE的熔点约为125~137℃,MDPE的熔点约为126~134℃,LDPE的熔点约为105~115℃。相对分子质量对PE的熔融温度基本上无影响。

PE的玻璃化温度(T g)随相对分子质量、结晶度和支化程度的不同而异,而且因测试方法不同有较大差别,一般在-50℃以下。PE在一般环境下韧性良好,耐低温性(耐寒性)优良,PE的脆化温度(T b)约为-80~-50℃,随相对分子质量增大脆化温度降低,如超高相对分子质量聚乙烯的脆化温度低于-140℃。

PE的热变形温度(T HD)较低,不同PE的热变形温度也有差别,LDPE约为38~50℃(0.45MPa,下同),MDPE约为50~75℃,HDPE约为60~80℃。PE的最高连续使用温度不算太低,LDPE约为82~100℃,MDPE约为105~121℃,HDPE为121℃,均高于PS和PVC。PE的热稳定性较好,在惰性气氛中,其热分解温度超过300℃。

PE的比热容和热导率较大,不宜作为绝热材料选用。PE的线胀系数约在(15~30)×10-5K-1之间,其制品尺寸随温度改变变化较大。

几种PE的热性能见表1-2。

表1-2几种PE热性能

4.电性能

PE分子结构中没有极性基团,因此具有优异的电性能,几种PE的电性能见表1-3。PE的体积电阻率较高,介电常数和介电损耗因数较小,几乎不受频率的影响,因而适宜于制备高频绝缘材料。它的吸湿性很小,小于0.01%(质量分数),电性能不受环境湿度的影响。尽管PE具有优良的介电性能和绝缘性,但由于耐热性不够高,作为绝缘材料使用,只能达到Y级(工作温度≤90℃)。

表1-3聚乙烯的电性能

5.化学稳定性

PE是非极性结晶聚合物,具有优良的化学稳定性。室温下它能耐酸、碱和盐类的水溶液,如盐酸、氢氟酸、磷酸、甲酸、醋酸、氨、氢氧化钠、氢氧化钾以及各类盐溶液(包括具有氧化性的高锰酸钾溶液和重铬酸盐溶液等),即使在较高的浓度下对PE也无显著作用。但浓硫酸和浓硝酸及其他氧化剂对聚乙烯有缓慢侵蚀作用。

PE在室温下不溶于任何溶剂,但溶度参数相近的溶剂可使其溶胀。随着温度的升高,PE结晶逐渐被破坏,大分子与溶剂的作用增强,当达到一定温度后PE可溶于脂肪烃、芳香烃、卤代烃等。如LDPE能溶于60℃的苯中,HDPE能溶于80~90℃的苯中,超过100℃后二者均可溶于甲苯、三氯乙烯、四氢萘、十氢萘、石油醚、矿物油和石蜡中。但即使在较高温度下PE仍不溶于水、脂肪族醇、丙酮、乙醚、甘油和植物油中。

PE在大气、阳光和氧的作用下易发生老化,具体表现为伸长率和耐寒性降低,力学性能和电性能下降,并逐渐变脆、产生裂纹,最终丧失使用性能。为了防止PE的氧化降解,便于贮存、加工和应用,一般使用的PE原料在合成过程中已加入了稳定剂,可满足一般的加工和使用要求。如需进一步提高耐老化性能,可在PE中添加抗氧剂和光稳定剂等。

6.卫生性

PE分子链主要由碳、氢构成,本身毒性极低,但为了改善PE性能,在聚合、成型加工和使用中往往需添加抗氧剂和光稳定剂等塑料助剂,可能影响到它的卫生性。树脂生产厂家在聚合时总是选用无毒助剂,且用量极少,一般树脂不会受到污染。

PE长期与脂肪烃、芳香烃、卤代烃类物质接触容易引起溶胀,PE中有些低相对分子质量组分可能会溶于其中,因此,长期使用PE容器盛装食用油脂会产

生一种蜡味,影响食用效果。

1.1.2聚乙烯的分类

聚乙烯的生产方法不同,其密度及熔体流动速率也不同。按密度大小主要分为低密度聚乙烯(LDPE)、线型低密度聚乙烯(LLDPE)、中密度聚乙烯(MDPE)、高密度聚乙烯(HDPE)。其中线性低密度聚乙烯属于低密度聚乙烯中的一种,是工业上常用的聚乙烯,其他分类法有时把MDPE归类于HDPE 或LLDPE。

按相对分子质量可分为低相对分子质量聚乙烯、普通相对分子质量聚乙烯、超高相对分子质量聚乙烯。

按生产方法可分为低压法聚乙烯、中压法聚乙烯和高压法聚乙烯。

1.低密度聚乙烯

英文名称: Low density polyethylene,简称LDPE

低密度聚乙烯,又称高压聚乙烯。无味、无臭、无毒、表面无光泽、乳白色蜡状颗粒,密度0.910~0.925g/cm3,质轻,柔性,具有良好的延伸性、电绝缘性、化学稳定性、加工性能和耐低温性(可耐-70℃),但力学强度、隔湿性、隔气性和耐溶剂性较差。分子结构不够规整,结晶度较低(55%~65%),熔点105~115℃。

LDPE可采用热塑性成型加工的各种成型工艺,如注射、挤出、吹塑、旋转成型、涂覆、发泡工艺、热成型、热风焊、热焊接等,成型加工性好。主要用作农膜、工业用包装膜、药品与食品包装薄膜、机械零件、日用品、建筑材料、电线、电缆绝缘、吹塑中空成型制品、涂层和人造革等。

2.高密度聚乙烯

英文名称:High Density Polyethylene,简称HDPE

高密度聚乙烯,又称低压聚乙烯。无毒、无味、无臭,白色颗粒,分子为线型结构,很少有支化现象,是典型的结晶高聚物。力学性能均优于低密度聚乙烯,熔点比低密度聚乙烯高,约125~137℃,其脆化温度比低密度聚乙烯低,约-100~-70℃,密度为0.941~0.960g/cm3。常温下不溶于一般溶剂,但在脂肪烃、芳香烃和卤代烃中长时间接触时能溶胀,在70℃以上时稍溶于甲苯、醋酸中。在空气中加热和受日光影响发生氧化作用。能耐大多数酸碱

的侵蚀。吸水性小,具有良好的耐热性和耐寒性,化学稳定性好,还具有较高的刚性和韧性,介电性能、耐环境应力开裂性亦较好。

HDPE可采用注射、挤出、吹塑、滚塑等成型方法,生产薄膜制品、日用品及工业用的各种大小中空容器、管材、包装用的压延带和结扎带,绳缆、鱼网和编织用纤维、电线电缆等。

3.线性低密度聚乙烯

英文名称:Linear Low Density Polyethylene,简称LLDPE

线形低密度聚乙烯被认为是“第三代聚乙烯”的新品种,是乙烯与少量高级α-烯烃(如丁烯-1、己烯-1、辛烯-1、四甲基戊烯-1等)在催化剂作用下,经高压或低压聚合而成的一种共聚物,为无毒、无味、无臭的乳白色颗粒,密度0.918~0.935g/cm3。与LDPE相比,具有强度大、韧性好、刚性大、耐热、耐寒性好等优点,且软化温度和熔融温度较高,还具有良好的耐环境应力开裂性,耐冲击强度、耐撕裂强度等性能。并可耐酸、碱、有机溶剂等。

LLDPE可通过注射、挤出、吹塑等成型方法生产农膜、包装薄膜、复合薄膜、管材、中空容器、电线、电缆绝缘层等。由于不存在长支链,LLDPE的 65%~70%用于制作薄膜。

4.中密度聚乙烯

英文名称:Medium density polyethylene,简称MDPE

中密度聚乙烯是在合成过程中用α-烯烃共聚,控制密度而成。MDPE的密度为0.926~0.953g/cm3,结晶度为70%~80%,平均相对分子质量为20万,拉伸强度为8~24MPa,断裂伸长率为50%~60%,熔融温度126~135℃,熔体流动速率为0.1~35g/10min,热变形温度(0.46MPa)49~74℃。MDPE最突出的特点是耐环境应力开裂性及强度的长期保持性。

