文档库 最新最全的文档下载
当前位置:文档库 › 高等数学1(理工类)第1章答案

高等数学1(理工类)第1章答案

高等数学1(理工类)第1章答案
高等数学1(理工类)第1章答案

高等数学第一章习题

一、填空

1.设)(x f y =的定义域是]1,0(,x x ln 1)(-=?,则复合函数)]([x f y ?=的定义域为),1[e

2. 设)(x f y =的定义域是[1,2],则)1

1

(

+x f 的定义域 [-1/2,0] 。 3.设??

?≤<-≤≤=2

11

101

)(x x x f , 则)2(x f 的定义域 [0,1] 。

5.设)(x f 的定义域为)1,0(,则)(tan x f 的定义域 Z k k k x ∈+

∈,)4

,(π

ππ

6. 已知2

1)]([,sin )(x x f x x f -==φ,则)(x φ的定义域为 22≤≤-x 。

7. 设()f x 的定义域是[]0,1,则()x

f e 的定义域(,0]-∞

8.设()f x 的定义域是[]0,1,则(cos )f x 的定义域2,22

2k k π

πππ??

-+

???

?

9. x

x

sin lim

x ∞→= 0

10.()()()=+-+∞→17

6

1125632lim x x x x 176

5

3。

11.x x x

)2

1(lim -∞

→= 2

e -

12.当∞→x 时,

x

1

是比3-+x 13.当0→x 时,1132-+ax 与1cos -x 为等价无穷小,则=a 2

3-

14.若数列}{n x 收敛,则数列}{n x 是否有界 有界 。 15.若A x f x x =→)(lim 0

(A 为有限数),而)(lim 0

x g x x →不存在,

则)]()([lim 0

x g x f x x +→ 不存在 。

16.设函数)(x f 在点0x x =处连续,则)(x f 在点0x x =处是否连续。( 不一定 ) 17.函数2

31

22

++-=

x x x y 的间断点是-1、-2 18. 函数)(x f 在0x 处连续是)(x f 在该点处有定义的充分条件;函数)(x f 在0x 处有定义是)(x f 在该点处有极限的无关条件。(填:充要,必要,充分,既不充分也不必要,无关)。 19.函数左右极限都存在且相等是函数极限存在的 充要 条件,是函数连续的 必要 条件。(填:充分、必要、充要、既不充分也不必要)

21.函数x

y 1

=

在区间[)2,1内的最小值是 不存在 22.已知??

???≥+-<+=0,230

,)1ln(2sin )(2x k x x x x x

x f 在x =0处连续,则k = 2 。

23.设)(x f 处处连续,且3)2(=f ,则 )2sin (3sin lim

0x

x

f x x x →= 9

24.a x =是a

x a x y --=

的第 1 类间断点,且为 跳跃 间断点.

25.0=x 是x

y 1

cos

2

=的第 2 类间断点,且为 振荡 间断点. 26.设函数????

?

????<+=>+=--1 ,1b 1

,1,)1(1)(2

)1(1

2

x x x a x e x x f x ,当=a 0 ,=b -1 时,函数)(x f 在点x=1处连续.

27.在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内:

(1)数列{}n x 有界是数列{}n x 收敛的 必要 条件。数列{}n x 收敛是数列{}n x 有界的 充分 条件。

(2)()f x 在0x 的某一去心邻域内有界是0

lim ()x x f x →存在的 必要 条件。0

lim ()x x f x →存在是()f x 在0

x 的某一去心邻域内有界的 充分 条件。

(3)()f x 在0x 的某一去心邻域内无界是0

lim ()x x f x →=∞存在的 必要 条件。0

lim ()x x f x →=∞存在是

()f x 在0x 的某一去心邻域内无界的 充分 条件。

二、选择

1.如果0

lim ()x x f x →+

与0

lim ()x x f x →-

存在,则( C ).

(A )0

lim ()x x

f x →存在且00

lim ()()x x

f x f x →=

(B )0

lim ()x x

f x →存在但不一定有00

lim ()()x x

f x f x →=

(C )0

lim ()x x

f x →不一定存在

(D )0

lim ()x x

f x →一定不存在

2.如果()∞=→x f x x 0

lim ,()∞=→x g x x 0

lim ,则必有( D )。

A 、()()[]∞=+→x g x f x x 0

lim B 、()()[]0lim 0

=-→x g x f x x

C 、()()

01

lim

=+→x g x f x x D 、()∞=→x kf x x 0lim (k 为非零常数)

3.当∞→x 时,arctgx 的极限( D )。 A 、2

π

=

B 、2

π

-

= C 、∞= D 、不存在,但有界

4.1

1lim

1

--→x x x ( D )。

A 、1-=

B 、1=

C 、=0

D 、不存在

5.当0→x 时,下列变量中是无穷小量的有( C )。 A 、x 1sin

B 、x

x

sin C 、12--x D 、x ln 6. 下列变量在给定的变化过程中是无穷大量的有( A )。

A 、()+

→0lg x x B 、()1lg →x x C 、1

3

2

+x x ()+∞→x D 、()-→01

x e x 7.无穷小量是( C ).

(A )比0稍大一点的一个数 (B )一个很小很小的数 (C )以0为极限的一个变量 (D )常数0 8. 如果)(),(x g x f 都在0x 点处间断,那么( D )

(A ))()(x g x f +在0x 点处间断 (B ))()(x g x f -在0x 点处间断 (C ))()(x g x f +在0x 点处连续 (D ))()(x g x f +在0x 点处可能连续。 9.已知0

()

lim

0x f x x

→=,且(0)1f =,那么( A ) (A )()f x 在0x =处不连续。 (B )()f x 在0x =处连续。 (C )0

lim ()x f x →不存在。 (D )0

lim ()1x f x →=

10.设2()43x x

f x x x

+=

- ,则0lim ()x f x →为( D )

(A )

12 (B)1

3 (C) 1

4

(D)不存在

11.设 ???

