文档库 最新最全的文档下载
当前位置:文档库 › 吸收解吸塔的详细设计和ASPEN塔设计

吸收解吸塔的详细设计和ASPEN塔设计

吸收解吸塔的详细设计和ASPEN塔设计
吸收解吸塔的详细设计和ASPEN塔设计

吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型 (2) 喷淋塔吸收区高度设计(二) 对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。 逆流式吸收塔的烟气速度一般在2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。 湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。 (3)喷淋塔吸收区高度的计算 含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。 首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量 ζ=h C K V Q η0= (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3 η为给定的二氧化硫吸收率,%;本设计方案为95% h 为吸收塔内吸收区高度,m K 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ; K 0=3600u ×273/(273+t) 按照排放标准,要求脱硫效率至少95%。二氧化硫质量浓度应该低于580mg/m 3 (标状态) ζ的单位换算成kg/( m 2.s),可以写成 ζ=3600× h y u t /*273273*4.22641η+ (7) 在喷淋塔操作温度10050752 C ?+=下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=0.650×

化工原理课程设计-填料吸收塔的设计

化工原理课程设计-填料吸收塔的设计

课程设计 题目:填料吸收塔的设计 教学院:化学与材料工程学院 专业:化学工程与工艺(精细化工方向) 学号: 学生姓名: 指导教师: 2012 年 5 月31 日

《化工原理课程设计》任务书 2011~2012 学年第2学期 学生姓名:专业班级:化学工程与工艺(2009) 指导教师:工作部门:化工教研室 一、课程设计题目:填料吸收塔的设计 二、课程设计内容(含技术指标) 1. 工艺条件与数据 煤气中含苯2%(摩尔分数),煤气分子量为19;吸收塔底溶液含苯≥0.15%(质量分数);吸收塔气-液平衡y*=0.125x;解吸塔气-液平衡为y*=3.16x;吸 收回收率≥95%;吸收剂为洗油,分子量260,相对密度0.8;生产能力为每小时 处理含苯煤气2000m3;冷却水进口温度<25℃,出口温度≤50℃。 2. 操作条件 吸收操作条件为:1atm、27℃,解吸操作条件为:1atm、120℃;连续操作;解吸气流为过热水蒸气;经解吸后的液体直接用作吸收剂,正常操作下不再补充 新鲜吸收剂;过程中热效应忽略不计。 3. 设计内容 ①吸收塔、解吸塔填料层的高度计算和设计; ②塔径的计算; ③其他工艺尺寸的计算。 三、进度安排 1.5月14日:分配任务; 2.5月14日-5月20日:查询资料、初步设计; 3.5月21日-5月27日:设计计算,完成报告。 四、基本要求 1. 设计计算书1份:设计说明书是将本设计进行综合介绍和说明。设计说明 书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程 和设备选型作出技术上和经济上的论证和评价。应按设计程序列出计算公式和计 算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。 设计说明书应附有带控制点的工艺流程图。 设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作 条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算; 设计结果概览;附录;参考文献等。 2. 图纸1套:包括工艺流程图(3号图纸)。 教研室主任签名: 年月日

解吸塔及蒸氨塔的改造与计算

解吸塔及蒸氨塔的改造与计算 唐伯国林长青张振欧黄洁 (天津博隆塔器新技术开发有限公司300193)我国目前尿素装置多采用水溶液全循环法生产工艺。在生产过程中会形成一定数量的含NH35%~8%的稀碳铵液,浓度太低不能利用,直接排放既污染环境又损失氨。国家废液排放标准中要求含NH3≤0.07%(质量百分数,下同),随着人们对环保要求的重视,有些地方排放废水中含氨量要求指标更低。利用解吸塔将碳铵液中残余的氨和CO2解吸出来,返回吸收系统,既提高氨的利用率,又可使排放废水达到排污标准。 这样对解吸塔的基本要求是: (1)解吸后的排放废液应尽量少地含氨,降低氨耗,减小污染。 (2)解吸后塔顶的解吸气要返回系统,含水量应尽量少,有利于实现系统水平衡。 近年来,世界能源供应日益紧张,节能降耗已成为主要发展方向,从合成氨尾气中回收有价值的气体并加以综合利用,已成为人们普遍关心的问题。合成尾气主要由两部分气体组成:合成放空气和液氨贮槽弛放气,其组分与生产操作有关。合成氨厂将其中的氨清洗后制成稀氨水,氨水浓度一般在15%,再利用蒸氨塔将稀氨水汽提得到99%以上的浓氨,使氨得到充分回收。同时蒸氨塔塔底排放液也要达到排放标准,不会影响环境。 多年来我公司与各合成氨生产厂协作,完成了多项解吸塔与蒸氨