MDPE可用挤出、注射、吹塑、滚塑、旋转、粉末成型加工方法,生产工艺参数与HDPE和LDPF相似,常用于管材、薄膜、中空容器等。

5.超高相对分子质量聚乙烯

英文名称:ultra-high molecular weight polyethylene,简称UHMWPE 超高相对分子质量聚乙烯冲击强度高,耐疲劳,耐磨,是一种线型结构的具有优异综合性能的热塑性工程塑料。其相对分子质量达到300~600万,

密度0.936~0.964g/cm3,热变形温度(0.46MPa)85℃,熔点130~136℃。

UHMWPE因相对分子质量高而具有其他塑料无可比拟的优异性能,如耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能,广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。另外,由于超高相对分子质量聚乙烯优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节等在临床医学上使用,而且,超高相对分子质量聚乙烯耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。超高相对分子质量聚乙烯纤维的复合材料在军事上已用作装甲车辆的壳体、雷达的防护罩壳、头盔等;体育用品上已制成弓弦、雪橇和滑水板等。

由于超高相对分子质量聚乙烯熔融状态的粘度高达108Pa·s,流动性极差,其熔体流动速率几乎为零,所以很难用一般的机械加工方法进行加工。近年来,通过对普通加工设备的改造,已使超高相对分子质量聚乙烯由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其他特殊方法的成型。

6.茂金属聚乙烯

茂金属聚乙烯(mPE)是近年来迅速发展的一类新型高分子树脂,其相对分子质量分布窄,分子链结构和组成分布均一,具有优异的力学性能和光学性能,已被广泛应用于包装、电气绝缘制品等。

1.1.3聚乙烯的成型加工

PE的熔体粘度比PVC低,流动性能好,不需加入增塑剂已具有很好的成型加工性能。前文已介绍了各类聚乙烯可采用的成型加工方法,下面主要介绍在成型过程中应注意的几个问题。

①聚乙烯属于结晶性塑料,吸湿小,成型前不需充分干燥,熔体流动性极好,流动性对压力敏感,成型时宜用高压注射,料温均匀,填充速度快,保压充分。不宜用直接浇口,以防收缩不均,内应力增大。注意选择浇口位置,防止产生缩孔和变形。

②PE的热容量较大,但成型加工温度却较低,成型加工温度的确定主要取决于相对分子质量、密度和结晶度。LDPE在180℃左右, HDPE在220℃左右,最高成型加工温度一般不超过280℃。

③熔融状态下,PE具有氧化倾向,因而,成型加工中应尽量减少熔体与空气的接触及在高温下的停留时间。

④PE的熔体粘度对剪切速率敏感,随剪切速率的增大下降得较多。当剪切速率超过临界值后,易出现熔体破裂等流动缺陷。

⑤制品的结晶度取决于成型加工中对冷却速率的控制。不论采取快速冷却还是缓慢冷却,应尽量使制品各部分冷却速率均匀一致,以免产生内应力,降低制品的力学性能。

⑥收缩范围和收缩值大(一般成型收缩率为1.5%~5.0%),方向性明显,易变形翘曲,冷却速度宜慢,模具设冷料穴,并有冷却系统。

⑦软质塑件有较浅的侧凹槽时,可强行脱模。

1.1.4聚乙烯的改性

聚乙烯属非极性聚合物,与无机物、极性高分子相容性弱,因此其功能性较差,采用改性可提高PE的耐热老化性、高速加工性、冲击强度、粘接性、生物相容性等性质。常用的改性方法包括物理改性和化学改性。

1.物理改性

物理改性是在PE基体中加入另一组分(无机组分、有机组分或聚合物等)的一种改性方法。常用的方法有增强改性、共混改性、填充改性。

(1)增强改性增强改性是指填充后对聚合物有增强效果的改性。加入的增强剂有玻璃纤维、碳纤维、石棉纤维、合成纤维、棉麻纤维、晶须等。自增强改性也属于增强改性的一种。

①自增强改性。所谓自增强就是使用特殊的加工成型方法,使得材料内部组织形成伸直链晶体,材料内部大分子晶体沿应力方向有序排列,材料的宏观强度得到大幅度提高,同时分子链有序排列将使结晶度提高,从而使材料的强度进一步提高,由于所形成的增强相与基体相的分子结构相同,因而不存在外增强材料中普遍存在的界面问题。如采用超高相对分子质量聚乙烯(UHMPE)纤维增强LDPE,在加热加压成型的条件下,可以形成良好的界面,最大限度发挥基体和纤维的强度。

②纤维增强改性。纤维增强聚合物基复合材料由于具有比强度高、比刚度高等优点而得到广泛应用。如采用经KH-550偶联剂处理的长玻璃纤维(LGF)与PE复

合制备的PE/LGF复合材料,当LGF加入量为3O%(质量分数)、长度约为35mm时,复合材料的拉伸强度和冲击强度分别为52.5MPa和52kJ/m。

③晶须改性。晶须的加入能够大幅度提高HDPE材料的力学性能,包括短期力学性能及耐长期蠕变性能。晶须对HDPE材料的增强作用主要归因于它们之间的良好界面粘接,同时刚性的晶须则能够承担较大的外界应力使复合材料的模量得到提高。

④纳米粒子增强改性。少量无机刚性粒子填充PE可同时起到增韧与增强的作

用。如将表面处理过的纳米SiO

2粒子填充mLLDPE-LDPE,SiO

2

纳米粒子均匀分散于

基材中,与基材形成牢固的界面结合,当填充质量分数为2%时,拉伸强度、断裂伸长率分别提高了13.7MPa和174.9%。

(2)共混改性共混改性主要目的是改善PE的韧性、冲击强度、粘接性、高速加工性等各种缺陷,使其具有较好的综合性能。共混改性主要是向PE基体中加入另一种聚合物,如塑料类、弹性体类等聚合物,以及不同种类的PE之间进行共混。

①PE系列的共混改性。单一组分的PE往往很难满足加工要求,而通过不同种类PE之间的共混改性可以获得性能优良的PE材料。如通过LDPE与LLDPE共混,解决了LDPE因大量添加阻燃剂和抗静电剂等助剂造成力学性能急剧降低的问题;LLDPE与HDPE共混后可以提高产品的综合性能。

②PE与弹性体的共混改性。弹性体具有低的表面张力、较强的极性、突出的增韧作用,因此与PE共混后,既能保持PE的原有性能,同时也可以制备出具有综合优良性能的PE。如LDPE-聚烯烃弹性体(POE)共混物,当POE的质量分数为3O%时,共混体系的拉伸强度达到最大值,为21.5 MPa。

③PE与塑料的共混改性。聚乙烯具有良好的韧性,但制品的强度和模量较低,与工程塑料等共混可提高复合体系的综合力学性能。但PE和这类高聚物的界面问题也是影响其共混物性能的主要原因,因此通常需要加入界面相容剂以提高共混物的力学性能。

(3)填充改性填充改性是在PE基质中加入无机填料或有机填料,一方面可以降低成本达到增重的目的,另一方面可提高PE的功能性,如电性能、阻燃性能等,但同时对复合材料的力学性能和加工性能带来一定程度的影响。

无论是无机填料还是有机填料,填料与PE基体的相容性和界面粘接强度是PE填充改性必须面临的问题,而PE是非极性化合物,与填料相容性差,因此,必须对填料进行表面处理。填料的表面处理一般采用物理或化学方法进行处理,在填料表面包覆一层类似于表面活性剂的过渡层,起“分子桥”的作用,使填料与基体树脂间形成一个良好的粘接界面。常用的填料表面处理技术有:表面活性剂或偶联剂处理技术、低温等离子体技术、聚合填充技术和原位乳液聚合技术等。

PE中填充木粉、淀粉、废纸粉、滑石粉、碳酸钙等一类填料,不仅可以改善PE的性能,同时也具有十分重要的健康环保意义。

2.化学改性

化学改性的方法主要有接枝改性、共聚改性、交联改性、氯化及氯磺化改性和等离子体改性处理等方法。其原理是通过化学反应在PE分子链上引入其他链节和功能基团,由此提高材料的力学性能、耐侯性能、抗老化性能和粘接性能等。

(1)接枝改性接枝改性是指将具有各种功能的极性单体接枝到PE主链上的一种改性方法。接枝改性后的PE不但保持了其原有特性,同时又增加了其新的功能。常用的接枝单体有丙烯酸(AA)、马来酸酐(MA)、马来酸盐、烯基双酚A醚和活性硅油等。接枝改性的方法主要有溶液法、固相法、熔融法、辐射接枝法、光接枝法等。

