文档库 最新最全的文档下载
当前位置:文档库 › 110kV变电站主接线一次接线图

110kV变电站主接线一次接线图

110kV变电站主接线一次接线图
110kV变电站主接线一次接线图

110kV变电站主接线一次接线图方案I

方案II:

110kva变电站电气主接线图分析

把变电站内的电气设备都要算上啊 一次设备:主变(中性点隔离开关、间隙保护、消弧线圈成套设备)、断路器(或开关柜、GIS等)、电压互感器(含保险)、电流互感器、避雷器、隔离开关、母线、母排、电缆、电容器组(电容、电抗、放电线圈等等),站用变压器(或接地变),有的变电站还有高频保护装置 二次设备:综合自动化、. 、逆变0000.、小电流接地选线、站用电、直流(蓄电池)、逆变、远动通讯等等 其他:支持瓷瓶、悬垂、导线、接地排、穿墙套管等等,消防装置、SF6在线监测装置等等 好像有点说多了,也可能有少点的,存在差异吧 35KV高压开关柜上一般都设有哪些保护各作用是什么? 过电流保护:1.速断电流保护:用于保护本开关以后的母排、电缆的短路故障。 2.定时限电流保护:用于下一电压级别的短路保护。 3.反时限电流保护:作用与2相同,但灵敏度比2高。 4.电压闭锁过电流保护:防止越级跳闸和误跳闸,提高供电可靠性。 5.纵联差动电流保护:专用于变压器内部故障保护。 6.长延时过负荷保护:用于保护专用设备或者电网的过负荷运行,首选发信,其次跳闸。 零序电流保护:1.零序电流速断保护:保护线路和线路后侧设备对地短路、严重漏电故障。 2.定时限零序电流保护:保护线路和线路后侧设备的轻微对地短路和小电流漏电,监测绝缘状况。可以选择作用于跳闸或发信。 过电压保护:1.雷电过电压保护。 2.操作过电压保护。1、2两种过电压通常都是用避雷器来保护,可防止线路或设备绝缘击穿。

3.设备异常过电压保护:通过电压继电器和综保定值整定来实现跳闸或发信,用于保护设备在异常过压下运行造成的发热损坏。 低电压保护:瞬时低电压保护只发信不跳闸,用于避免瞬间短路或大负荷启动造成的正常设备误跳闸。俗称躲晃电。 非电量保护:1.重瓦斯保护:用于变压器内部强短路或拉弧放电的严重故障保护。选择跳闸。 2.轻瓦斯保护:用于变压器轻微故障的检测,选择发信报警。 3.温度保护:用于检测变压器顶层油温监测,轻超温发信报警,重超温跳闸。 以上都是针对一次侧设计的保护。 二次侧的保护:1.直流失压保护,用于变电所直流设备故障时防止设备在保护失灵状况下运行。一般设备通常选择发信报警。重要设备选择跳闸。 2.临柜直流消失保护,用于监测相邻高压柜的直流电压状态,选择发信报警。 随着技术的发展,继电保护的内容越来越多,供人们在不同情况下选用。 目前使用的微机型综合保护器内都设计了各种保护功能,可以通过控制字的设定很方便地选择所需要的保护功能组合。

变电站一次接线图册绘制

广西大学行健文理学院 毕业设计说明书 题目:某变电站一次接线图册绘制(一) 二〇一五年五月

变电站一次接线图册绘制(一) 中文摘要 随着经济社会不断发展,现代工业生产规模扩大,生产专业化程度提高,供电系统设计也变得越来越全面和系统化。目前,随着社会对电能需求快速增长,对电能质量、电力系统稳定性和供电技术可靠性要求不断地提高,因而对电力系统设计方面要求也更高且完善。 变电站是电力系统一个重要组成部分,变电也是电力系统中一个重要环节。它是电力系统中变换电压、接受和分配电能、控制电力流向和调整电压电力设施,它将电能安全、有效、经济地输送到每一个用电设备。本文主要为110kV变电站作电气一次部分设计,并且绘制电气主接线图。 其中,本变电站设有两台主变压器,站内主接线分为110kV、10kV和35kV三个电压等级。本文进行了电气主接线设计、变压器选择、短路电流计算、高压电气设备选择及高压电气设备的校验,包括断路器、熔断器、隔离开关、电流互感器、电压互感器、避雷器等。 关键词:变电站,电气主接线,变压器,电气设备