塔的技改工作。本文将以解吸塔和蒸氨塔的各一个改造实例,介绍它们的模拟计算工作,并对相关的问题提出分析意见。 1解吸塔 某生产厂家原解吸塔为DN800,操作压力为0.35MPa,处理量较小,塔釜液出口含NH3指标为0.08%,不能达到国家的废液排放标准。为了增大处理量并能够达到国家的排放标准,该厂决定新增1台解吸塔,委托我公司进行设计。解吸液组分为:NH36.0%、CO20.99%、尿素0.94%,要求处理量为20~25m3/h、排放废液中含NH3≤0.03%。对该塔进行了详细计算,最终确定设计方案,塔径为 1000、所选用的填料为规整填料。开车后操作稳定,解吸塔塔顶解吸气中含NH3为35%,返回系统,塔底排放废液中含NH3为0.023%,满足设计要求。 1.1工艺流程 (1)较早期的解吸塔工艺流程如图1所示。 图1较早期的碳铵解吸塔工艺流程示意图图2经改进的碳铵解吸塔

CSTS吸收_解吸工艺仿真设计

吸收解吸单元仿真培训系统 操作说明书 北京东方仿真软件技术有限公司 2009年1月

目录 一、工艺流程说明 .................................... 错误!未定义书签。 1、工艺说明 ......................................... 错误!未定义书签。 2、本单元复杂控制方案说明 ........................... 错误!未定义书签。 3、设备一览 ......................................... 错误!未定义书签。 二、吸收解吸单元操作规程 ............................ 错误!未定义书签。 1、开车操作规程 ..................................... 错误!未定义书签。 2、正常操作规程 ..................................... 错误!未定义书签。 3、停车操作规程 ..................................... 错误!未定义书签。 4、仪表及报警一览表 ................................. 错误!未定义书签。 三、事故设置一览 .................................... 错误!未定义书签。 四、仿真界面 ........................................ 错误!未定义书签。附:思考题 .......................................... 错误!未定义书签。

吸收塔的设计

课程设计任务书 1.设计题目:水吸收二氧化硫过程填料吸收塔的设计 矿石焙烧炉送出的气体冷却到25℃后送入填料塔中,用20℃清水洗涤除去其中的SO2。 入塔的炉气流量为2250m3/h,其中进塔SO2的摩尔分数为0.05,要求SO2的吸收率为96%。 吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。 吸收剂的用量为最小量的1.4倍。 2.工艺操作条件: (1) 操作平均压力常压101.325kpa (2) 操作温度t=20℃ (4) 所用填料为D N38聚丙烯阶梯环形填料。 3.设计任务 完成填料吸收塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统工艺流程图和吸收塔工艺条件图,编写设计说明书。

目录 摘要 (1) 1绪论 (2) 1.1吸收技术概况 (2) 1.2吸收过程对设备的要求及设备的发展概况 (2) 1.3吸收在工业生产中的应用 (2) 1.3.1吸收的应用概况 (3) 1.3.2典型吸收过程 (3) 2设计方案 (4) 2.1吸收方法及吸收剂的选择 (4) 2.1.1吸收方法 (4) 2.1.2吸收剂的选择: (4) 2.2吸收工艺的流程 (5) 2.2.1吸收工艺流程的确定 (5) 2.2.2吸收工艺流程图及工艺过程说明 (6) 2.3操作参数的选择 (6) 2.3.1操作温度的选择 (6) 2.3.2操作压力的选择 (6) 2.3.3吸收因子的选择 (7) 2.4吸收塔设备及填料的选择 (8) 2.4.1吸收塔的设备选择 (8) 2.4.2填料的选择 (8) 3吸收塔的工艺计算 (9) 3.1基础物性数据 (9) 3.1.1液相物性数据 (9) 3.1.2气相物性数据 (9) 3.1.3气液平衡数据 (9) 3.2物料衡算 (10) 3.3塔径的计算 (10) 3.3.1塔径的计算 (10) 3.3.2泛点率校核 (11) 3.3.3填料规格校核: (11) 3.3.4液体喷淋密度校核 (11) 3.4填料层高度计算 (11) 3.4.1传质单元高度 H计算 (11) OG

吸收与解吸实验

一、实验目的 12 3 4 二、实验原理 ㈠、吸收实验 根据传质速率方程,在假定Kxa 低浓、难溶等] 条件下推导得出吸收速率方程: Ga=Kxa ·V ·Δx m 则: Kxa=Ga/(V ·Δx m ) 式中:Kxa ——体积传质系数 [kmolCO 2/m 3hr Ga ——填料塔的吸收量 [Kmol CO 2 V ——填料层的体积 [m 3] Δx m ——填料塔的平均推动力 1、Ga 的计算 已知可测出:Vs[m 3/h]、V B [m 3/h](可由色谱直接读出) Ls[Kmol/h]=Vs ×ρ水/M 水 101 1'29]/[ρρρρV M V h Kmol G B B B =?=?= 空气 标定情况:T 0=273+20 P 0=101325 测定情况:T 1=273+t1 P 1=101325+ΔP 因此可计算出L S 、G B 。又由全塔物料衡算:G a =Ls(X 1-X 2)=G B (Y 1-Y 2) 2 2 21 1111y y Y y y Y -= -= 且认为吸收剂自来水中不含CO 2,则X 2=0,则可计算出G a 和X 1 2、Δx m 的计算 根据测出的水温可插值求出亨利常数E[atm],本实验为P=1[atm] 则 m=E/P m y x m y x x x x x x x x x x x x e e e e m 1 1221 112221 2 1 2ln = = -=?-=????-?= ?