(2)共聚改性共聚改性是指通过共聚反应将其他大分子链或官能团引入到PE分子链中,从而改变PE的基本性能。主要改性品种有乙烯-丙烯共聚物(塑料)、EVA、乙烯-丁烯共聚物、乙烯-其他烯烃(如辛烯POE、环烯烃)共聚物、乙烯-不饱和酯共聚物(EAA、 EMAA 、EEA、EMA、EMMA、EMAH)等。通过共聚反应,可以改变大分子链的柔顺性或使原来的基团带有反应性官能团,可以起到反应性增容剂的作用。

(3)交联改性交联改性是指在聚合物大分子链间形成了化学共价键以取代原来的范德华力,由此极大地改善了诸如耐热性、耐磨性、弹性形变、耐化学药品性及耐环境应力开裂性等一系列物理化学性能,适于作大型管材、电缆电线以及滚塑制品等。聚乙烯的交联改性方法包括过氧化物交联(化学交联)、高能辐射交联、硅烷接枝交联、紫外光交联。

(4)氯化及氯磺化改性氯化聚乙烯是聚乙烯分子中的仲碳原子被氯原子

取代后生成的一种高分子氯化物,具有较好的耐候性、耐臭氧性、耐化学药品性、耐寒性、阻燃性和优良的电绝缘性。主要用作聚氯乙烯的改性剂,以改善聚氯乙烯抗冲击性能,氯化聚乙烯本身还可作为电绝缘材料和地面材料。

氯磺化聚乙烯是聚乙烯经过氯化和氯磺化反应而制得的具有高饱和结构的特种弹性材料,属于高性能橡胶品种。其结构饱和,无发色基团存在,涂膜的抗氧性、耐油性、耐候性、耐磨性和保色性能优异,且耐酸碱和化学药品的腐蚀,已广泛应用于石油、化工等行业。

(5)等离子体改性处理等离子体是由部分电离的导电气体组成,其中包括电子、正离子、负离子,基态的原子或分子、激发态的原子或分子、游离基等类型的活性粒子。

在聚乙烯等高分子材料表面改性中主要利用低温等离子体中的活性粒子轰击材料表面,使材料表面分子的化学键被打开,并与等离子体中的氧、氮等活性自由基结合,在高分子材料表面形成含有氧、氮等极性基团,由于表面增加了大量的极性基团从而能明显地提高材料表面的粘接性、印刷性、染色性等。

1.1.5聚乙烯的应用

聚乙烯是通用塑料中应用最广泛的品种,薄膜是其主要加工产品,其次是片材和涂层、瓶、罐、桶等中空容器及其他各种注射和吹塑制品、管材和电线、电缆的绝缘和护套等。主要用于包装、农业和交通等部门。

1.薄膜

低密度聚乙烯总产量的一半以上经吹塑制成薄膜,这种薄膜有良好的透明性和一定的拉伸强度,广泛用作各种食品、衣物、医药、化肥、工业品的包装材料以及农用薄膜。也可用挤出法加工成复合薄膜用于包装重物。高密度聚乙烯薄膜的强度高、耐低温、防潮,并有良好的印刷性和可加工性。线型低密度聚乙烯的最大用途也是制成薄膜,其强度、韧性均优于低密度聚乙烯,耐刺穿性和刚性也较好,透明性稍优于高密度聚乙烯。此外,还可以在纸、铝箔或其他塑料薄膜上挤出涂布聚乙烯涂层,制成高分子复合材料。

2.中空制品

高密度聚乙烯强度较高,适宜成型中空制品。可用吹塑法制成瓶、桶、罐、槽等容器,或用浇铸法制成槽车罐和贮罐等大型容器。

3.管、板材

挤出法可生产聚乙烯管材,高密度聚乙烯管强度较高,适于地下铺设。挤出的板材可进行二次加工,也可用发泡挤出和发泡注射法将高密度聚乙烯制成低发泡塑料,作台板和建筑材料。

4.纤维

中国称为乙纶,一般采用低压聚乙烯作原料,纺制成合成纤维。乙纶主要用于生产渔网和绳索,或纺成短纤维后用作絮片,也可用于工业耐酸碱织物。超高相对分子质量聚乙烯纤维(强度可达3~4GPa),可用作防弹背心,汽车和海上作业用的复合材料。

5.杂品

用注射成型法生产的杂品包括日用杂品、人造花卉、周转箱、小型容器、自行车和拖拉机的零件等。制造结构件时要用高密度聚乙烯。超高相对分子质量聚乙烯适于制作减震,耐磨及传动零件。

1.1.6聚乙烯的简易识别方法

(1)外观印象白色蜡状,半透明,HDPE透明性更差,用手摸制品有滑腻感;LDPE柔而韧,稍能伸长,HDPE手感较坚硬。

(2)水中沉浮比水轻,浮于水面。

(3)溶解特性一般熔融后可溶于对二甲苯、三氯苯等。

(4)受热表现温度达90~135℃以上变软熔融,315℃以上分解。

(5)燃烧现象易燃,离火后继续燃烧,火焰上端呈黄色,下端蓝色,燃烧时熔融滴落,发出石蜡燃烧时的气味。

地基承载力计算计算书

地基承载力计算计算书 项目名称_____________构件编号_____________日期_____________ 设计者_____________ 校对者_____________ 一、设计资料 1.基础信息 基础长:l=4000mm 基础宽:b=4000mm 修正用基础埋深:d=1.50m 基础底标高:dbg=-2.00m 2.荷载信息 竖向荷载:F k=1000.00kN 绕X轴弯矩:M x=0.00kN·m 绕Y轴弯矩:M y=0.00kN·m b = 4 0 l=4000 x Y 3.计算参数 天然地面标高:bg=0.00m 地下水位标高:wbg=-4.00m 宽度修正系数:wxz=1 是否进行地震修正:是 单位面积基础覆土重:rh=2.00kPa 计算方法:GB50007-2002--综合法 地下水标高-4.00 基底标高-2.00地面标高0.00 5 5 5 5 5 4.土层信息: 土层参数表格

二、计算结果 1.基础底板反力计算 基础自重和基础上的土重为: G k = A×p =16.0×2.0= 32.0kN 基础底面平均压力为: 1.1当轴心荷载作用时,根据5. 2.2-1 : P k = F k+G k A= 1000.00+32.00 16.00= 64.50 kPa 1.2当竖向力N和Mx同时作用时:x方向的偏心距为: e = M k F k+ G k= 0.00 1000.00 +32.00= 0.00m x方向的基础底面抵抗矩为: W = lb2 6= 4.00×4.00 2 6= 10.67m 3 x方向的基底压力,根据5.2.2-2、5.2.2-3为: P kmax = F k+G k A+ M k W= 64.50 + 0.00 10.67= 64.50 kPa P kmin = F k+G k A- M k W= 64.50 - 0.00 10.67= 64.50 kPa 1.3当竖向力N和My同时作用时:y方向的偏心距为: e = M k F k+ G k= 0.00 1000.00 +32.00= 0.00m y方向的基础底面抵抗矩为: W = bl2 6= 4.00×4.00 2 6= 10.67m 3 y方向的基底压力,根据5.2.2-2、5.2.2-3为: P kmax = F k+G k A+ M k W= 64.50 + 0.00 10.67= 64.50 kPa P kmin = F k+G k A- M k W= 64.50 - 0.00 10.67= 64.50 kPa 2.修正后的地基承载力特征值计算 基底标高以上天然土层的加权平均重度,地下水位下取浮重度 γm = ∑γi h i ∑h i = 2.0×18.0 2.0= 18.00 基底以下土层的重度为 γ = 18.00 b = 4.00 f a = f ak + ηbγ (b-3) + ηdγm (d-0.5) = 150.00+1.00×18.00×(4.00-3)+1.00×18.00×(1.50-0.5)