A Substation Wiring Diagram Drawing Book (1) Abstract With the continuous economic and social development, the expansion of modern industrial production, manufacturing high degree of specialization, the power supply system design has become increasingly comprehensive and systematic. At present, the rapid growth of electricity demand, power quality, power system stability and reliability of power supply technology requirements continue to increase, and thus the design of the power system requirements are higher and more perfect. Power system substation is an important part of the substation power system is a key link. It is the power system voltage conversion, acceptance and distribution of electric energy to control the flow and adjust the voltage of electricity power facilities, it will power is safe, reliable and economic electricity transported to each device. This article is a 110kV electrical substation as part of the design, and draw the main electrical wiring diagram. In particular, the substation has two main transformers, wiring into the main station 110kV, 35kV and 10kV three voltage levels. This was the design of main power line, transformer selection, calculation of short circuit current, high voltage electrical equipment, high voltage electrical equipment selection and validation, including circuit breakers, isolating switches, current transformers, voltage transformers, surge arresters, fuse And so on. Keywords:Substation,Main Electrical Connection,Transformer,Elect

课程设计kV变电站电气主接线及配电装置平面布置图的设计

电气工程及其自动化专业 电力系统方向课程设计任务书和指导书 题目: 110kV变电站电气主接线及配电装置平面布置图的设计 指导教师:江静 电气主接线及配电装置平面布置图课程设计任务书 题目: 110kV变电站电气主接线及配电装置 平面布置图的设计 一、课程设计的目的要求 使学生巩固和应用所学知识,初步掌握部分工程设计基本方法及基本技能。二、题目: 110kV变电所电气主接线设计 三、已知资料 为满足经济发展的需要,根据有关单位的决定新建1座降压变电气。原始资料:1变电所的建设规模 ⑴类型:降压变电气 ⑵最终容量和台数:2×31500kV A:年利用小时数:4000h。 2电力系统与本所连接情况 ⑴该变电所在电力系统中的地位和作用:一般性终端变电所; ⑵该变电所联入系统的电压等级为110kV,出线回路数2回,分别为18公里与电力 系统相连;25公里与装机容量为100MW的水电站相连。 ⑶电力系统出口短路容量:2800 MV A; 3、电力负荷水平 ⑴高压10 kV负荷24回出线,最大输送2MW,COSΦ=0.8,各回出线的最小负荷 按最大负荷的70%计算,负荷同时率取0.8,COSΦ=0.85,Tmax=4200小时/年; ⑵24回中含预留2回备用; ⑶所用电率1% 4、环境条件 该所位于某乡镇,有公路可达,海拔高度为86米,土壤电阻系数Р=2.5×104Ω.cm,土壤地下0.8米处温度20℃;该地区年最高温度40℃,年最低温度-10℃,最热月7月份其最高气温月平均34.0℃,最冷月1月份,其最低气温月平均值为1℃; 年雷暴日数为58.2天。

四、设计内容 1、设计主接线方案 ⑴确定主变台数、容量和型式 ⑵接线方案的技术、经济比较,确定最佳方案 ⑶确定所用变台数及其备用方式。 2、计算短路电流 3、选择电气设备 4、绘制主接线图 5、绘制屋内配电装置图 6、绘制屋外配电装置平断面图 五、设计成果要求 1、设计说明书1份 编写任务及原始资料 ⑴编写任务及原始资料 ⑵确定主变压器台数、容量和型式 ⑶确定主接线方案(列表比较) ⑷计算短路电流(包括计算条件、计算过程、计算成果) ⑸选择高压电气设备(包括初选和校验,并列出设备清单)。 2、变电站电气主接线图1份 采用75×50 cm方格纸,图形符号必须按国家标准符号绘制,并有图框和标签框,字体采用仿宋体字,用铅笔绘图和书写。接线按单线图绘制,仅在局部设备配置不对称处绘制三线图,零线绘成虚线。在主母线位置上注明配电装置的额定电压等级,在相应的方框图上标明设备的型号、规范。 3、屋内10kV配电装置图1份 采用75×50 cm方格纸,图形符号必须按国家标准符号绘制,并有图框和标签框,字体采用仿宋体字,用铅笔绘图和书写。该图应能显示开关柜的排列顺序、各柜的接线方案编号、柜内的一次设备内容(数量的规格)及其连接,设备在柜内的大致部位,以及走廊的大致走向等。 4、屋外110kV配电装置平断面图1份 采用75×50 cm方格纸,图形符号必须按国家标准符号绘制,并有图框和标签框,字体采用仿宋体字,用铅笔绘图和书写。该图应能显示各主要设备的布置位置及走廊的大致走向等。 5、编制设计说明书及计算书 六、日程安排 第一天:布置任务、介绍电气设备选择 第二天:电气主接线最佳方案的确定 第三天:短路电流计算 第四、五天:电气设备选择