㈡、解吸实验 低浓、难溶等] Ga=K Y a ·V 则: K Y a=Ga/(V 式中:K Y a Ga V ΔY m 1、Ga 的计算 已知可测出:y 2 ]/[h Kmol G B 标定情况:T 0 测定情况:T 1因此可计算出L S 、G B 。又由全塔物料衡算:G a =Ls(X 1-X 2)=G B (Y 1-Y 2) 0112 2 21 11=-= -= y y Y y y Y 且认为空气中不含CO 2,则y 2=0;又因为进塔液体中X 1有两种情况,一是直接将吸收后的液体用于解吸,则其浓度即为前吸收计算出来的实际浓度X 1;二是只作解吸实验,可将CO 2用文丘里吸碳器充分溶解在液体中,可近似形成该温度下的饱和浓度,其X 1*可由亨利定律求算出: m m y x 1 *1== 则可计算出G a 和X 2 2、ΔY m 的计算 根据测出的水温可插值求出亨利常数E[atm],本实验为P=1[atm] 则 m=E/P 1 12 21112221 2 1 2ln x m y x m y Y Y Y Y Y Y Y Y Y Y Y e e e e m ?=?=-=?-=????-?= ? 根据 e e Y y y y Y 换算成将-= 1 三、实验装置

脱硫装置吸收塔的设计计算

(一)设计方案的确定 用水吸收S02,为提高传质效率,选用逆流吸收过程。因用水作为吸收剂,且S02不作为产品,故采用纯溶剂。 (二)填料的选择 该系统不属于难分离的系统,操作温度及压力较低,可采用散装填料,系统中有S02,有一定的腐蚀性,故考虑选用塑料鲍尔环,由于系统压降无特殊要求,考虑到不同尺寸鲍尔环的传质性能选用D g38塑料鲍尔填料。 (三)设计步骤 本课程设计从以下几个方面的内容来进行设计 (1)吸收塔的物料衡算; (2)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降; (3)设计液体分布器及辅助设备的选型; (4)绘制有关吸收操作图纸。 (四)基础数据 1、液相的物性数据 对于低浓度的吸收过程,溶液的物性数据可以近似取水的物性数据,由手册查得,20℃时水的有关物性数据如下: 密度 ρ=998.2 kg/m3 L 粘度 μ=0.001 Pa·s=3.6 kg/(m·h) L

表面张力 L σ=73 dyn/cm=940 896 kg/h 2 S02在水中的扩散系数 L D =1.47×10-5 cm 2 /s=5.29×10-6 m 2 /h 2、 气相的物性数据 混合气体的平衡摩尔质量 M =0.04×64.06+0.96×29=30.40 g/mol 混合气体的平均密度 G ρ=101.330.408.31427330??+() =1.222 kg/m 3 混合气体的粘度可以近似取空气的粘度,查手册20℃时空气的粘度为 G μ=1.81×10-5 Pa ·s=0.065 kg/(m ·h) 查手册得S02在空气中的扩散系数为 G D =0.108 cm 2 /s =0.039 m 2 /h 3、 气液相平衡数据 查手册,常压下20℃时: S02在水中的亨利系数 E=3.55×1O 3 kPa 相平衡常数为 m E P = =3.55×1O 3 /101.3=35.04 溶解度系数 L L H EM ρ= =998.2/3.55×1O 3 /18.02=0.0156 kmol/h 4、填料的填料因子及比表面积数据 泛点填料因子 F φ=184 /m

吸收塔的设计1

大庆师范学院 《化工原理》课程设计说明书 设计题目 学生姓名 指导老师 学院 专业班级 完成时间

目录 第一节前言 (6) 1.1 填料塔的主体结构与特点 (6) 1.2 填料塔的设计任务及步骤 (6) 1.3 填料塔设计条件及操作条件 (6) 第二节填料塔主体设计方案的确定 (7) 2.1 装置流程的确定 (7) 2.2 吸收剂的选择 (7) 2.3填料的类型与选择 (7) 2.3.1 填料种类的选择 (7) 2.3.2 填料规格的选择 (7) 2.3.3 填料材质的选择 (8) 2.4 基础物性数据 (8) 2.4.1 液相物性数据 (8) 2.4.2 气相物性数据 (8) 2.4.3 气液相平衡数据 (9) 2.4.4 物料横算 (9) 第三节填料塔工艺尺寸的计算 (10) 3.1 塔径的计算 (10) 3.2 填料层高度的计算及分段 (11) 3.2.1 传质单元数的计算 (11) 3.2.3 填料层的分段 (13) 3.3 填料层压降的计算 (13) 第四节填料塔内件的类型及设计 (14) 4.1 塔内件类型 (14) 4.2 塔内件的设计 (14) 4.2.1 液体分布器设计的基本要求: (14) 4.2.2 液体分布器布液能力的计算 (14) 注:15