??=≠=0

,

00,|

|)(x x x x

x f 则( C )

(A ) )(x f 在0=x 的极限存在且连续; (B ))(x f 在0=x 的极限存在但不连续;

(C))(x f 在0=x 的左、右极限存在但不相等; (D ))(x f 在0=x 的左、右极限不存在。 12. 设232)(-+=x

x

x f ,则当0→x 时,有( B )

(A ))(x f 与x 是等价无穷小; (B ))(x f 与x 是同阶但非等价无穷小; (C ))(x f 是比x 高阶的无穷小; (D ))(x f 是比x 低阶的无穷小。

13.当0→x 时,下列四个无穷小量中 ,哪一个是比另外三个更高阶的无穷小( D ) (A ) 2

x ; (B ) x cos 1-; (C )112--x ;(D ) x x tan -。

14. 当0→x 时,x

ax

x cos 3arctan 与

是等价无穷小,则:a =( C ) (A ) 1 ; (B ) 2; (C ) 3; (D )1/2 15下列运算正确的是( C )

(A )01cos lim 01cos lim sin lim 1cos sin lim 0000=?=?=→→→→x x x x x x x x x

(B )00lim lim sin tan lim 0303

0==-=-→→→x x x x x

x x x x

(C) )100sin (lim +∞→x x x =100lim sin lim ∞→∞→+x x x

x

=0 + 100=100

(D) 5

3

53lim 5sin 3tan lim ==→→x x x x x x ππ

三、基本计算题

(一.求极限) 1. (

)

x x x x x --+-∞

→22lim

1.解:-1

2. lim

x →+∞

2.解:1

3.2

529lim

3

8

--+→x x x

3. 解: 5

12 4.)

cos 1(cos 1lim

x x x x --→

4.解:

2

1 5.)2(sin lim 2

n n n n -++∞

→π

5. 解:π

6.x

x x x cos 1sin )11(lim

0--+→

6.解:1

7.3

032sin sin 2lim x x

x x -→

7.解: 3

1

8.)

1ln(sin tan lim

30x x

x x +-→

8.解:

2

1 9.x

x e e x

x x sin lim sin 0--→ 9.解:1

10.设0→x 时,1cos 1)1(3

12

--+x ax 与 是等价无穷小,求a 的值 10.解:2

3-=a 11

x →

11 解:-3

12.2

1

2

)(sec lim x x x →

12.解:e

13. n

n n n ??

?

??+∞→1lim

13.解1

-e

14. 1

21)1

2(

lim -→+x x

x x x 14解:e 15.()10lim 0,0,03x x x

x

x a b c a b c →??

++>>>

???

15.16. x

x x x

)21(lim 1

+∞→

16.解 :2

ln 1+e

17.1

1

1lim

21arctan

t

t t te

te t

π→+- 17. 解:1 18.)2222

(lim 284

n

n ∞

18.解:2

19.设 ),1,0)(≠>=a a a x f x

(求 )]()2()1(ln[1

lim 2

n f f f n n ∞→

19. 解a ln

20. .??

?

???--+++++∞→2)1(321(21lim 2n n n n 20. 解: 21

-

21.

l i n 21.解: 1

22.)2211(lim 222n

n n

n n n ++++++∞→

22.解: 21

23.]1

[lim 0x

x x +→ 23.解:1

24.x

x x

x

x 1)

532(lim +++∞

24.解:5

25.????

? ??+++→||sin 12lim 41

0x x e e x

x x 25.解: 1

(二.连续与间断)

26.处连续.在之值,使补充定义 0)()0()0()2tan arcsin(

)(=≠=x x f f x x

x

x f 26.解,6

)(lim 0

π

=

→x f x

处连续.在,则补充定义0)(6

)0(==

∴x x f f π

27.指出函数1

2121

1

+-=

x

x y 的间断点,并判定其类型.

27.解0=x 是函数的第一类间断点(跳跃间断点)。

四、综合计算题

(一.连续与间断) 1.设21()lim

1n

n x

f x x →∞-=+,讨论()f x 在其定义域内的连续性,若有间断点,指出其类型。

1. 解????

???≥<<---=-<=10

1111110

)(x x x x x x f x =-1 是第一类跳跃间断点。

2.设???

????<--≥+=0,0,2

cos )(x x x a a x x x

x f ,试问:a 为何值时,使)(x f 在x =0处连续?

2. 解:a =1。

3.已知11lim

21=-++→x

b

ax x x ,求a 与b 的值, 3.解:b =2,a =-3。

4.讨论函数x

x x x y sin )4(2

2--=的连续性,并指明间断点的种类。

4.解 当x =-2或0或2时函数无定义故,-2、0、2为间断点

x =-2为函数的第二类间断点。 x =0为函数的可去间断点。 x =2为函数的跳跃间断点。

5.设???

?

???≤<-+-=-<-=11,arccos 1,

1,1)(2x x a x b x x x f ,应怎样选取数a ,b ,才能使)(x f 在x =-1处连续? 5.解 π-=a ,b =0。

6.讨论函数2

31

22+--=x x x y 的连续性,并指明间断点的种类

6.解 当x =1或2时函数无定义,故x =1和2为函数的间断点, x =1为函数的可去间断点。 x =2为函数的第二类间断点。 7.求极限 x

t x x t x t sin sin sin sin lim -→??

?

??, 记此极限为)(x f ,求函数)(x f 的间断点并指出其类型。

7. 解:x

x

e

x f sin )(=

2,1,0,±±==k k x π时,函数无定义,所以,是函数)(x f 的间断点,

0=x 是可去间断点;

2,1,±±==k k x π,是第二类间断点。

8.设 ?????<<-+≥=-0

1,)1ln(0,)(11

x x x e x f x ,求函数)(x f 的间断点并指出其类型。

8. 解1=x 是第二类间断点;0=x 是跳跃间断点。 9.1,0)

1)(()(,==---=

x x x a x b

x x f b a ,有可去间断点有无穷间断点的值,使确定

9.解,0=a 1=b

(二.已知某些极限,求另外的极限或常数)

10.若22

2lim 22

x x ax b

x x →++=--, 求a ,b 的值 10.解4-=c , 8,2-==b a

11.已知 4cos 1)(lim 0=-→x x f x ,求x

x x x f 1

0)(1lim ??