110kV变电站电气主接线及运行方式

110kV变电站电气主接线及运行方式 变电站电气主接线是指高压电气设备通过连线组成的接受或者分配电能的电路。其形式与电力系统整体及变电所的运行可靠性、灵活性和经济性密切相关,并且对电气设备选择、配电装置的布置、继电保护和控制方式的拟定有较大影响。所以,主接线设计是一个综合性问题,应根据电力系统发展要求,着重分析变电所在系统中所处的地位、性质、规模及电气设备特点等,做出符合实际需要的经济合理的电气主接线。 一变电所主接线基本要求 1.1 保证必要的供电可靠性和电能质量。 保证供电可靠性和电能质量是对主接线设计的最基本要求,当系统发生故障时,要求停电范围小,恢复供电快,电压、频率和供电连续可靠是表征电能质量的基本指标,主接线应在各种运行方式下都能满足这方面的要求。 1. 2 具有一定的灵活性和方便性。 主接线应能适应各种运行状态,灵活地进行运行方式切换,能适应一定时期内没有预计到的负荷水平变化,在改变运行方式时操作方便,便于变电所的扩建。 1. 3 具有经济性。 在确保供电可靠、满足电能质量的前提下,应尽量节省建设投资和运行费用,减少用地面积。 1. 4 简化主接线。 配网自动化、变电所无人化是现代电网发展的必然趋势,简化主接线为这一技术的全面实施创造了更为有利的条件。 1. 5 设计标准化。 同类型变电所采用相同的主接线形式,可使主接线规范化、标准化,有利于系统运行和设备检修。 1. 6 具有发展和扩建的可能性。 变电站电气主接线应根据发展的需要具有一定的扩展性。 二变电所主接线基本形式的变化 随着电力系统的发展,调度自动化水平的提高及新设备新技术的广泛应用,变电所电气主接线形式亦有了很大变化。目前常用的主接线形式有:单母线、单母线带旁路母线、单母线分段、单母线分段带旁路、双母线、双母线分段带旁路、一个半断路器接线、桥形接线及线路变压器组接线等。从形式上看,主接线的发展过程是由简单到复杂,再由复杂到简单的过程。在当今的技术环境中, 随着新技术、高质量电气产品广泛应用,在某些条件下采用简单主接线方式比复杂主接线方式更可靠、更安全,变电所主接线日趋简化。因此,变电所电气主接线形式应根据可靠性、灵活性、经济性及技术环境统一性来决定。 三 110kV变电站的主接线选择 在电力系统和变电所设计中,根据变电所在系统中的地位和作用,可把电网中110kV变电所分为终端变电所和中间变电所两大类。下面就这两类变电所高压侧电气主接线模式作一分析。 3. 1 110kV终端变电所主接线模式分析

变电站主接线图(解释)