1填料塔设计结果一览表 (15) 2 填料塔设计数据一览 (15) 3 参考文献 (17) 4 后记及其他 (17) 附件一:塔设备流程图 (17) 附件二:塔设备设计图 (18)

大庆师范学院本科学生 化工原理课程设计任务书 设计题目苯和氯苯的精馏塔塔设计 系(院)、专业、年级化学化工学院、化学工程与工艺专业、08级化工四班学生姓名学号 指导教师姓名下发日期 任务起止日期:2010 年日6 月21 日至2010 年7 月20

化工原理 第8章 吸收作业 吸收塔的计算

姓名:;学号:;班级: 第8章吸收(吸收塔的计算) 一、填空题: 1. 计算吸收塔的填料层高度,必须运用如下三个方面的知识关联计算:______、______、______。 2. 吸收过程物料衡算时的基本假定是: (1)____________________________。 (2)___________________________。 3. 由于吸收过程气相中的溶质分压总____液相中溶质的平衡分压,所以吸收操作线总是在平衡线的____。增加吸收剂用量,操作线的斜率____,则操作线向____平衡线的方向偏移,吸收过程推动力(y-ye)_____。 4. 在气体流量,气相进出口组成和液相进口组成不变时,若减少吸收剂用量,则传质推动力将____,操作线将___平衡线。 5. 一般吸收塔中常采用逆流操作,其目的是 ____________________________________________________________。 5. 某吸收塔中,物系的平衡线方程为y=2.0x,操作线方程为y=3.5x+0.001,当 y1=0.06,y2=0.0030时,x1=_______,x2=_____________,L/V=______,气相传质单元数 N=_______. OG 6. 某逆流吸收塔,用纯溶剂吸收混合气中易溶组分,设备高为无穷大,入塔Y1=8%(体积),平衡关系Y=2X。试问: ⑴.若液气比(摩尔比,下同)为2.5时,吸收率= ______% ⑵.若液气比为1.5 时,吸收率=________% H将_____,7. 对一定操作条件下的填料吸收塔,如将塔料层增高一些,则塔的 OG N将_____(增加,减少,不变)。 OG 8.用纯溶剂逆流吸收混合气中的溶质,符合亨利定律。当入塔气体浓度上升(属低浓度

吸收解吸

一、实训目的 1.认识吸收解吸设备结构 2.认识吸收解吸装置流程及仪表 3.掌握吸收解吸装置的运行操作技能 4.学会常见异常现象的判别及处理方法 二、吸收与解吸实训装置功能: 1开车前准备和正常开停车实训任务 1.1工艺文件准备 能识记吸收、解吸生产过程工艺文件(能识读吸收岗位的工艺流程图、实训设备示意图、实训设备的平面和立面布置图,能绘制工艺配管简图,能识读仪表联锁图。熟悉吸收塔、解吸塔、填料及附属设备等主要设备的结构和布置)。 1.1.1吸收与解吸基本原理 气体吸收是典型的化工单元操作过程,其原理是根据气体混合物中各组分在选定液体吸收剂中物理溶解度或化学反应活性的不同而实现气体组分分离的传质单元操作。前者称物理吸收,后者称化学吸收。吸收操作所用的液体溶剂称为吸收剂,以S表示;混合气体中,能够显著溶解于吸收剂的组分称为吸收物质或溶质,以A表示;而几乎不被溶解的组分统称为惰性组分或载体,以B表示。吸收操作所得的溶液称为吸收液或溶液,它是溶质A在溶剂S中的溶液;被吸收后排除出的气体称为吸收尾气,其主要成分为惰性气体B,但仍含有少量未被吸收的溶质A。吸收操作在石油化工、天然气化工以及环境工程中有极其广泛的应用,按工程目的可归纳为: ①净化原料气或精制气体产品; ②分离气体混合物以获得需要的目的组分; ③制取气体溶液作为产品或中间产品; ④治理有害气体的污染、保护环境。 与吸收相反的过程,即溶质从液相中分离出来而转移到气相的过程(用惰性气体吹扫溶液或将溶液加热或将其送入减压容器中使溶质放出),称为解吸或提馏。吸收与解吸的区别仅仅是过程中物质传递的方向相反,它们所依据的原理一样。