? ??

+→。

11. 解:2

e

12. 设 2)13(lim 2

=++-+∞

→bx ax x x ,试确定a 与b 的值。

12. 解: 12,9-==b a

13. ).(,1)

(lim ,2)(lim

,)(023x p x

x p x x x p x p x x 求且是多项式设==-→∞→ 13.解:x x x x p ++=2

32)(

(三.零点定理、介值定理)

14. 设)(x f 在]1,0[上连续。且1)(0<

15.设函数)(x f 在],[b a 上连续,.0,0),,(,>>∈g q b a d c 证明:在],[b a 上至少存在一点ξ,使得

).()()()(ξf g q d gf c qf +=+

15.解:利用最值、介值定理

16.设)(x f 在]3,1[上连续,且3)3()2()1(=++f f f ,则]3,1[∈?ξ,使得1)(=ξf 。 16.解:利用最值、介值定理

六、提高题

(一.求极限)

1.当 1||

2

n

x x x x n ++++∞

1. 解 原式=x

x x x x x x x x x n

n n n n -=-+-=-++++-∞←∞←11

1)1)(1(lim 1)1()1)(1)(1)(1(lim 22242

2.设n

x n ++++

++++++

= 211

32112111 求n n x ∞→lim 2.解))1(1321211(lim 2)

1(2lim

lim 1+++?+?=+=∞→=∞→∞

→∑n n k k x n n

k n n n =2)11

1(lim 2=+-∞→n n 3. x

x x x x sin tan )sin(tan )tan(sin lim

0--→

3.解x x x x x x x x x x x x sin tan )

sin(tan )sin(sin )sin(sin )tan(sin lim sin tan )sin(tan )tan(sin lim 00--+-=--→→

x

x x x x x x x x x sin tan )sin(tan )sin(sin lim sin tan )sin(sin )tan(sin lim 00--+--=→→

0tan sin lim 212

12tan sin sin

2tan sin cos 2lim 21)(sin 21lim 3030330=-+=-++=→→→x x x x

x x x x x x x x x

(二.零点定理、介值定理)

4.设)(x f 在[0,n ](n 为自然数,n ≥2)上连续,)()0(n f f =,证明:存在],0[1,n ∈+ξξ使

)1()(+=ξξf f 。

4.解 设)()1()(x f x f x F -+=,]1,0[-∈n x 且连续,

则:).1()()1(,,)2()3()2(,)1()2()1(,)0()1()0(--=--=-=-=n f n f n F f f F f f F f f F

将以上各式相加得

0)0()()(1

=-=∑-=f n f i F n i ,

另一方面,因为)(x f 连续,所以有,1,,1,0)(-=≤≤n i M i F m

M i F n m M n i F m n n i n i ≤≤≤≤∑∑-=-=1

01

)(1,)(由介值定理知 ],0[]1,0[n n ?-∈?ξ 使

0)(1)(1

==∑-=n i i F n F ξ 即)1()(+=ξξf f

5.证明:奇次方程0122211

20=++++++n n n n a x a x a x

a 至少有一个实根00≠a 。 5. 证 不妨设 00>a ,令122211

20)(++++++=n n n n a x a x a x

a x f 则)()(1

21

222101

2+++++++

=n n n n n x a x a x a a x

x f ,-∞=+∞=-∞→+∞→)(lim )(lim x f x f x x ,

0)(,0)(2211>?

6. 设)(x f 在),(b a 内为非负连续函数,b x x x a n <<<<< 21,证明:在),(b a 内存在点ξ,使得

n n x f x f x f f )()()()(21 =ξ

6. 证设)(ln )(x f x F =,)(x F 在],[1n x x 上连续且有最小值m 和最大值M ,即有

M x F m M x F m M x F m n ≤≤≤≤≤≤)(,,)(,)(21 M n

x F x F x F m n ≤+++≤

)

()()(21 由介值定

理知,存在),(],[21b a x x ?∈ξ,使得n

x F x F x F F n )

()()()(21+++= ξ,即

n n x f x f x f f )()()(ln )](ln[21 =ξ,从而n n x f x f x f f )()()()(21 =ξ成立。

微积分课后题答案第九章习题详解

第9章 习题9-1 1. 判定下列级数的收敛性: (1) 11 5n n a ∞ =?∑(a >0); (2) ∑∞ =-+1 )1(n n n ; (3) ∑∞ =+13 1 n n ; (4) ∑∞ =-+12)1(2n n n ; (5) ∑∞ =+11ln n n n ; (6) ∑∞ =-12)1(n n ; (7) ∑∞ =+11 n n n ; (8) 0(1)21n n n n ∞ =-?+∑. 解:(1)该级数为等比级数,公比为 1a ,且0a >,故当1 ||1a <,即1a >时,级数收敛,当1 | |1a ≥即01a <≤时,级数发散. (2) Q n S =+++L 1= lim n n S →∞ =∞ ∴ 1 n ∞ =∑发散. (3)113 n n ∞ =+∑是调和级数11n n ∞=∑去掉前3项得到的级数,而调和级数11 n n ∞ =∑发散,故原 级数 11 3 n n ∞ =+∑发散. (4)Q 1112(1)1(1)22 2n n n n n n n ∞ ∞-==?? +--=+ ???∑∑ 而11 12n n ∞ -=∑,1(1)2m n n ∞ =-∑是公比分别为1 2的收敛的等比级数,所以由数项级数的基本性质