【2017年整理】地基承载力计算方法

一.地基承载力计算方法:按《建筑地基基础设计规范》(GBJ7-89) 1.野外鉴别法 岩石承载力标准值f k(kpa) 注:1.对于微风化的硬质岩石,其承载力取大于4000kpa时,应由试验确定; 2.对于强风化的岩石,当与残积土难于区分时按土考虑。 碎石承载力标准值f k(kpa) 注:1.表中数值适用于骨架颗粒空隙全部由中砂、粗砂或硬塑、坚硬状态的粘土或稍湿的粉土所充填的情况; 2.当粗颗粒为中等风化或强风化时,可按其风化程度适当降低承载力,当颗粒间呈半胶结状时,可适当提高承载力; 3.对于砾石、砾石土均按角砾查承载力。 2.物理力学指标法 粉土承载力基本值f(kpa) 注:1.有括号者仅供内插用; 2.折算系数§=0。 粘性土承载力基本值f(kpa) 注:1.有括号者仅供内插用; 2.折算系数§=0.1。

沿海地区淤泥和淤泥质土承载力基本值f(kpa) 注:对于内陆淤涨和淤泥质土,可参照使用。 红粘土承载力基本值f(kpa) 注:1.本表仅适用于定义范围内的红粘土; 2.折算系数§=0.4。 素填土承载力基本值f(kpa) 注:本表只适用于堆填时间超过10年的粘性土,以及超过5年的粉土;所查承载需经修正计算。3.标准贯入试验法 砂土承载力标准值f k(kpa) 注:1.砾砂不给承载力; 2.粉细砂按粉砂项给承载力;3.中粗砂按中砂项给承载力; 4.细中砂按细砂项给承载力; 5.粗砾砂按粗砂项给承载力; 6.N63.5需修正后查承载力. 粘性土承载力标准值f k(kpa) 注:N63.5需经修正后查承载力。 花岗岩风化残积土承载力基本值f(kpa) 注:花岗岩风化残积土的定名: 2mm含量≥20%为砾质粘性土; 2mm含量<20%为砂质粘性; 2mm含量=0为粘性土

地基承载力计算公式

地基承载力计算公式-CAL-FENGHAI.-(YICAI)-Company One1

地基承载力计算公式 地基承载力计算公式很多,有理论的、半理论半经验的和经验统计的,它们大都包括三项: 1. 反映粘聚力c的作用; 2. 反映基础宽度b的作用; 3. 反映基础埋深d的作 用。 在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。 下面介绍三种典型的承载力公式。 a.太沙基公式 式中: P u——极限承载力,K a c ——土的粘聚力,KP a γ——土的重度,KN/m,注意地下水位下用浮重度; b,d——分别为基底宽及埋深,m; N c ,N q ,N r——承载力系数,可由图中实线查取。 图 2

对于松砂和软土,太沙基建议调整抗剪强度指标,采用 c′=1/3c , 此时,承载力公式为: 式中N c′,N q′,N r′——局部剪切破坏时的承载力系数,可由图中虚线查得。 对于宽度为b的正方形基础 对于直径为b′的圆形基础 b.汉森承载力公式 式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表c,N q,N r值 N c N q N r N c N q N r 024 226 428 630 832 1034 1236 1438 1640 1842 2044 3

2246 S c,S q,S r——基础形状系数,可查表 表基础形状系数S c,S q,S r值 基础形状S c S q S r 条形 圆形和方形1+N q/N c1+tanφ 矩形(长为L,宽为b)1+b/L×N q/N c1+b/LtanφL d c,d q,d r——基础埋深系数,可查表 表埋深系数d c,d q,d r d/b 埋深系数 d c d q d r ≤ 〉 i c,i q,i r——荷载倾斜系数,可查表 i c i q i r 注: H,V——倾斜荷载的水平分力,垂直分力,KN ; F——基础有效面积,F=b'L'm; 当偏心荷载的偏心矩为e c和e b,则有效基底长度, L'=L-2e c;有效基底宽度:b'=b-2e b。 c.我国地基规范提供的承载力公式 当荷载偏心矩e≤时,可用下列公式: 4

浅谈地基岩土承载力确定方法

浅谈地基岩土承载力确定方法 摘要:本文就岩土工程勘察阶段划分,确定岩土勘察工作因素作了介绍,就确定建筑物地基承载力的方法和取值问题作了探讨。 关键词:地基承载力土工试验原位测试区域经验 岩土工程勘察要求正确反映建设场地的岩土工程条件,评价岩土工程问题,并提出解决岩土工程问题的方法和建议。因此,岩土工程勘察必须明确勘察工作的因素,按照勘察阶段进行工作,并且必须与各个设计阶段的相适应。地基承载力是工程建设的重要依据,它决定着地基形式及地基处理方案的形式,所以在岩土工程勘察过程中,承载力的确定是非常重要的环节。 1影响地基基础承载力确定的主要因素 1.1自然条件。主要指当地气象、水文,场地地形起伏变化情况,地貌单元与类型,地震烈度,不良地质现象。 1.2场地地质条件。地基的强度; 地基土变形量,以及对建筑地基作出岩土工程评价。 1.3当地建筑经验;目前各大城市都有现成的沉降观测资料,这些资料相当于原型载荷试验,通过这些资料的分析和工程地质比拟来确定地基承载力。 1.4地基的土性。地基土是经过漫长的地质年代形成的, 经历了各种各样的变化过程, 其土质特性表现出很大的变异性。大量的试验和统计结果表明, 土性参数的变异系数比一般的人工材料的变异系数要大。 1.5地基的荷载。荷载主要包括土体的自重和上部结构作用荷载, 土体自重的变异性较小, 上部结构作用荷载根据不同的情况, 变异系数可能会起较大的变化。 1.6地基的测试。岩土工程土性测试中需要控制的边界条件、初始条件和加荷条件都比较复杂, 实施起来比较困难,与实际情况的差别可能比较大, 因此, 测试结果常常不能确切地反映真实情况。 1.7计算方法。岩土工程中的各种力学计算方法不及其他工程结构的完善和成熟, 由计算方法不精确可能引起的误差较难精确估计。 2地基承载力取值方法 2.1原位测试。通过现场直接试验确定承载力的方法。包括(静)载荷试验、静力触探试验、标准贯入试验、旁压试验等。其中用载荷试验法确定持力层承载力标准值是一种常用的方法。地基承载力问题属于土力学中的强度和稳定性的课

地基承载力计算公式

地基承载力计算公式很多,有理论的、半理论半经验的和经验统计的,它们大都包括三项: 1. 反映粘聚力c的作用; 2. 反映基础宽度b的作用; 3. 反映基础埋深d的作用。 在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。下面介绍三种典型的承载力公式。 a.太沙基公式 式中: Pu——极限承载力,Ka c ——土的粘聚力,KPa γ——土的重度,KN/m,注意地下水位下用浮重度; b,d——分别为基底宽及埋深,m; Nc,Nq,Nr——承载力系数,可由图8.4.1中实线查取。 图8.4.1

对于松砂和软土,太沙基建议调整抗剪强度指标,采用 c′=1/3c , 此时,承载力公式为: 式中Nc′,Nq′,Nr′——局部剪切破坏时的承载力系数,可由图8.4.1中虚线查得。 对于宽度为b的正方形基础 对于直径为b′的圆形基础 b.汉森承载力公式 式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表8.4.1 表8.4.1承载力系数Nc,Nq,Nr值 Nc Nq Nr Nc Nq Nr 0 5.14 1.00 0.00 24 19.32 9.60 6.90 2 5.6 3 1.20 0.01 26 22.25 11.85 9.53 4 6.19 1.43 0.0 5 28 25.80 14.72 13.13 6 6.81 1.72 0.14 30 30.14 18.40 18.09 8 7.53 2.06 0.27 32 35.49 23.18 24.95 10 8.35 2.47 0.47 34 42.16 29.44 34.54 12 9.28 2.97 0.76 36 50.59 37.75 48.06 14 10.37 3.59 1.16 38 61.35 48.93 67.40 16 11.63 4.34 1.72 40 75.31 64.20 95.51 18 13.10 5.26 2.49 42 93.71 85.38 136.76 20 14.83 6.40 3.54 44 118.37 115.31 198.70

浅基础地基承载力验算部分计算题

一、计算题 图示浅埋基础的底面尺寸为6.5m×7m,作用在基础上的荷载如图中所示(其中竖向力 ]=240kPa[。试检算地为主要荷载,水平力为附加荷载)。持力层为砂粘土,其容许承载力基承载力、偏心距、倾覆稳定性是否满足要求。 K≥1.5(提示:要求倾覆安全系数)0 [本题15分] 参考答案: 解: )(1

代入后,解得: ,满足要求 ),2满足要求( ), 满足要求(3 3kN,对应的偏心距e=0.3m×10。持力层的=5.0二、图示浅埋基础,已知主要荷载的合力为N容许承载力为420kPa,现已确定其中一边的长度为4.0m (1)试计算为满足承载力的要求,另一边所需的最小尺寸。 (2)确定相应的基底最大、最小压应力。 [本题12分] 参考答案: 解:由题,应有 )2(N=6×1m×3m,已知作用在基础上的主要荷载为:竖向力图示浅埋基础的底面尺寸为6三、32M。试计算:kNm。此外,持力层的容许承载力0kN,弯矩×=1.510 1)基底最大及最小压应力各为多少?能否满足承载力要求?( e的要求?(2)其偏心距是否满足ρ≤N不变,在保持基底不与土层脱离的前提下,基础可承受的最大弯矩是多少?此时3)若(基底的最大及最小压应力各为多少?