吸收塔的设计汇编

吸收塔的设计

课程设计任务书 1.设计题目:水吸收二氧化硫过程填料吸收塔的设计 矿石焙烧炉送出的气体冷却到25℃后送入填料塔中,用20℃清水洗涤除去其中的 SO 2。入塔的炉气流量为2250m3/h,其中进塔SO 2 的摩尔分数为0.05,要求SO 2 的吸收率为 96%。吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。吸收剂的用量为最小量的1.4倍。 2.工艺操作条件: (1) 操作平均压力常压101.325kpa (2) 操作温度t=20℃ (4) 所用填料为D N38聚丙烯阶梯环形填料。 3.设计任务 完成填料吸收塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统工艺流程图和吸收塔工艺条件图,编写设计说明书。

目录 课程设计任务书 ........................................................................................................................................................... I 摘要 . (1) 1绪论 (2) 1.1吸收技术概况 (2) 1.2吸收过程对设备的要求及设备的发展概况 (2) 1.3吸收在工业生产中的应用 (3) 1.3.1吸收的应用概况 (3) 1.3.2典型吸收过程 (3) 2设计方案 (4) 2.1吸收方法及吸收剂的选择 (4) 2.1.1吸收方法 (4) 2.1.2吸收剂的选择: (4) 2.2吸收工艺的流程 (5) 2.2.1吸收工艺流程的确定 (5) 3吸收塔的工艺计算 (7) 3.3塔径的计算 (9) 3.3.1塔径的计算 (9) 3.3.2泛点率校核 (9) 3.3.3填料规格校核: (9) 3.3.4液体喷淋密度校核 (9) 3.4填料层高度计算 (10) H计算 (10) 3.4.1传质单元高度OG 3.4.2填料层高度Z的计算: (11) 3.6填料塔附属高度及最终高度计算 (12) 结论 (14) 主要符号说明 (16)

吸收塔化工原理课程设计

化工原理课程设计 -------水吸收二氧化硫过程填料吸收塔设计说明书 学院: 班级: 姓名: 学号: 指导教师: 设计时间:

化工原理课程设计任务书(2) 一、设计题目 水吸收二氧化硫过程填料吸收塔设计 二、设计任务及操作条件 1、设计任务 ①生产能力(入塔炉气流量) 2500 m3/h ②二氧化硫吸收率 96% ③入塔炉气组成(含二氧化硫) (摩尔分率) 2、操作条件 ①入塔炉气温度25℃ ②洗涤除去二氧化硫的清水温度20℃ ③操作压强常压 ④吸收温度基本不变,可近似取为清水的温度 3、填料类型阶梯环填料,填料规格自选 4、厂址齐齐哈尔地区 三、设计内容 1、设计方案的选择及流程说明 2、吸收塔的物料衡算 3、吸收塔工艺尺寸计算 4、填料层压降的计算 5、液体分布器简要设计 6、填料吸收塔装配图(1号图纸) 7、设计评述 8、参考资料

目录 1 绪论 (1) 吸收技术概况 (1) 吸收设备的发展 (1) 2 设计方案的确定 (2) 方案的确定 (2) 流程的确定 (2) 3 填料选择 (2) 4 吸收塔的工艺计算 (2) 基础物性数据 (2) 4.1.1 液相物性数据 (2) 4.1.2 气相物性数据 (2) 4.1.3 气液相平衡数据 (3)

物料衡算 (3) 填料塔的工艺尺寸计算 (4) 4.3.1塔径的计算 (4) 4.3.2传质单元高设计 (7) 4.3.3传质单元数的计算 (7) 4.3.4填料层高度 (9) 填料层压降 (10) 5 填料塔的附属结构 (11) 液体分布器简要置 (11) 液体再分配置 (11) 填料支撑结构 (12) 5.3.1填料支撑结构应满足三个基本条件 (12) 5.3.2较常用的支撑结构 (12)

吸收解吸塔的设计

课程设计 题目: 教学院: 专业: 学号: 学生姓名: 指导教师: 年月日

课程设计任务书 2009 ~ 2010 学年第 2 学期 学生姓名:专业班级: 指导教师:工作部门: 一、课程设计题目 填料吸收塔的设计 二、工艺条件 1.煤气中含苯2%(摩尔分数),煤气分子量为19; 2.生产能力:每小时处理含苯煤气2000m3,连续操作; 3.吸收塔底溶液含苯≥0.15%(质量分数); 4.吸收回收率≥95%; 5.吸收剂为洗油:分子量260,相对密度0.8; 6.吸收操作条件为:1atm、27℃;解吸操作条件为:1atm、120℃; 7.冷却水进口温度<25℃,出口温度≤50℃。 8.吸收塔汽-液平衡y* = 0.125x;解吸塔汽-液平衡为y* = 3.16x; 9.解吸气流为过热水蒸气,经解吸后的液体直接用作吸收剂,正常操作下不再补充新鲜吸收剂过程中热效应忽略不计; 10.年工作日及填料类型:自选。 三、课程设计内容 1.设计方案的选择及流程说明; 2.工艺计算; 3.主要设备工艺尺寸设计; (1)塔径的确定; (2)填料层高度计算; (3)总塔高、总压降及接管尺寸的确定。 4.辅助设备选型与计算。