知111(1)2 2n n n n ∞ -=??-+ ???∑收敛,即原级数收敛. (5)Q ln ln ln(1)1 n n n n =-++ 于是(ln1ln 2)(ln 2ln 3)[ln ln(1)]n S n n =-+-+-+L ln1ln(1)ln(1)n n =-+=-+ 故lim n n S →∞ =-∞,所以级数 1 ln 1 n n n ∞ =+∑发散. (6)Q 2210,2n n S S +==- ∴ lim n n S →∞ 不存在,从而级数 1 (1) 2n n ∞ =-∑发散. (7)Q 1 lim lim 10n n n n U n →∞ →∞+==≠ ∴ 级数 1 1 n n n ∞ =+∑发散. (8)Q (1)(1)1 , lim 21212 n n n n n n U n n →∞--==++ ∴ lim 0n x U →∞≠,故级数1 (1)21n n n n ∞ =-+∑发散. 2. 判别下列级数的收敛性,若收敛则求其和: (1) ∑∞ =??? ??+13121n n n ; (2) ※ ∑∞ =++1)2)(1(1n n n n ; (3) ∑∞ =?1 2sin n n n π ; (4) 0πcos 2n n ∞ =∑. 解:Q (1)1111, 23n n n n ∞ ∞==∑∑都收敛,且其和分别为1和12,则1112 3n n n ∞ =?? + ???∑收敛,且其 和为1+ 12=3 2 . (2)Q 11121(1)(2)212n n n n n n ?? =-+ ?++++??

高等数学第一章测试卷

高等数学第一章测试卷(B ) 一、选择题。(每题4分,共20分) 1?假设对任意的 x R ,都有(x) f(x) g(x),且]im[g(x) (x)] 0,则 lim f (x)() A.存在且等于零 B.存在但不一定为零 C. 一定不存在 D.不一定存在 1 x 2. 设函数f(x) lim 2n ,讨论函数f (x)的间断点,其结论为( ) n 1 x A.不存在间断点 B.存在间断点x 1 C.存在间断点x 0 D.存在间断点x 1 x 2 X 1 3. 函数f (x) 一2 . 1 —2的无穷间断点的个数为( ) X 1 \ x 7.[x]表示取小于等于x 的最大整数,则lim x - x 0 x f(x) asinx A. 0 B. 1 C. 2 D. 3 4.设函数f (x)在( )内单调有界, {X n }为数列,下列命题正确的是( A.若{x n }收敛,则{ f (x n ) }收敛 B.若{&}单调,则{ f (x n ) }收敛 0若{ f (X n ) }收敛,则仏}收敛 D.若{ f (X n ) }单调,则 {X n }收敛 5.设{a n }, {b n }, {C n }均为非负数列,且 lim n a n 0,lim b n 1,limc n n n ,则() A. a n b n 对任意n 成立 B. b n C n 对任意n 成立 C.极限lim a n C n 不存在 n D. 极限lim b n C n 不存在 n 二、填空题(每题 4分,共 20分) 6.设 X, f (X) 2f (1 X) 2 x 2x , 则 f (X) 8.若 lim]1 X X ( 丄 X a)e x ] 1, 则实数a 9.极限lim X (X 2 X a)(x b) 10.设 f (X)在 x 0处可导, f (0) 0,且f (0) b ,若函数 F(x) 在x 0处连续, 则常数 A

高等数学1试卷(附答案)

一、填空题(共6小题,每小题3分,共18分) 1. 由曲线2cos r θ=所围成的图形的面积是 π 。 2. 设由方程22x y =所确定的隐函数为)(x y y =,则2y dy dx x = - 。 3. 函数2 sin y x =的带佩亚诺余项的四阶麦克劳林公式为2 44 1()3 x x o x -+。 4. 1 1 dx =? 。 5. 函数x x y cos 2+=在区间?? ? ???20π,上的最大值为 6 π +。 6. 222222lim 12n n n n n n n n →∞?? +++ ?+++? ? = 4 π。 二、选择题(共7小题,每小题3分,共21分) 1. 设21cos sin ,0 ()1,0x x x f x x x x ? +

暨南大学《高等数学I 》试卷A 考生姓名: 学号: 3. 1 +∞=? C 。 A .不存在 B .0 C .2π D .π 4. 设()f x 具有二阶连续导数,且(0)0f '=,0 lim ()1x f x →''=-,则下列叙述正确的是 A 。 A .(0)f 是()f x 的极大值 B .(0)f 是()f x 的极小值 C .(0)f 不是()f x 的极值 D .(0)f 是()f x 的最小值 5.曲线2x y d t π-=?的全长为 D 。 A .1 B .2 C .3 D .4 6. 当,a b 为何值时,点( 1, 3 )为曲线3 2 y ax bx =+的拐点? A 。 A .32a =- ,92b = B. 32a =,9 2b =- C .32a =- ,92b =- D. 32a =,92 b = 7. 曲线2x y x -=?的凸区间为 D 。 A.2(,)ln 2-∞- B.2(,)ln 2-+∞ C.2(,)ln 2+∞ D.2(,)ln 2 -∞ 三、计算题(共7小题,其中第1~5题每小题6分, 第6~7题每小题8分,共46分) 1. 2 1lim cos x x x →∞?? ?? ? 解:()2 1 cos lim , 1 t t t x t →==原式令 )0 0( cos ln lim 2 0型t t t e →= (3分) t t t t e cos 2sin lim ?-→= 12 e - = (6分)

高等数学试题及答案新编

《 高等数学》 一.选择题 1.当0→x 时,)1ln(x y +=与下列那个函数不是等价的() A)、x y =B)、x y sin =C)、x y cos 1-=D)、1-=x e y 2.函数f(x)在点x 0极限存在是函数在该点连续的() A )、必要条件 B )、充分条件 C )、充要条件 D )、无关条件 3.下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有(). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、 (( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4.下列各式正确的是() A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、 2arctan 1dx dx x x =+?D )、2 11 ()dx C x x -=-+? 5.下列等式不正确的是(). A )、 ()()x f dx x f dx d b a =???????B )、()()()[]()x b x b f dt x f dx d x b a '=???? ??? C )、()()x f dx x f dx d x a =???????D )、()()x F dt t F dx d x a '=???? ??'? 6.0 ln(1)lim x x t dt x →+=?() A )、0 B )、1 C )、2 D )、4 7.设bx x f sin )(=,则=''?dx x f x )(()