变电站一次系统图 1、单母线接线 特点:只有一组母线,所有电源回路和出线回路,均经过必要的开关电器连接到该母线上并列运行。 主要优点:接线简单、清晰,所用电气设备少,操作方便,配电装置造价便宜。 主要缺点:适应性差,母线故障或检修,全部回路均需停电;任一回路断路器检修,该回路停电。 适用范围:单电源的发电厂和变电所,且出线回路数少,用户对供电可靠性要求不高的场合;10kV纯无功补偿设备出线(电容器、电抗器)。 2、单母线分段接线 特点:与单母线接线方法相比,增加了分段断路器,将母线适当分段。当对可靠性要求不高时,也可利用分段隔离开关进行分段。母线分段的数目,决定于电源的数目,容量、出线回数,运行要求等。母线分段一般分为2-3段。 优点:母线发生故障时,仅故障母线段停电,缩小停电范围;对重要用户由两侧共同供电,提高供电可靠性; 缺点:当一段母线故障或检修时,与该段所连的所有电源和出线均需断开,单回供电用户要停电;任一出线断路器检修,该回路要停电。适用:6~10kV,出线6回以上;35~66kV,出线不超过8回时;110~220kV,出线不超过4回时。 3、单母线分段带旁路母线接线 优点:增设旁路母线,增设各出线回路中相应的旁路隔离开关,解决出线断路器检修时的停电问题。为了节省投资,可不专设旁路断路器,而用母线分段断路器兼作旁路断路器。因为电压越高,断路器检修所需的时间越长,停电损失越大,因此旁路母线多用于35kV以上接线。适用:6~10kV接线一般不设旁路母线;35~66kV,可设不专设旁路断路器的旁路母线;110kV出线6回以上,220 kV出线4回以上,宜用专设旁路断路器的旁路母线;出线断路器使用可靠性较高的SF6断路器时,可不设旁路母线。 4、双母线接线 优点:两条母线互为备用,一条母线检修时,另一条母线可以继续工作,不会中断对用户的供电;任一母线侧隔离开关检修时,只需断开

变电站主接线图设备命名规则.

双母线分段 , 分别称 1号、 2号母线、 3号、 4号母线 (# 1M 、#2M 、#3M 、#4M 。旁路母线 ,称 5号母线 (#5M 。 (若旁路母线为两段 , 则称为#5M1、 #5M2 。 3.4 断路器编号 : 断路器编号用四位数字表示 , 前两位数码“ 50” 代表 500kV 电压等级 , 后两位数码依结线方式做以下规定 : 3.4.1 完全一个半断路器结线开关编号 : 完全一个半断路器结线设备按矩阵排列编号 , 如第一串的三个断路器 ,分别为 5011(靠 #1M 、 5012(中间、 5013(靠 #2M , 第二串为 5021(靠 #1M 、 5022(中间、 5023(靠 # 2M(参见附图 3 。 串序自固定端向扩建端依序排列。 3.4.2 不完全一个半断路器结线开关编号 : 3.4.2.1 如图 1所示不完全一个半断路器结线方式 , 不完整串当一完整串处理 , 照完全一个半断路器结线的编号法编号。 3.4.2.2 图 2所示一个半断路器结线方式 , 变压器高压侧开关按主变压器开关编号。 3.4.3 母联断路器及旁路断路器编号 : 母联断路器及旁路断路器划分为 (1母联断路器、 (2旁路断路 器、 (3母联兼旁路断路器 (如图 3接线、 (4旁路兼母 联断路器 (如图 4接线四种。其中母联兼旁路断路器按母联断路器编号 , 旁路兼母联断路器按旁路断路器编号。 母联断路器用被联结的二条母线编号组成 ,小数在前 ,大数在后。

例如 :1、 2号母线间的联络断路器为 5012。 3、 4号母线间的联络断路器为 5034。 4号母线与 5号旁路母线间断路器为 5045。 3.4.4 出线断路器编号 : 出线断路器从 5051起 , 按出线间隔顺序编号。 如 :从固定端起第一个出线间隔的断路器为 5051, 从固定端起第二个出线间隔断路器为5052, … … 。 3.4.5 主变压器断路器编号 : 按主变压器序号 , 其高压侧断路器相应编号为 5001~ 5010。 主变压器中、低压侧断路器按 1.3编号。 3.4.6 500kV 的高压备用厂用变压器高压侧的断路器编号为 5000。 3.4.7 500kV联络变压器断路器编号 : 对双绕组 500kV 联络变压器序号确定和断路器编号问题可按以下原则之一处理 : a. 按全厂、站主变压器序号统一编号。断路器编号与主变序号相对应。 b. 单独给联络变压器以序号可采用 50, 49,其主断路器为 5050, 5049。 3.4.8 500kV 角形结线的断路器从起始点顺时针编号 , 如 : 5001、5002、 5003、 5004、… … 。 3.4.9 500kV电抗器、电容器、滤波器断路器编号按以下原则处理 :