四、进度安排 1.课程设计准备阶段:收集查阅资料,并借阅相关工程设计用书; 2.设计分析讨论阶段:确定设计思路,正确选用设计参数,树立工程观点,小组分工协作,较好完成设计任务; 3.计算设计阶段:完成物料衡算、流体力学性能验算及主要设备的工艺设计计算; 4. 课程设计说明书编写阶段:整理文字资料计计算数据,用简洁的文字和适当的图表 表达自己的设计思想及设计成果。 五、基本要求 1.格式规范,文字排版正确; 2. 主要设备的工艺设计计算需包含:物料衡算,能量衡量,工艺参数的选定,设备的 结构设计和工艺尺寸的设计计算; 3.工艺流程图:以3号图纸用单线图的形式绘制,标出主体设备与辅助设备的物料方向,物流量、能流量,主要测量点; 4. 填料塔工艺条件图:以2号图纸绘制,图面应包括设备的主要工艺尺寸,技术特性 表和接管表; 5. 按时完成课程设计任务,上交完整的设计说明书一份。 教研室主任签名: 年月日

(完整版)化工原理课程设计(氨气填料吸收塔设计)

化工原理课程设计任务书

目录 一前言 (3) 二设计任务 (4) 三设计条件 (4) 四设计方案 (5) 1.吸收剂的选择 (5) 2.流程图及流程说明 (5) 3.塔填料的选择 (7) 五工艺计算 (11) 1.物料衡算,确定塔顶、塔底的气液流量和组成 (11) 2.塔径的计算 (12) 3. 填料层高度计算 (14) 4. 填料层压降计算 (16) 5. 液体分布装置 (17) 6. 液体再分布装置 (19) 7. 填料支撑装置 (20) 8. 流体进出口装置 (21) 9. 水泵及风机的选型 (22) 六设计一览表 (23) 七对本设计的评述 (23) 八参考文献 (24) 九主要符号说明 (24)

十致谢 (25) 一前言 在石油化工、食品医药及环境保护等领域,塔设备属于使用量大应用面广的重要单元设备。塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中。所以塔设备的研究一直是国内外学者普遍关注的重要课题。 在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。 塔设备按其结构形式基本上可分为两类:板式塔和填料塔。以前在工业生产中,当处理量大时多用板式塔,处理量小时采用填料塔。近年来由于填料塔结构的改进,新型的、高负荷填料的开发,既提高了塔的通过能力和分离效能又保持了压降小、性能稳定等特点。因此,填料塔已经被推广到大型气、液操作中,在某些场合还代替了传统的板式塔。如今,直径几米甚至几十米的大型填料塔在工业上已非罕见。随着对填料塔的研究和开发,性能优良的填料塔必将大量用于工业生产中。 氨是化工生产中极为重要的生产原料,但是其强烈的刺激性气味对于人体健康和大气环境都会造成破坏和污染,氨对接触的皮肤组织都有腐蚀和刺激作用,可以吸收皮肤组织中的水分,使组织蛋白变性,并使组织脂肪皂化,破坏细胞膜结构。氨的溶解度极高,所以主要对动物或人体的上呼吸道有刺激和腐蚀作用,常被吸附在皮肤粘膜和眼结膜上,从而产生刺激和炎症。可麻痹呼吸道纤毛和损害粘膜上皮组织,使病原微生物易于侵入,减弱人体对疾病的抵抗力。氨通常以气体形式吸入人体,氨被吸入肺后容易通过肺泡进入血液,与血红蛋白结合,破坏运氧功能。进入肺泡内的氨,少部分为二氧化碳所中和,余下被吸收至血液,少量的氨可随汗液、尿液或呼吸排出体外。 短期内吸入大量氨气后会出现流泪、咽痛、咳嗽、胸闷、呼吸困难、头晕、呕吐、乏力等。若吸入的氨气过多,导致血液中氨浓度过高,就会通过三叉神经末梢的反射作用而引起心脏的停搏和呼吸停止,危及生命。因此,吸收空气中的氨,防止氨超标具有重要意义。

◆◆吸收塔基础设计计算书20081225

吸收塔基础设计计算书 1.荷载计算 1)风荷载计算 计算公式:w k=βzμsμz w0(荷载规范7.1.1-1) 其中βz=1 由壳体高度H=37.6m查得风载高度系数μz=1.53 吸收塔直径d=13.1m,w0=0.40 KN/m2(B类) 由μz w0d2=105.025和H/d=2.870查荷载规范表7.3.1得风载体型系数μs=0.5故风荷载标准值w k=βzμsμz w0=0.306 KN/m2 所以作用于壳顶的风荷载为P=w k Hd=0.306×37.6×13.1=150.723KN 2)地震荷载的计算 a.吸收塔竖向荷载 G=33000KN;进口补偿器推力分解垂直作用力F=54KN b.计算水平地震影响系数α1 由地质资料,地震基本烈度为7度,地震动峰值加速度0.05g,地震动反应谱特征周期为T1=0.35s。 查表得αmax=0.08,Ⅱ类场地第一组地震分组T g=0.35s 因0.1s<T1=T g=0.35s≤T g,故α1=αmax=0.08 c. 用底部剪力法计算水平地震力和塔底弯矩 计算公式:F Ek=α1(G+F) M1=F Ek h w(19.2.7)