(完整版)高等数学第一章测试题10选择(带答案和解析)

高等数学第一章测试题 一、单项选择题 1.0 . (),()x x x x x x βα→→当时,都是无穷小,则当时(,)不一定是无穷小 ()()()x A x αβ+ () 22()()x B x αβ+ ()ln[1()()]x C x αβ+? ()2 ()() x x D αβ 答案:D 2 0() (),()1,. () lim x x x x x x x ααββ→===解析:当时 2 1 2.( )0,,,1 lim x x ax b x a b a b →∞ +--=+则常数的值所组成的数组()为()设 10011111A B C D -()(,)()(,)()(,)()(,) 答案:D 解析: 0)1 1(2 lim =--++∞ →b ax x x x 1 ) 1)((1)11( 2 2 lim lim +++-+=--++∞ →∞ →x x b ax x b ax x x x x 01 1)()1(2 lim =+-++--=∞ →x b x b a x a x 10,0,a a b -=+=则分子的二次项和一次项系数为零: 即1,1-==b a 22 1)32 3(x f x x x -=-+、已知函数, 下列说法正确的是( )。

2(A)f(x)有个无穷间断点 ())1(1B f x 有个可去间断点,个无穷间断点 ()2()C f x 有个第一类间断点 ()111()f D x 有个可去间断点,个无穷间断点,个跳跃间断 答案:B 221(1)(1)1 ()32(2)(1)2 x x x x f x x x x x x --++=== -+---解析: 212320,1,2x x x x -+===令得 2.1x x ==是可去间断点,是无穷间断点 4、 是 。 A.奇函数 B.周期函数 C.有界函数 D.单调函数 答案:A ()()f x f x -=-解析: 1()11115. f x x = + +、函数的定义域为____ A. 0,≠∈x R x 但 1 ,10 .x R B x ∈+≠ 1,0,1,.2x x C R ∈≠-- 0.,,1x R x D ∈≠- x ∈R,但x ≠0,?1 答案:C 解析:略. 6、 答案:C |sin | ()cos x f x x xe -=()x -∞<<+∞的值为 , 极限)00()1(lim 0≠≠+→b a a x x b x 答( ) . . a be D e C a b B A a b ) ()(ln )(1)(

高等数学试题及答案91398

《高等数学》 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( ) A )、必要条件 B )、充分条件 C )、充要条件 D )、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( ) A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、 2arctan 1dx dx x x =+? D )、2 11 ()dx C x x -=-+? 5. 下列等式不正确的是( ). A )、()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=??????? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=???? ??'? 6. ln(1)lim x x t dt x →+=?( ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( ) A )、 C bx bx b x +-sin cos B ) 、C bx bx b x +-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin

高等数学第一章练习题答案

第一章 练习题 一、 设()0112>++=?? ? ??x x x x f ,求)(x f 。 二、 求极限: 思路与方法: 1、利用极限的运算法则求极限; 2、利用有界变量与无穷小的乘积仍是无穷小这一性质; 3、利用两个重要极限:1sin lim 0=→x x x ,e x x x =??? ??+∞→11lim ; 4、利用极限存在准则; 5、用等价无穷小替换。注意:用等价无穷小代替时被代替的应是分子、分母或其无穷小因子。如果分子或分母是无穷小的和差,必须将和差化为积后方可用等价无穷小代替积中的因子部分。 6、利用函数的连续性求极限,在求极限时如出现∞-∞∞ ∞,,00等类型的未定式时,总是先对函数进行各种恒等变形,消去不定因素后再求极限。 7、利用洛比达法则求极限。 1、()()()35321lim n n n n n +++∞ → 2、???? ? ?---→311311lim x x x 3、122lim +∞ →x x x 4、x x x arctan lim ∞ →

5、x x x x sin 2cos 1lim 0-→ 6、x x x x 30 sin sin tan lim -→ 7、()x x 3cos 2ln lim 9 π → 8、11232lim +∞→??? ??++x x x x 三、 已知(),0112lim =??? ?????+-++∞→b ax x x x 求常数b a ,。 四、 讨论()nx nx n e e x x x f ++=∞→12lim 的连续性。 五、 设()12212lim +++=-∞→n n n x bx ax x x f 为连续函数,试确定a 和b 的值。 六、 求()x x e x f --=111 的连续区间、间断点并判别其类型。 七、 设函数()x f 在闭区间[]a 2,0上连续,且()()a f f 20=,则在[]a ,0上 至少有一点,使()()a x f x f +=。 八、 设()x f 在[]b a ,上连续,b d c a <<<,试证明:对任意正数p 和q , 至少有一点[]b a ,∈ξ,使 ()()()()ξf q p d qf c pf +=+

中国人民大学出版社第四版高等数学一第6章课后习题详解

高等数学一第6章课后习题详解 课后习题全解 习题6-2 ★ 1.求由曲线 x y =与直线 x y =所围图形的面积。 知识点:平面图形的面积 思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1 ∵所围区域D 表达为X-型:?? ?<<<

∵所围区域D 表达为X-型:?????<<< <1 sin 2 0y x x π, (或D 表达为Y-型:???<<<

∴所围区域D 表达为Y-型:?? ?-<<<<-2 2 422y x y y , ∴23 16 )32 4()4(2 2 32 222= -=--=- - ? y y dy y y S D (由于图形关于X 轴对称,所以也可以解为: 2316 )324(2)4(22 32 22=-=--=? y y dy y y S D ) ★★4.求由曲线 2x y =、24x y =、及直线1=y 所围图形的面积 知识点:平面图形面积 思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4 ∵第一象限所围区域1D 表达为Y-型:? ??<<<