[本题12分] 参考答案: )解:(1 )(2 )3( ba,四周襟边尺寸相同,埋=某旱地桥墩的矩形基础,基底平面尺寸为7.4m=7.5m,四、hN=6105kN2m=,在主力加附加力的组合下,简化到基底中心,竖向荷载置深度,水平荷载HM=3770.67kN.m。试根据图示荷载及地质资料进行下列项目的检算:,弯矩=273.9kN(1)检算持力层及下卧层的承载力; (2)检算基础本身强度; )检算基底偏心距,基础滑动和倾覆稳定性。3 (.

地基承载力计算

地基bai承载力=8*N-20(N为锤击数) 地基基础允许承载力是指在保证地基稳定的条件下,房屋和构筑物 的沉降量不超过容许值的地基承载力。中国制定的“工业与民用建 筑地基基础设计规范”(TJ7-74)中规定,在基础宽度小于3米,埋深0.5—1.0米的条件下,粘性土主要根据孔隙比(e)、天然含 水量(Wo)、相对含水量(Wb)考虑。砂根据饱和度(Sr)和紧密度(D)决定,也可按标准贯入试验及钻探试验锤击数确定地基 承载力。当基础宽度大于3米,埋深大于1米时,必须按下式校正:P=[σ]+ k1r0(b-3)+k2r(h-1)。式中P为计算承载力(吨/平 方米),[σ]为按表查得的承载力(吨/平方米),r0及r为地基土 持力层的天然容重(地下水位以下取水下容重,吨/立方米),k1 及k2为安全系数,取2—3。 密实法 用密实法处理地基又可分为:①碾压夯实法:对含水量在一定 范围内的土层进行碾压或夯实。此法影响深度约为200毫米,仅适于平整基槽或填土分层夯实。②重锤夯实法:利用起重机械提起重锤,反复夯打(图a),其有效加固深度可达1.2米。此法适用于处理粘性土、砂土、杂填土、湿陷性黄土地基和对大面积填土的压实以及杂 填土地基的处理。③机械碾压法:用平碾、羊足碾、压路机、推土 机及其他压实机械压实松散土层(图b)。碾压效果取决于被压土层的含水量和压实机械的能量。对于杂填土地基常用 8~12吨的平碾或13~16吨的羊足碾,逐层填土,逐层碾压。④振动压实法:在地基表面施加振动力,以振实浅层松散土(图c)。振动压实效果取决于 振动力、被振的成分和振动时间等因素。用此法处理以砂土、炉渣、碎石等无粘性土为主的填土地基,效果良好。⑤强夯法:利用重量 为8~40吨的重锤从6~40米的高处自由落下,对地基进行强力夯实的处理方法。经过强夯的地基承载能力可提高3~4倍,以至6倍,

桩基地基承载力计算公式方法

地基承载力计算公式 对于宽度为b的正方形基础 对于直径为b′的圆形基础 b.汉森承载力公式 式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表8.4.1 S c ,S q ,S r ——基础形状系数,可查表8.4.2

d c ,d q ,d r ——基础埋深系数,可查表8.4.3 c q r 注: H,V——倾斜荷载的水平分力,垂直分力,KN ; F——基础有效面积,F=b'L'm; 当偏心荷载的偏心矩为e c和e b,则有效基底长度, L'=L-2e c;有效基底宽度:b'=b-2e b。 地基承载力计算公式很多,有理论的、半理论半经验的和经验统计的,它们大都包括三项: 1. 反映粘聚力c的作用; 2. 反映基础宽度b的作用; 3. 反映基础埋深d的作用。 在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。 下面介绍三种典型的承载力公式。 a.太沙基公式

式中: P u ——极限承载力,K a c ——土的粘聚力,KP a γ——土的重度,KN/m,注意地下水位下用浮重度;b,d——分别为基底宽及埋深,m; N c ,N q ,N r ——承载力系数,可由图8.4.1中实线查取。 图8.4.1 对于松砂和软土,太沙基建议调整抗剪强度指标,采用 c′=1/3c , 此时,承载力公式为:

式中N c ′,在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。 下面介绍三种典型的承载力公式。 N q ′,N r ′——局部剪切破坏时的承载力系数,可由 图8.4.1中虚线查得。 对于宽度为b的正方形基础 对于直径为b′的圆形基础 b.汉森承载力公式 式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表8.4.1

地基承载力计算

地基承载力=8*N-20(N为锤击数) 地基的承载力是随负载增加而地基单位面积的承载力。常用单位KPa是评估基础稳定性的综合术语。应该指出的是,基础承载力是基础设计的一个实用术语,它有助于评估基础的强度和稳定性,而不是土壤的基础特性指标。土的抗剪强度理论是研究和确定地基承载力的理论基础。 在荷载作用下,地基要产生变形。随着荷载的增大,地基变形逐渐增大,初始阶段地基土中应力处在弹性平衡状态,具有安全承载能力。当荷载增大到地基中开始出现某点或小区域内各点在其某一方向平面上的剪应力达到土的抗剪强度时,该点或小区域内各点就发生剪切破坏而处在极限平衡状态,土中应力将发生重分布。这种小范围的剪切破坏区,称为塑性区(plastic zone)。地基小范围的极限平衡状态大都可以恢复到弹性平衡状态,地基尚能趋于稳定,仍具有安全的承载能力。但此时地基变形稍大,必须验算变形的计算值不允许超过允许值。当荷载继续增大,地基出现较大范围的塑性区时,将显示地基承载力不足而失去稳定。此时地基达到极限承载力。 确定方法: (1)原位试验法(in-situ testing method):是一种通过现场直接试验确定承载力的方法。包括(静)载荷试验、静力触探试验、标准贯入试验、旁压试验等,其中以载荷试验法为最可靠的基本的原位测试法。 (2)理论公式法(theoretical equation method):是根据土

的抗剪强度指标计算的理论公式确定承载力的方法。 (3)规范表格法(code table method):是根据室内试验指标、现场测试指标或野外鉴别指标,通过查规范所列表格得到承载力的方法。规范不同(包括不同部门、不同行业、不同地区的规范),其承载力不会完全相同,应用时需注意各自的使用条件。 (4)当地经验法(local empirical method):是一种基于地区的使用经验,进行类比判断确定承载力的方法,它是一种宏观辅助方法。

地基承载力(轻、重型计算公式)

小桥涵地基承载力检测 《公路桥涵施工技术规范》JTJ041-2000(P28)“小桥涵的地基检验可采用直观法或触探方法,必要时可进行土质试验”。就我国在建高速公路桥涵地基承载力而言,设计单位在施工图中多给出了地基承载力要求,如圆管涵基底承载力要求100kpa、箱涵250 kpa等等。因此承建单位一般采用(动力)触探法对基底进行检验。 触探法可分为静力触探试验、动力触探试验及标准贯入试验,那么它们分别是怎样定义的?适用范围又是什么呢?我想我们检测人 员是应该搞清楚的。 1、静力触探试验:指通过一定的机械装置,将某种规格的金属触探头用静力压入土层中,同时用传感器或直接量测仪表测试土层对触探头的贯入阻力,以此来判断、分析确定地基土的物理力学性质。静力触探试验适用于粘性土,粉土和砂土,主要用于划分土层,估算地基土的物理力学指标参数,评定地基土的承载力,估算单桩承载力及判定砂土地基的液化等级等。(多为设计单位采用)。 2、动力触探试验:指利用锤击功能,将一定规格的圆锥探头打入土中,根据打入土中的阻抗大小判别土层的变化,对土层进行力学分层,并确定土层的物理力学性质,对地基土作出工程地质评价。动力触探试验适用于强风化、全风化的硬质岩石,各种软质岩及各类土;动力触探分为轻型、重型及超重型三类。目前承建单位一般选用轻型和重型。①轻型触探仪适用于砂土、粉土及粘性土地基检测,(一般要求土中不含碎、卵石),轻型触探仪设备轻便,操作简单,省人省