牵引变电所电气主接线的设计

电力牵引供电系统课程设计 专 业:电气工程及其自动化 班 级: 电气091 姓 名: 学 号: 指导教师: 兰州交通大学自动化与电气工程学院 年 月 日 1 题目:牵引变电所电气主接线的设计 指导教师评语 平时(30) 报告(30) 修改(40) 总成绩

1.1选题背景 某牵引变电所位于大型编组站内,向两条复线电气化铁路干线的三个方向馈电区段供电,已知列车正常情况的计算容量为12000kV A(三相变压器),并以10kV 电压给车站电力照明机务段等地区负荷供电,容量计算为3850kV A。各电压侧馈出线数目及负荷情况如下: 25kV回路(1路备):两方向年货运量与供电距离分别为Q1L1=33×60Mt.Km; Q2L2=31×25Mt.Km,K R=0.2,△q=100KWh/Kt.Km。 10kV回路(2路备):供电电源由系统区域变电所以双回路110KV输送线供电。 本变电所是终端变电所,送电线距离10kM。 主变压器为三相接线,要求:画出变电所的电气主接线。(包括变压器容量计算;各种方案主接线的技术经济性比较。) 1.2 题目分析 这类牵引变电所的电源线路,按保证牵引符合供电的需求一般有两回,主要向牵引负荷和地区负荷供电,桥型结线的中间牵引变电所还有穿越功率通过母线,并向邻近牵引变电所或地区变电所供电。由题意知,本牵引变电所担负着重要的牵引负荷供电任务(一级负荷)、馈线数目多、影响范围广,应保证安全可靠持续性的供电。10千伏地区负荷主要为编组站自动化驼峰、信号自动闭塞、照明及其自动装置等一部分为一级负荷、其他包括机务段在内的自用电和地区三相负载等均为二级负荷,也应满足有足够安全可靠供电的要求。本变电所为终端变电所,一次侧无通过功率。 2方案论证 三相牵引变压器的计算容量是由牵引供电计算求出的。本变电所考虑为固定备用方式,按故障检修时的需要,应设两台牵引用主变压器,地区电力负荷因有一级负荷,为保证变压器检修时不致断电,也应设两台。 因没有校核容量,只考虑计算容量来选择变压器,牵引变压器计算容量为12000kV A,故选择容量为12500kV A的变压器,而地区变压器选择6300kV A变压器。 根据原始资料和各种负荷对供电可靠性要求,主变压器容量与台数的选择,可能有以下两种方案: 方案A:2×12500kV A牵引变压器+2×6300kV A地区变压器,一次侧同时接于110kV母线,(110千伏变压器最小容量为6300kV A)。 方案B:2×16000kV A的三绕组变压器,因10千伏侧地区负荷与总容量比值超 过15%,采用电压为110/25/10.5kV A,结线为 0// Y??两台三绕组变压器同时为牵引负荷与地区电力负荷供电。各绕组容量比为100:100:50。

(110kv变电站电气主接线设计)

110KV电气主接线设计 姓名: 专业:发电厂及电力系统 年级: 指导教师:

摘要 根据设计任务书的要求,本次设计为110kV变电站电气主接线的初步设计,并绘制电气主接线图。该变电站设有两台主变压器,站内主接线分为110kV、35kV和10kV三个电压等级。110KV电压等级采用双母线接线,35KV和10KV电压等级都采用单母线分段接线。 本次设计中进行了电气主接线的设计、短路电流计算、主要电气设备选择及校验(包括断路器、隔离开关、电流互感器、电压互感器、母线、熔断器等)、各电压等级配电装置设计。 本设计以《35~110kV变电所设计规范》、《供配电系统设计规范》、《35~110kV高压配电装置设计规范》等规范规程为依据,设计的内容符合国家有关经济技术政策,所选设备全部为国家推荐的新型产品,技术先进、运行可靠、经济合理。 关键词:降压变电站;电气主接线;变压器;设备选型