(word完整版)高数一试题及答案,推荐文档

《 高等数学(一) 》复习资料 一、选择题 1. 若23lim 53 x x x k x →-+=-,则k =( ) A. 3- B.4- C.5- D.6- 2. 若21lim 21 x x k x →-=-,则k =( ) A. 1 B.2 C.3 D.4 3. 曲线3sin 1x y e x =-+在点(0,2)处的切线方程为( ) A.22y x =+ B.22y x =-+ C.23y x =+ D.23y x =-+ 4. 曲线3sin 1x y e x =-+在点(0,2)处的法线方程为( ) A.122y x =+ B.122y x =-+ C.132y x =+ D.1 32 y x =-+ 5. 211 lim sin x x x →-=( ) A.0 B.3 C.4 D.5 6.设函数0()(1)(2)x f x t t dt =+-?,则(3)f '=( ) A 1 B 2 C 3 D 4 7. 求函数43242y x x =-+的拐点有( )个。 A 1 B 2 C 4 D 0 8. 当x →∞时,下列函数中有极限的是( )。 A. sin x B. 1x e C. 21 1x x +- D. arctan x 9.已知'(3)=2f ,0(3)(3) lim 2h f h f h →--=( ) 。 A. 32 B. 3 2- C. 1 D. -1 10. 设42()=35f x x x -+,则(0)f 为()f x 在区间[2,2]-上的( )。

A. 极小值 B. 极大值 C. 最小值 D. 最大值 11. 设函数()f x 在[1,2]上可导,且'()0,(1)0,(2)0,f x f f <><则()f x 在(1,2)内( ) A.至少有两个零点 B. 有且只有一个零点 C. 没有零点 D. 零点个数不能确定 12. [()'()]f x xf x dx +=?( ). A.()f x C + B. '()f x C + C. ()xf x C + D. 2()f x C + 13. 已知2 2 (ln )y f x =,则y '=( C ) A.2222(ln )(ln )f x f x x ' B. 24(ln )f x x ' C. 224(ln )(ln ) f x f x x ' D. 222(ln )()f x f x x ' 14. ()d f x ? =( B) A.'()f x C + B.()f x C.()f x ' D.()f x C + 15. 2ln x dx x =?( D ) A.2ln x x C + B. ln x C x + C.2ln x C + D.()2ln x C + 16. 211 lim ln x x x →-=( ) A.2 B.3 C.4 D.5 17. 设函数0()(1)(2)x f x t t dt =-+?,则(2)f '-=( ) A 1 B 0 C 2- D 2 18. 曲线3y x =的拐点坐标是( ) A.(0,0) B.( 1,1) C.(2,2) D.(3,3) 19. 已知(ln )y f x =,则y '=( A ) A. (ln )f x x ' B.(ln )f x ' C.(ln )f x D.(ln ) f x x 20. ()d df x =?( A) A.()df x B.()f x C.()df x ' D.()f x C +

高等数学上复旦第三版 课后习题答案

283 高等数学上(修订版)(复旦出版社) 习题六 无穷数级 答案详解 1.写出下列级数的一般项: (1)111135 7 ++++ ; (2)2 2242462468x x x x x ++++?????? ; (3)3579 3579 a a a a -+-+ ; 解:(1)1 21 n U n =-; (2)()2 !! 2n n x U n = ; (3)() 21 1 121 n n n a U n ++=-+; 2.求下列级数的和: (1)()()() 11 11n x n x n x n ∞ =+-+++∑ ; (2) ( )1 221n n n n ∞ =+-++∑; (3)23 111 5 55+ ++ ; 解:(1)()()() ()()()()1 11111211n u x n x n x n x n x n x n x n = +-+++?? -= ?+-++++??

284 从而()()()()()()() ()()()()()()()1111 1211212231111111211n S x x x x x x x x x n x n x n x n x x x n x n ?-+-= +++++++?? ++ - ?+-++++? ?? -= ?++++?? 因此() 1lim 21n n S x x →∞ =+,故级数的和为 () 121x x + (2)因为()()211n U n n n n =-+-++- 从而()()()() ()()()()3243322154432112112 1 12 21 n S n n n n n n n n =-+-----+-++---+-++-=+-++-=+-+++ 所以lim 12n n S →∞ =-,即级数的和为12-. (3)因为2111 5551115511511145n n n n S =+ ++????-?? ???? ?=-????=-?? ????? 从而1lim 4 n n S →∞ =,即级数的和为14 . 3.判定下列级数的敛散性: (1) ( )1 1n n n ∞ =+-∑; (2) ()() 11111661111165451n n +++++???-+ ; (3) ()23133222213333 n n n --+-++- ;

高等数学上考试试题及答案

四川理工学院试卷(2007至2008学年第一学期) 课程名称: 高等数学(上)(A 卷) 命题教师: 杨 勇 适用班级: 理工科本科 考试(考查): 考试 2008年 1 月 10日 共 6 页 注意事项: 1、 满分100分。要求卷面整洁、字迹工整、无错别字。 2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否 则视为废卷。 3、 考生必须在签到单上签到,若出现遗漏,后果自负。 4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷 分别一同交回,否则不给分。 试 题 一、单选题(请将正确的答案填在对应括号内,每题3分,共15分) 1. =--→1 ) 1sin(lim 21x x x ( C ) (A) 1; (B) 0; (C) 2; (D) 2 1 2.若)(x f 的一个原函数为)(x F ,则dx e f e x x )(? --为( B ) (A) c e F x +)(; (B) c e F x +--)(; (C) c e F x +-)(; (D ) c x e F x +-) ( 3.下列广义积分中 ( D )是收敛的. (A) ? +∞ ∞ -xdx sin ; (B)dx x ? -111 ; (C) dx x x ?+∞ ∞-+2 1; (D)?∞-0dx e x 。 4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( B )