力,记录每打入30cm的锤击次数,代用公式为R=(0.8×N-2)×9.8(R-地基容许承载力Kpa , N-轻型触探锤击数)。②重型触探仪:适用于各类土,是目前承建单位应用最广泛的一种地基承载力测试方法,该法是采用质量为63.5kg的穿心锤,以76cm的落距,将触探头打入土中,记录打入10cm的锤击数,代用公式为y=35.96x+23.8( y-地基容许承载力Kpa , x-重型触探锤击数)。 3、标准贯入试验:标准贯入试验是动力触探类型之一,其利用质量为63.5 kg的穿心锤,以76cm的恒定高度上自由落下,将一定规格的触探头打入土中15cm,然后开始记录锤击数目,接着将标准贯入器再打入土中30 cm,用此30 cm的锤击数(N)作为标准贯入试验指标,标准贯入试验是国内广泛应用的一种现场原位测试手段,它不仅可用于砂土的测试,也可用于粘性土的测试。锤击数(N)的结果不仅可用于判断砂土的密实度,粘性土的稠度,地基土的容许承载力,砂土的振动液化,桩基承载力,同时也是地基处理效果的一种重要方法。(多为测试中心及设计单位采用)。

复合地基承载力计算示例

1、单桩竖向承载力特征值: 设置桩长为空桩1.8m ,实桩6.5m ,桩底穿透淤泥质土夹粉砂5.2m ,进入粉质粘土0.5m ;桩距为1.5*1.5m 。 由桩周土和桩端土的抗力所提供的单桩承载力: kN 102.72455.014.31504.05.0152.5555.014.321=÷???+?+???=+=∑=)(p p n i i si p a A q l q u R α——① 由桩身材料强度确定的单桩承载力 kN 275.71455.014.3120025.02=÷???==p cu a A f R η——② 取①、②两者中较小值,R a =71.275kN ; 式中 cu f —与搅拌桩桩身水泥土配比相同的室内加固土试块(边长为70.7mm 的立方体,也可采用边长为50mm 的立方体)在标准养护条件下90d 龄期的立方体抗压强度平均值(kPa ); η—桩身强度折减系数,干法可取0.20~0.30;湿法可取0.25~0.33; p u —桩的周长(m ); n —桩长范围内所划分的土层数; si q —桩周第i 层土的侧阻力特征值; i l —桩长范围内第i 层土的厚度(m ); p q —桩端地基土未经修正的承载力特征值(kPa ),可按现行国家标准《建

筑地基基础设计规范》GB 50007的有关规定确定; α—桩端天然地基土的承载力折减系数,可取0.4~0.6,承载力高时取低值。 2、复合地基承载力特征值 kPa f m A R m sk p a 508.6750)1055.01(8.0237.0275.711055.0)1(f spk =?-?+?=-+=β 1055.05.1455.014.3m 2 2=÷?= 式中 spk f —复合地基承载力特征值(kPa ); m —面积置换率; a R —单桩竖向承载力特征值(kN ); p A —桩的截面积(m 2); β—桩间土承载力折减系数,宜按地区经验取值,如无经验时可取0.75~0.95,天然地基承载力较高时取大值。 要复合地基承载力达到90KPa ,需调整搅拌桩间距,最疏为1.1m*1.1m ,计算得: kPa kPa f m A R m sk p a 9017.9150)196.01(8.0237 .0275.71196.0)1(f spk >=?-?+?=-+=β 196.01 .1455.014.3m 22=÷?= 2010-11-10

2019年各地区计算地基承载力方法.doc

我们高速公路使用的是4.5X+24,设计院给的,是“铁”字辈的,。以前工程是8X-20。 N10型触探仪的适用范围是100~230KPa,在这个范围内用这个公式是对的,这个公式本来就是用这些数据回归出来的,所以出了这个范围就不能用这个公式,否则就不准确啦,但现在各个项目的地基承载力不一定在这个范围,为了方便检测,就用这个公式外延计算,我个人认为这样是不合理的. [/quote] 我也同意此观点,我觉得对于地基为粘土和亚粘土,并且呈可塑状或者硬塑状时是实用的,对其他土质只有指导作用,是不实用的。工地上为了达到简单,才使用N10型触探仪测试其承载力。 同意此意见,我们以前在高速公路中,有时业主也要求做空隙比,根据空隙比查看承载力,这样比较精确,操作上也不是很麻烦。 N10型触探仪的适用范围是100~230KPa,在这个范围内用这个公式是对的,这个公式本来就是用这些数据回归出来的,所以出了这个范围就不能用这个公式,否则就不准确啦,但现在各个项目的地基承载力不一定在这个范围,为了方便检测,就用这个公式外延计算,我个人认为这样是不合理的. 近几年,我国高速公路发展迅猛,由于高速公路是全封闭的,所以需要修建许多的构造物,如机耕通道、人行通道及排水涵、盖板涵等。因为地基承载力不足,结构物局部不均匀沉降时有发生。因此应该引起高度重视。以下结合本人多年从事公路工程试验检测工作的切身体会,片面地谈谈非桩基础的小桥涵地基承载力检测。 1、小桥涵地基承载力的检测方法(仅针对土质地基)小桥涵地基检测方法是多种多样的,建设单位一般建议采用标准贯入法,该法是采用质量为63.5Kg穿心锤,以76cm的落距,将一定规格的标准贯入器先打入土中15cm,然后开始记录锤击数目,将标准贯入器再打入土中30cm,用此30cm的锤击数作为标准贯入试验的指标。而目前施工单位更多的采用一种叫N10的轻型触探仪,此方法更为方便经济,适用于砂类土、粘性土地基,代用公式为R=(0.8×N-2)×9.8(R-地基容许承载力Kpa , N-轻型触探锤击数)。 2、为确保地基承载力质量,基坑开挖应注意哪些?⑴基坑开挖一定要结合当地天气预报,基坑开挖至基底30-50cm时,可根据天气情况来安排下一步工序,在天气晴朗时,将预留部分挖除,随即进行基坑检查,检验合格后马上进行基础的施工。⑵挖至标高的土质基坑不得长期暴露、拢动或浸泡,并应及时检查基坑尺寸、高程、基地承载力,符合要求后,应立即进行基础施工。⑶应避免超挖。如超挖,应将松动部分清除,其处理方案应报监理、设计单位批准。 3、土质地基达不到承载力要求时如何处理? 一般采用换填法加固(本节3条引自公路桥涵施工技术规范实施手册P46) ⑴深度小于2m的基坑中淤泥、淤泥质土、湿陷性黄土等,宜全部挖除,挖除宽度应比基础各边宽出0.5m。当渗水难以排干时,则应换填水稳性好的中砂、粗砂、砂砾石、碎石等材料,并分层夯实,压实度应达到90%-95%;当渗水能排干时,可换填强度较高的土或灰土。 ⑵单独使用砂砾垫层、矿渣垫层或灰土垫层,其厚度应由软弱下卧土层的允许