故结构总的水平地震作用标准值F EK=α1(G+F) =0.08×(33000+54) =2644.32KN 总水平地震作用标准值对罐壁底部产生的弯矩M1=2644.32×18.8=49713.216KN〃m 3)吸收塔进口冲击力产生的弯矩:M2=202×17.22=3478.44KN〃m 4)吸收塔出口冲击力产生的弯矩:M3=120×34.95=4194KN〃m 2.荷载组合 作用于基顶荷载的基本组合设计值S为: a.恒载+活载 N=33000+54=33054KN V=202+120=322KN M=3478.44+4194=7672.44KN〃m (恒载和活载无水平力) b. 恒载+活载+风载+地震荷载 N=33000+54=33054KN V=202+120+150.72+2644.32=3117.04KN M=150.72×37.6+49713.216+3478.44+4194=63052.73KN.m 经比较a、b二种结果,选用最不利组合类型为b。 3.确定基础尺寸及埋深 采用砼独立基础,砼强度C25。根据吸收塔塔体的大小初定基础直径为14100mm,高度2500mm。综合地质资料的相关信息及吸收塔荷载值初定基础埋深2000mm。 4.验算地基承载力

Aspen吸收塔的设计

SO2吸收塔的设计计算 矿石焙烧炉送出的气体冷却到25℃后送入填料塔中,用20℃清水洗涤以除去其中的SO2。入塔的炉气流量为2400,其中SO2摩尔分率为0.05,要求SO2的吸收率为95%。吸收塔为常压操作。 试设计该填料吸收塔。 解(1)设计方案的确定 用水吸收SO2属于中等溶解度的吸收过程,为提高传质效率,选用逆流吸收过程。因用水作为吸收剂,且SO2不作为产品,故采用纯溶剂。 (2)填料的选择 对于水吸收SO2的过程,操作过程及操作压力较低,工业上通常选用塑料散装填料。在塑料散装填料中,塑料阶梯环填料的综合性能较好,故此选用聚丙烯阶梯环填料。 (3)工艺参数的计算 步骤1:全局性参数设置。计算类型为“Flowsheet”,选择计量单位制,设置输出格式。 单击“Next”,进入组分输入窗口,假设炉气由空气(AIR)和SO2组成。在“Component ID”中依次输入H2O,AIR,SO2。 步骤2:选择物性方法。选择NRTL方程。 步骤3:画流程图。选用“RadFrac”严格计算模块里面 的“ABSBR1”模型,连接好物料线。结果如图3-1所示。 图3-1 水吸收SO2流程图 步骤4:设置流股信息。按题目要求输入进料物料信息。初始用水量设定为400kmol/h。 步骤5:吸收塔参数的输入。在“Blocks|B1|Setup”栏目,输入吸收塔

参数。吸收塔初始模块参数如表3-1所示。其中塔底气相GASIN由第14块板上方进料,相当于第10块板下方。 Calculation type Equilibrium Number of stages13 Condenser None Reboiler None Valid phases Vapor-Liquid Convergence Standard Feed stage WATER1 GASIN14 Pressure(kPa)Stage 1101.325 表3-1 吸收塔初始参数 至此,在不考虑分离要求的情况下,本流程模拟信息初步设定完毕,运行计算,结果如图3-2所示。此时SO2 吸收率为。 图3-2 初步计算结果 步骤6:分离要求的设定,塔板数固定时,吸收剂用量的求解。 运用“Design Specifications”功能进行计算,在“Blocks|B1|Design Spec”下,建立分离要求“1”。 在“Blocks|B1|Design Spec|1| Specifications”页面,定义分离目标。按题目要求进行设定。结果如图3-3所示。在“Blocks|B1|Design Spec|1|Components”页面,选定“SO2”为目标组分;在“Feed/Product Streams”页面,选择“LOUT”为参考物流。

吸收与解吸设备的操作与控制教学设计.