(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导; (C) )(x f 可积(常义),则)(x f 一定有界; (D) 函数)(x f 连续,则? x a dt t f )(在[]b a ,上一定可导。 5. 设函数=)(x f n n x x 211lim ++∞→ ,则下列结论正确的为( D ) (A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x 二、填空题(请将正确的结果填在横线上.每题3分,共18分) 1. 极限=-+→x x x 1 1lim 20 _0____. 2. 曲线? ??=+=3 2 1t y t x 在2=t 处的切线方程为______. 3. 已知方程x xe y y y 265=+'-''的一个特解为x e x x 22 )2(2 1+- ,则该方程的通解为 . 4. 设)(x f 在2=x 处连续,且22 ) (lim 2=-→x x f x ,则_____)2(='f 5.由实验知道,弹簧在拉伸过程中需要的力F (牛顿)与伸长量s 成正比,即ks F =(k 为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________焦耳。 6.曲线23 3 2 x y =上相应于x 从3到8的一段弧长为 . 三、设0→x 时,)(22 c bx ax e x ++-是比2 x 高阶的无穷小,求常数c b a ,,的值(6分)

高等数学第一章练习题

第一章函数、极限、连续 一、单项选择题 1.区间[a,+∞),表示不等式() 2.若 3.函数是()。 (A)偶函数(B)奇函数(C)非奇非偶函数(D)既是奇函数又是偶函数 4.函数y=f(x)与其反函数 y=f-1(x)的图形对称于直线()。 5.函数 6.函数 7.若数列{x n}有极限a,则在a的ε邻域之外,数列中的点() (A)必不存在 (B)至多只有有限多个 (C)必定有无穷多个 (D)可以有有限个,也可以有无限多个 8.若数列{ x n }在(a-ε, a+ε)邻域内有无穷多个数列的点,则(),(其中为某一取定的正数) (A)数列{ x n }必有极限,但不一定等于 a (B)数列{ x n }极限存在且一定等于 a (C)数列{ x n }的极限不一定存在 (D)数列{ x n }一定不存在极限

9.数列 (A)以0为极限(B)以1为极限(C)以(n-2)/n为极限(D)不存在极限 10.极限定义中ε与δ的关系是() (A)先给定ε后唯一确定δ (B)先确定ε后确定δ,但δ的值不唯一 (C)先确定δ后给定ε  (D)ε与δ无关 11.任意给定 12.若函数f(x)在某点x0极限存在,则() (A) f(x)在 x0的函数值必存在且等于极限值 (B) f(x)在x0的函数值必存在,但不一定等于极限值 (C) f(x)在x0的函数值可以不存在 (D)如果f(x0)存在则必等于极限值 13.如果 14.无穷小量是() (A)比0稍大一点的一个数 (B)一个很小很小的数 (C)以0为极限的一个变量 (D)0数 15.无穷大量与有界量的关系是() (A)无穷大量可能是有界量

高等数学试卷和答案新编

高等数学(下)模拟试卷一 一、填空题(每空3分,共15分) (1)函数 11z x y x y =+ +-的定义域为 (2)已知函数 arctan y z x =,则z x ?= ? (3)交换积分次序, 2 220 (,)y y dy f x y dx ? ? = (4)已知L 是连接(0,1),(1,0)两点的直线段,则 ()L x y ds +=? (5)已知微分方程230y y y '''+-=,则其通解为 二、选择题(每空3分,共15分) (1)设直线L 为321021030x y z x y z +++=?? --+=?,平面π为4220x y z -+-=,则() A.L 平行于πB.L 在π上C.L 垂直于πD.L 与π斜交 (2)设是由方程 222 2xyz x y z +++=确定,则在点(1,0,1)-处的dz =() dx dy +2dx dy +22dx dy +2dx dy -(3)已知Ω是由曲面222425()z x y =+及平面5 z =所围成的闭区域,将 2 2()x y dv Ω +???在柱面坐标系下化成三次积分为() 22 5 3 d r dr dz πθ? ??. 24 5 3 d r dr dz πθ? ?? 22 5 3 50 2r d r dr dz πθ? ??. 22 5 20 d r dr dz π θ? ?? (4)已知幂级数,则其收敛半径() 2112 2(5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y * =() ()x ax b xe +()x ax b ce ++()x ax b cxe ++ 三、计算题(每题8分,共48分) 1、 求过直线1L :1231 01x y z ---==-且平行于直线2L :21211x y z +-==的平面方程 2、 已知 22 (,)z f xy x y =,求z x ??,z y ?? 3、 设 22{(,)4}D x y x y =+≤,利用极坐标求 2 D x dxdy ?? 4、 求函数 22 (,)(2)x f x y e x y y =++的极值 得分 阅卷人

(完整版)高等数学试题及答案

《高等数学》试题30 考试日期:2004年7月14日 星期三 考试时间:120 分钟 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( ) A )、必要条件 B )、充分条件 C )、充要条件 D )、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( ) A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、 2arctan 1dx dx x x =+? D )、2 11 ()dx C x x -=-+? 5. 下列等式不正确的是( ). A )、 ()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=??????? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=???? ??'? 6. 0 ln(1)lim x x t dt x →+=?( ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( ) A )、 C bx bx b x +-sin cos B ) 、C bx bx b x +-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin

高等数学第一章测试卷

高等数学第一章测试卷(B ) 一、选择题。(每题4分,共20分) 1.假设对任意的∈x R ,都有)()()(x g x f x ≤≤?,且0)]()([lim =-∞→x x g x ?,则)(lim x f x ∞ →( ) A.存在且等于零 B.存在但不一定为零 C.一定不存在 D.不一定存在 2.设函数n n x x x f 211lim )(++=∞→,讨论函数)(x f 的间断点,其结论为( ) A.不存在间断点 B.存在间断点1=x C.存在间断点0=x D. 存在间断点1-=x 3.函数222111)(x x x x x f +--=的无穷间断点的个数为( ) A. 0 B. 1 C. 2 D. 3 4.设函数)(x f 在),(+∞-∞内单调有界,}{n x 为数列,下列命题正确的是( ) A.若}{n x 收敛,则{)(n x f }收敛 B.若}{n x 单调,则{)(n x f }收敛 C.若{)(n x f }收敛,则}{n x 收敛 D.若{)(n x f }单调,则}{n x 收敛 5.设}{},{},{n n n c b a 均为非负数列,且∞===∞ →∞→∞→n n n n n n c b a lim ,1lim ,0lim ,则( ) A. n n b a <对任意n 成立 B. n n c b <对任意n 成立 C. 极限n n n c a ∞→lim 不存在 D. 极限n n n c b ∞ →lim 不存在 二、填空题(每题4分,共20分) 6.设x x x f x f x 2)1(2)(,2-=-+?,则=)(x f ____________。 7.][x 表示取小于等于x 的最大整数,则=??????→x x x 2lim 0__________。 8.若1])1(1[lim 0=--→x x e a x x ,则实数=a ___________。 9.极限=???? ??+-∞→x x b x a x x ))((lim 2 ___________。 10.设)(x f 在0=x 处可导,b f f ='=)0(,0)0(且,若函数?????=≠+=00sin )()(x A x x x a x f x F 在0=x 处连续,则常数=A ___________。