地基承载力计算公式

地基承载力计算公式的说明:f=fk+ηbγ(b-3)+ηdγο(d-0.5) fk——垫层底面处软弱土层的承载力标准值(kN/m2) ηb、ηd——分别为基础宽度和埋深的承载力修正系数 b--基础宽度(m) d——基础埋置深度(m) γ--基底下底重度(kN/m3) γ0——基底上底平均重度(kN/m3) 地基的处理方法 利用软弱土层作为持力层时,可按下列规定执行:1)淤泥和淤泥质土,宜利用其上覆较好土层作为持力层,当上覆土层较薄,应采取避免施工时对淤泥和淤泥质土扰动的措施;2)冲填土、建筑垃圾和性能稳定的工业废料,当均匀性和密实度较好时,均可利用作为持力层;3)对于有机质含量较多的生活垃圾和对基础有侵蚀性的工业废料等杂填土,未经处理不宜作为持力层。局部软弱土层以及暗塘、暗沟等,可采用基础梁、换土、桩基或其他方法处理。在选择地基处理方法时,应综合考虑场地工程地质和水文地质条件、建筑物对地基要求、建筑结构类型和基础型式、周围环境条件、材料供应情况、施工条件等因素,经过技术经济指标比较分析后择优采用。 地基处理设计时,应考虑上部结构,基础和地基的共同作用,必要时应采取有效措施,加强上部结构的刚度和强度,以增加建筑物对地基不均匀变形的适应能力。对已选定的地基处理方法,宜按建筑物地基基础设计等级,选择代表性场地进行相应的现场试验,并进行必要的测试,以检验设计参数和加固效果,同时为施工质量检验提供相关依据。 经处理后的地基,当按地基承载力确定基础底面积及埋深而需要对地基承载力特征值进行修正时,基础宽度的地基承载力修正系数取零,基础埋深的地基承载力修正系数取1.0;在受力范围内仍存在软弱下卧层时,应验算软弱下卧层的地基承载力。对受较大水平荷载或建造在斜坡上的建筑物或构筑物,以及钢油罐、堆料场等,地基处理后应进行地基稳定性计算。结构工程师需根据有关规范分别提供用于地基承载力验算和地基变形验算的荷载值;根据建筑物荷载差异大小、建筑物之间的联系方法、施工顺序等,按有关规范和地区经验对地基变形允许值合理提出设计要求。地基处理后,建筑物的地基变形应满足现行有关规范的要求,并在施工期间进行沉降观测,必要时尚应在使用期间继续观测,用以评价地基加固效果和作为使用维护依据。复合地基设计应满足建筑物承载力和变形要求。地基土为欠固结土、膨胀土、湿陷性黄土、可液化土等特殊土时,设计要综合考虑土体的特殊性质,选用适当的增强体和施工工艺。复合地基承载力特征值应通过现场复合地基载荷试验确定,或采用增强体的载荷试验结果和其周边土的承载力特征值结合经验确定。 常用的地基处理方法有:换填垫层法、强夯法、砂石桩法、振冲法、水泥土搅拌法、高压喷射注浆法、预压法、夯实水泥土桩法、水泥粉煤灰碎石桩法、石灰桩法、灰土挤密桩法和土挤密桩法、柱锤冲扩桩法、单液硅化法和碱液法等。 1、换填垫层法适用于浅层软弱地基及不均匀地基的处理。其主要作用是提高地基承载力,减少沉降量,加速软弱土层的排水固结,防止冻胀和消除膨胀土的胀缩。

地基承载力计算书

地基承载力验算书 楼上钢结构重量统计如下: 1). 柱子(22aI工字钢) 3*22*33.07=2.2t 2). 梁(22aI工字钢) (10.8*10+9.8*2)*33.07=4.2 t 3). 钢柱(方管60*120) 2.9*48*14.13+11*36*14.13+94*14.13=8.9 t 4). 连梁(方管60*60) (90*3+32*6)*14.3=6.6 t 5). 圆管(圆76) 32*4*5.76=0.7 t 5). 水槽(3mm) 94*0.64*23.55=1.4 t 5). 混凝土柱子500*600 0.5*0.6*0.7*2400*0.5=5.5 t 合计:2.2+4.2*8.9+6.6+0.7+1.4+5.5=29.5 t 二:取中间跨一米宽基础核算, 1)荷载统计 钢屋架荷载设计按300 kN计算(包括活荷载0.7kN/m): 300x5.55/(36x11.1) =4.2Kn 一二层墙体总重(包括装修0.5kN/m):20x7x0.25=35kN 一二层板荷载计算(包括活荷载2.5kN/m):板厚为150mm 板自重0.15x25=3.75kN/m2 板底装修0.50kN/m2 楼面做法,考虑到原来二层板为屋面做法,故取1.50kN/m2 每层楼面横荷载合计为4.25kN/m2 2*4.25x2.7+2.5*2.7+1.5=31.25kN 一米宽基础荷载总计为N=4.2+35+31.25=70.45kN

2)确定基础宽度 b>=N/(fa-yd)=70.45/(100-20x1.2)=0.93<1m (式中fa为地基承载力特征值=100kPa,y为土和基础的容重20kN/m2 ,d为基础埋深1.2米) 根据现在结果看,满足。 3)地基净反力 p=N/b=70.45/1=70.45KP 计算基础悬臂部分最大内力 a=(1-0.24)/2=0.38m M=0.5Pa^2=0.5x70.45x0.38x0.38=5.1kN*m 基础底板配筋A=M/0.9hof=5.1x1000000/(0.9x200x210)=134.8mm2<565(12@200),满足.。 三:加固方案论述 1.先在楼房四角及中间埋设8个沉降观测点,每天观测楼房的基础沉降,如果楼房沉降大于3mm用以下方案进行加固处理。 方案一: 1.1加大基础底面积法适用于当既有建筑的地基承载力或基础底面积尺寸不满足设计要求时的加固。可采用混凝土套或钢筋混凝土套加大基础底面积。加大基础底面积的设计和施工应符合下列规定: 1 当基础承受偏心受压时,可采用不对称加宽;当承受中心受压时,可采用对称加宽。 2 在灌注混凝土前应将原基础凿毛和刷洗干净后,铺一层高强度等级水泥浆或涂混凝土界面剂,以增加新老混凝土基础的粘结力。 3 对加宽部分,地基上应铺设厚度和材料均与原基础垫层相同的夯实垫层。 4 当采用混凝土套加固时,基础每边加宽的宽度其外形尺寸应符合国家现行标准《建筑地基基础设计规范》GBJ7中有关刚性基础台阶宽高比允许值的规定。沿基础高度隔一定距离应设置锚固钢筋。 5 当采用钢筋混凝土套加固时,加宽部分的主筋应与原基础内主筋相焊接。 6 对条形基础加宽时,应按长度1.5-2.0m划分成单独区段,分批、分段、间隔

地基承载力规范及方法

1简介 地基承载力:地基满足变形和强度的条件下,单位面积所受力的最大荷载。 2概述 地基承载力(subgrade bearing capacity)是指地基承担荷载的能力。 在荷载作用下,地基要产生变形。随着荷载的增大,地基变形逐渐增大,初始阶段地基土中应力处在弹性平衡状态,具有安全承载能力。当荷载增大到地基中开始出现某点或小区域内各点在其某一方向平面上的剪应力达到土的抗剪强度时,该点或小区域内各点就发生剪切破坏而处在极限平衡状态,土中应力将发生重分布。这种小范围的剪切破坏区,称为塑性区(plastic zone)。地基小范围的极限平衡状态大都可以恢复到弹性平衡状态,地基尚能趋于稳定,仍具有安全的承载能力。但此时地基变形稍大,必须验算变形的计算值不允许超过允许值。当荷载继续增大,地基出现较大范围的塑性区时,将显示地基承载力不足而失去稳定。此时地基达到极限承载力。 3确定方法 (1)原位试验法(in-situ testing method):是一种通过现场直接试验确定承载力的方法。包括(静)载荷试验、静力触探试验、标准贯入试验、旁压试验等,其中以载荷试验法为最可靠的基本的原位测试法。 (2)理论公式法(theoretical equation method):是根据土的抗剪强度指标计算的理论公式确定承载力的方法。 (3)规范表格法(code table method):是根据室内试验指标、现场测试指标或野外鉴别指标,通过查规范所列表格得到承载力的方法。规范不同(包括不同部门、不同行业、不同地区的规范),其承载力不会完全相同,应用时需注意各自的使用条件。 (4)当地经验法(local empirical method):是一种基于地区的使用经验,进行类比判断确定承载力的方法,它是一种宏观辅助方法。 4注意问题 定义 (1)地基承载力:地基所能承受荷载的能力。 (2)地基容许承载力:保证满足地基稳定性的要求与地基变形不超过允许值,地基单位面积上所能承受的荷载。