目录 摘要 (Ⅰ) 1 变电站电气主接线设计及主变压器的选择 (1) 1.1 主接线的设计原则和要求 (1) 1.1.1 主接线的设计原则 (1) 1.1.2 主接线设计的基本要求 (2) 1.2 主接线的设计 (3) 1.2.1 设计步骤 (3) 1.2.2 初步方案设计 (3) 1.2.3 最优方案确定 (4) 1.3 主变压器的选择 (5) 1.3.1 主变压器台数的选择 (5) 1.3.2 主变压器型式的选择 (5) 1.3.3 主变压器容量的选择 (6) 1.3.4 主变压器型号的选择 (6) 1.4 站用变压器的选择 (9) 1.4.1 站用变压器的选择的基本原则 (9) 1.4.2 站用变压器型号的选择 (9) 2 短路电流计算 (10) 2.1 短路计算的目的、规定与步骤 (10) 2.1.1 短路电流计算的目的 (10) 2.1.2 短路计算的一般规定 (10) 2.1.3 计算步骤 (10) 2.2 变压器的参数计算及短路点的确定 (11) 2.2.1 变压器参数的计算 (11) 2.2.2 短路点的确定 (11) 2.3 各短路点的短路计算 (12) 2.3.1 短路点d-1的短路计算(110KV母线) (12)

220kV变电站电气主接线设计

邵阳学院毕业设计(论文) 枢纽变电站电气主接线 摘要: 电能作为一种二次能源,是一种不能储存的能量。电能的开发应用是人类征服自然过程中所取得的具有划时代意义的光辉成就,而现在,电能已成为工业生产不可缺少的动力,并广泛应用到生产部门和日常生活方面。 而电能的传输离不开变电站,电经过升压变电站、传输线路、降压变电站, 然后才能到用户。这其中变电站担当着一个极其重要的枢纽。 而对于枢纽变电站,它位于电力系统的枢纽点,电压等级一般为330kV及以上,联系多个电源,出现回路多,变电容量大;全站停电后将造成大面积停电,或系统瓦解,枢纽变电站对电力系统运行的稳定和可靠性起到重要作用。 本次《发电厂电气部分》课程设计的题目正是枢纽变电站的电气主接线设计,按照老师上课所将设计步骤,首先分析原始资料,通过分析拟建变电站的进出线方向和负荷等原始资料,从可靠性、安全性、经济性等其他方面的考虑,确定电气主接线方式,主变压器的容量、数量的确定,负荷分析及计算,以及短路电流的计算和变电所主要电气设备的选择(包括断路器,隔离开关,互感器等),并在选择时对电气设备进行了必要的计算和校验。同时,针对本次设计,完成相应图纸的绘制。

目录 内容提要......................................................................... 错误!未定义书签。Summary (Ⅱ) 1 概述 (1) 1.1所址情况 (1) 1.2变电站出线情况 (1) 1.3变电站的基本数据 (1) 2 电气主接线的设计 (2) 2.1单母线接线及单母线分段接线 (2) 2.2双母线接线及双母分段接线 (3) 2.3主接线设计原则 (4) 2.4主接线选择 (4) 3 主变压器的选择 (6) 3.1变压器台数选择 (6) 3.2主变容量选择 (6) 3.3主变压器型式的选择 (7) 3.4主变压器的配置原则 (8) 3.5主变压器选择结果 (9) 4 变电站电气部分短路计算 (10) 4.1短路计算目的及假定 (11) 4.2各种短路电流计算步骤 (12) 4.3短路计算过程 (13) 5 导体和电气设备的选择 (19) 5.1按正常工作条件选择电气设备 (19) 5.2按短路状态校验 (20) 5.3断路器与隔离开关的选择 (21) 5.4互感器的选择 (28) 5.5母线的选择 (33) 5.6避雷器的选择 (40) 总结 (46) 参考文献 (46) 附录 (48) 致谢 (49) 附图1 附图2 附图3

相关文档
相关文档 最新文档