(完整版)高等数学测试题及答案.docx

高等数学测试试题 一、是非题( 3’× 6=18’) 1、 lim (1 x) x e. ( ) x 0 2、函数 f ( x) 在点 x x 0 处连续,则它在该点处必可导 . ( ) 3、函数的极大值一定是它的最大值. ( ) 4、设 G ' x f ( x), 则 G( x) 为 f ( x) 的一个原函数 . ( ) 1 0. ( ) 5、定积分 x cos xd x 1 6. 函数 y x 2 是微分方程 x d y 2 y 0 的解 . ( ) d x 二、选择题( 4’× 5=20’) 7、函数 f ( x) sin 1 是定义域内的( ) x A 、单调函数 B 、有界函数 C 、无界函数 D 、周期函数 8、设 y 1 2x ,则 d y ( ) A 、 2 x d x B 、 2 x ln 2 C 、 2x ln 2 d x D 、( 1+ 2x ln 2) d x 9、设在区间 [ a, b] 上 f ' (x) 0, f " ( x) 0, 则曲线 y f ( x) 在该区间上沿着 x 轴正向( ) A 、上升且为凹弧 B 、上升且为凸弧 C 、下降且为凹弧 D 、下降且为凸弧 10、下列等式正确的是( ) A 、 C 、 f '( x) d x f ( x) f '( x) d x f ( x) C B 、 D 、 f ( x) d x f '( x) f ( x) d x f '( x) C 2 2 2 11、 P cos 2 x d x, Qsin 3x d x, R sin 2 x d x, 则( ) 2 A 、 P Q R B 、 Q P R C 、 P R Q D 、 R Q P 三、选择题( 4’× 5=20’) 12.函数 f ( x) x 2 的间断点为( ) 3 x 3 A 、 3 B 、 4 C 、 5 D 、6 13、设函数 f ( x) 在点 x 0处可导,且 lim h 1 , 则 f ' (0) ( ) h 0 f ( h) f (0) 2

微积分课后题答案习题详解

微积分课后题答案习题 详解 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第二章 习题2-1 1. 试利用本节定义5后面的注(3)证明:若lim n →∞ x n =a ,则对任何自然数k ,有lim n →∞ x n +k =a . 证:由lim n n x a →∞ =,知0ε?>,1N ?,当1n N >时,有 取1N N k =-,有0ε?>,N ?,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞ =. 2. 试利用不等式A B A B -≤-说明:若lim n →∞ x n =a ,则lim n →∞ ∣x n ∣=|a|.考察数列x n =(-1)n ,说明 上述结论反之不成立. 证: 而 n n x a x a -≤- 于是0ε?>,,使当时,有N n N ?> n n x a x a ε-≤-< 即 n x a ε-< 由数列极限的定义得 lim n n x a →∞ = 考察数列 (1)n n x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞ =, 所以前面所证结论反之不成立。 3. 利用夹逼定理证明: (1) lim n →∞ 2 22111(1) (2)n n n ??+++ ?+?? =0; (2) lim n →∞2!n n =0. 证:(1)因为 222 222111 112(1)(2)n n n n n n n n n n ++≤+++ ≤≤=+ 而且 21lim 0n n →∞=, 2lim 0n n →∞=, 所以由夹逼定理,得 22211 1lim 0(1)(2)n n n n →∞?? +++ = ?+? ? . (2)因为22222240!123 1n n n n n < =<-,而且4 lim 0n n →∞=,

同济大学第六版高等数学综合测试题

第一章综合测试题 一、填空题 1 、函数1()arccos(1) f x x =-的定义域为 . 2、设()2ln f x x =,[()]ln(1ln )f g x x =-, 则()g x = . 3、已知1tan ,0,()ln(1) , 0ax x e e x f x x a x +?+-≠?=+??=? 在0x =连续,则a = . 4、若lim 25n n n c n c →∞+??= ?-?? ,则c = . 5 、函数y =的连续区间为 . 二、选择题 1、 设()f x 是奇函数,()g x 是偶函数, 则( )为奇函数. (A )[()]g g x (B )[()]g f x (C )[()]f f x (D )[()]f g x 2、 设)(x f 在(,)-∞+∞内单调有界, {}n x 为数列,则下列命题正确的是( ). (A )若{}n x 收敛,则{()}n f x 收敛 (B )若{}n x 单调,则{()}n f x 收敛 (C )若{()}n f x 收敛,则{}n x 收敛 (D )若{()}n f x 单调,则{}n x 收敛 3、 设21(2)cos ,2,()4 0, 2, x x f x x x ?+≠±?=-??=±? 则()f x ( ). (A )在点2x =,2x =-都连续 (B )在点2x =,2x =-都间断 (C )在点2x =连续,在点2x =-间断 (D )在点2x =间断,在点2x =-连续 4、 设lim 0n n n x y →∞ =,则下列断言正确的是( ). (A )若{}n x 发散,则{}n y 必发散 (B )若{}n x 无界,则{}n y 必有界 (C )若{}n x 有界,则{}n y 必为无穷小 (D )若1n x ?????? 收敛 ,则{}n y 必为无穷小 5、当0x x →时,()x α与()x β都是关于0x x -的m 阶无穷小,()()x x αβ+是关于0x x -的n 阶无

相关文档
相关文档 最新文档