地基承载力计算.docx

地基承载力计算 5. 2.1 基础底面的压力,应符合下列规定: 1 当轴心荷载作用时 p k ≤ f a ( 5.2.1-1) 式中: p k ——相应于作用的标准组合时,基础底面处的平均压力值( f a ——修正后的地基承载力特征值( kPa )。 kPa ); 2 当偏心荷载作用时,除符合式(5.2.1-1 )要求外,尚应符合下式规定: p kmax ≤ 1.2f a ( 5.2.1-2) 式中: p kmax ——相应于作用的标准组合时,基础底面边缘的最大压力值( kPa )。 5. 2.2 基础底面的压力,可按下列公式确定: 1当轴心荷载作用时 F k G k ( 5.2.2-1) p k A 式中: F k ——相应于作用的标准组合时,上部结构传至基础顶面的竖向力值( kN ); G k ——基础自重和基础上的土重( kN ); A ——基础底面面积( m 2)。 2 当偏心荷载作用时 F k G k M k (5.2.2-2) p k max A W F k G k M k (5.2.2-3) p k min W A 式中: M k ——相应于作用的标准组合时,作用于基础底面的力矩值( kN · m ); W ——基础底面的抵抗矩( m 3); p kmin ——相应于作用的标准组合时,基础底面边缘的最小压力值( kPa )。 3 当基础底面形状为矩形且偏心距e >b/6 时(图 5.2.2 )时, p kmax 应按下式计算: 2(F k G k ) (5.2.2-4) p k max 3la 式中: l ——垂直于力矩作用方向的基础底面边长( m ); a ——合力作用点至基础底面最大压力边缘的距离( m )。

搅拌站基础承载力验算书

拌合站基础计算书 梁场混凝土拌合站,配备HZS120拌合机两套,每套搅拌楼设有5个储料罐,单个罐在装满材料时均按照200吨计算。经过现场开挖检查,在地表往下0.5~3米均为粉质黏土。 一.计算公式 1 .地基承载力 P/A=σ≤σ0 P—储蓄罐重量KN A—基础作用于地基上有效面积mm2 σ—地基受到的压应力MPa σ0—地基容许承载力MPa 通过查资料得出该处地基容许承载力σ0=0.18 Mpa 2.风荷载强度 W=K1K2K3W0= K1K2K31/1.6V2 W —风荷载强度Pa,W=V2/1600 V—风速m/s,取28.4m/s(按10级风考虑) 3.基础抗倾覆计算 K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×力矩≥2即满足要求 M1—抵抗弯距KN?M M2—抵抗弯距KN?M P1—储蓄罐自重KN P’—基础自重KN P2—风荷载KN 二、储料罐地基承载力验算 1.储料罐地基开挖及浇筑 根据厂家提供的拌合站安装施工图,现场平面尺寸如下: 地基开挖尺寸为半径为8.19m圆的1/4的范围,宽4.42m,基础浇注厚度为

2m。基底处理方式为:压路机碾压两遍,填筑30cm建筑砖碴、混凝土块并碾压两遍。查《路桥计算手册》,密实粗砂地基容许承载力为0.55Mpa。 2.计算方案 开挖深度为2米,根据规范,不考虑摩擦力的影响,计算时按整体受力考虑,每个水泥罐集中力P=2000KN,水泥罐整体基础受力面积为95.48m2,基础浇注C25混凝土,自重P’=4774KN,承载力计算示意见下图: P=2000KN 2m 基础 4.42m 粉质黏土 根据历年气象资料,考虑最大风力为28.4m/s(10级风),风的动压力P2=V2/1600=504.1N/m,储蓄罐顶至地表面距离为20米,罐身长17m,5个罐基本并排竖立,受风面积306m2,在最不利风力下计算基础的抗倾覆性。计算示意图如下 储料罐风力P2 抗倾覆点 基础 罐与基础自重P1+P’ 3.储料罐基础验算过程 3.1 地基承载力 根据上面公式,已知P+P’=14774KN,计算面积A=95.48×106mm2, P/A= 14774KN/95.48×106mm2=0.15MPa ≤σ0=0.55 MPa 地基承载力满足承载要求。

地基承载力计算书

地基承载力计算书

————————————————————————————————作者:————————————————————————————————日期:

地基承载力计算书 吊车履带长度为9.5m,履带宽度为1.3m,两履带中心距离为6.4m,吊车自重为260t,地基承载力计算按最大起重量100t时计算,若起吊100t重物地基承载力满足要求,则其余均满足。 现假设履带吊重心位于两履带中央,不考虑履带吊配重对吊装物的平衡作用,其受力分析如图: 图5.4-1 履带吊受力简化图 考虑起吊物在吊装过程中的动载力,取动载系数为1.1则由力矩平衡原理可以得出靠近盾构井处履带压力为: RMAX=(260×6.4/2+1.1×100×(9.74+6.4/2))/6.4=357.4t 履带长度为9.5m,单个履带宽度为1.3m,履带承压面积S为: S=9.5×1.3=12.35m2 P=R MAX/S=374.6/12.35×10=303.3Kpa 地表为杂填土,顶面浇筑0.3m厚的C30混凝土。把所压的地面面积理想为方形基础,方形基础宽2m,长度2m,埋置深度0.30m,通过本标段岩土工程勘察报告得知,地基自上而下为

杂填土、黏土、淤泥质土、粉质黏土等,通过查岩土工程勘察报 告列表,土的重度18kN/m3,粘聚力c=35kPa,内摩擦角φ =10°。根据太沙基极限承载力公式: Pu=0.5Nγ×γ×b+Nc×c+Nq×γ×d γ—地基土的重度,kN/m3; b—基础的宽度,m; c—地基土的粘聚力,kN/m3; d—基础的埋深,m。 Nγ、Nc、Nq—地基承载力系数,是内摩擦角的函数,可以通 过查太沙基承载力系数表见表1或图1所示: 表1太沙基地基承载力系数Nγ、Nc、Nq的数值 内摩擦角地基承载力系数内摩擦角地基承载力系数 φ(度)NγNc Nq φ(度)NγNc Nq00 5.7 1.0022 6.50 20.2 9.17 6.5 1.22 248.6 23.4 11.4 2 0.2 3 4 0.39 7.01.48 2611. 5 27.0 14.2 7.7 1.81 2815.031.6 17.8 6 0.6 3

地基承载力确定的土工表格法

地基承载力确定的土工 表格法 Revised by Petrel at 2021

----------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------------ - 第十章地基承载力 第一节概述 地基随建筑物荷载的作用后,内部应力发生变化,表现在两方面:一种是由于地基土在建筑物荷载作用下产生压缩变形,引起基础过大的沉降量或沉降差,使上部结构倾斜,造成建筑物沉降;另一种是由于建筑物的荷载过大,超过了基础下持力层土所能承受荷载的能力而使地基产生滑动破坏。 因此在设计建筑物基础时,必须满足下列条件: 地基:强度——承载力——容许承载力 变形——变形量(沉降量)——容许沉降量 一、几个名词 1、地基承载力:指地基土单位面积上所能随荷载的能力。地基承载力问题属于地基的强度和稳定问题。

2、容许承载力:指同时兼顾地基强度、稳定性和变形要求这两个条件时的承载力。它是一个变量,是和建筑物允许变形值密切联系在一起。 3、地基承载力标准值:是根据野外鉴别结果确定的承载力值。包括:标贯试验、静力触探、旁压及其它原位测试得到的值。 4、地基承载力基本值:是根据室内物理、力学指标平均值,查表确定的承载力值,包括载荷试验得到的值)。 通常0f f f k ψ= 5、极限承载力:指地基即将丧失稳定性时的承载力。 二、地基承载力确定的途径 目前确定方法有: 1.根据原位试验确定:载荷试验、标准贯入、静力触探等。每种试验都有一定的适用条件。 2.根据地基承载力的理论公式确定。 3.根据《建筑地基基础设计规范》确定。 根据大量测试资料和建筑经验,通过统计分析,总结出各种类型的土在某种条件下的容许承载力,查表。 一般:一级建筑物:载荷试验,理论公式及原位测试确定f ; 一级建筑物:规范查出,原位测试;尚应结合理论公式; 一级建筑物:邻近建筑经验。 三、确定地基承载力应考虑的因素 地基承载力不仅决定于地基的性质,还受到以下影响因素的制约。 1.基础形状的影响:在用极限荷载理论公式计算地基承载力时是按条形基础考虑的,对于非条形基础应考虑形状不同地基承载的影响。

相关文档