《化工单元操作》教学设计卡 项目4(分项目3) 吸收与解吸设备的操作与控制 学时数:4学习领域化工单元操作作 教学目标 掌握填料塔的工作原理,掌握填料的结构,熟悉吸收解吸操作方案,熟悉安全操作规程。能够进行吸收设备的开停车操作;能够进行吸收设备的操控和调节;能够进行解吸塔的开停车操作;能够进行解吸塔的操控和调节;能够进行简单的常规维护和检修;能够初步处理常规事故。 教学任务进行吸收解吸设备的冷态开车操作、工艺参数调节和正常停车。 教师知识与能力要求1.能够进行气体吸收的简单计算,并初步确定吸收方案; 2.能够进行吸收剂用量的计算; 3.能够进行实收设备的开停车操作; 4.能够进行吸收设备的操控和调节; 5.能够进行解吸塔的开停车操作; 6.能够进行解吸塔的操控和调节; 7.能够进行简单的常规维护和检修; 8.能够初步处理常规事故。 学生知识与能力准备电工、电子基础知识;化工设备机械基础;安全操作知识。 主要教学材料教材、教学参考书教案 PPT课件

仪器、设备、原料等准备1. 构成吸收解吸系统的所有元素:吸收塔、填料塔;储罐;管子;各类管件、阀件;电子流量计、压力表、温度计;离心泵; 2. 操控台; 3. 多媒体教学设备; 4. 教学课件、软件; 5. 实训资料; 6. 视频教学资料; 7. 网络教学资源; 8. 任务单 步骤教学过程建议教学方法学时分配 1.资讯1)了解教师布置的任务,找出初步 的实现路径; 2)学生利用课余时间,以个人或小 组为单位,查找、收集各种相关资 料进行初步分析与选择,确定初步 的结果,以供小组讨论确定最后的 目标;编写项目实施报告。 小组分工、查资料、 讨论、写报告 2.计划与决策1)各小组制定项目实施报告; 2)教师根据报告情况,给出修改意 见; 3)各组根据教师的意见修改并完成 报告。 学生小组汇报为主, 教师给予适当的引 导、建议 3.实施1)根据实施报告在相应的真实或仿 真装置上实际操作运行; 2)根据实际操作得到的结果与之前 报告中的分析、判断相比较,得到 确定的结论。 教师强调注意事项, 学生自主操作,自我 总结 4.检查与评估1)教师根据学生的实施报告及实际 的操作运行过程进行分析,对本单 元进行总结; 2)对各小组的工作完成情况给出评 价意见。 教师对理论进行归纳 提升,对学生作出评 价

Aspen吸收塔的设计说明

SO 2吸收塔的设计计算 矿石焙烧炉送出的气体冷却到25℃后送入填料塔中,用20℃清水洗涤以除去其中的SO 2。入塔的炉气流量为2400h m /3,其中SO 2摩尔分率为0.05,要求SO 2的吸收率为95%。吸收塔为常压操作。 试设计该填料吸收塔。 解 (1)设计方案的确定 用水吸收SO 2属于中等溶解度的吸收过程,为提高传质效率,选用逆流吸收过程。因用水作为吸收剂,且SO 2不作为产品,故采用纯溶剂。 (2)填料的选择 对于水吸收SO 2的过程,操作过程及操作压力较低,工业上通常选用塑料散装填料。在塑料散装填料中,塑料阶梯环填料的综合性能较好,故此选用聚丙烯阶梯环填料。 (3)工艺参数的计算 步骤1:全局性参数设置。计算类型为“Flowsheet”,选择计量单位制,设置输出格式。 单击“Next”,进入组分输入窗口,假设炉气由空气(AIR )和SO 2组成。在“Component ID”中依次输入H 2O ,AIR ,SO 2。 步骤2:选择物性方法。选择NRTL 方程。 步骤3:画流程图。选用“R adFrac”严格计算模块里面的“ABSBR1”模型,连接好物料线。结果如图3-1所示。 图3-1 水吸收SO 2流程图 步骤4:设置流股信息。按题目要求输入进料物料信息。初始用水量设定为400kmol/h 。 步骤5:吸收塔参数的输入。在“Blocks|B1|Setup”栏目,输入吸收塔参数。吸收塔初始模块参数如表3-1所示。其中塔底气相GASIN 由第14块板上方进料,相当于第10块板下方。 Calculation type Equilibrium Number of stages 13 Condenser None Reboiler None Valid phases Vapor-Liquid Convergence Standard Feed stage WATER 1 GASIN 14 Pressure(kPa) Stage 1 101.325 表3-1 吸收塔初始参数 至此,在不考虑分离要求的情况下,本流程模拟信息初步设定完毕,运行计算,结果如图3-2所示。此时SO 2 吸收率为%52.9660.319/49.308 。

吸收塔的工艺计算..

第3章 吸收塔的工艺计算 3.1基础物性数据 3.1.1液相物性数据 对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,20℃时水的有关物性数据如下: 密度为 3998.2/L km m ρ= 粘度为 001.0=L μs Pa ?=3.6 kg/(m ·h) 表面张力为 272.6/940896/L dyn cm kg h ==σ 查手册得20C 时氨在水中的扩散系数为 921.76110/D m s -=? 3.1.2气相物性数据 混合气体的平均摩尔质量为 0.05170.952928.40/Vm i i M y M kg kmol =∑=?+?= 混合气体的平均密度为 3Vm PM 101.32528.4= 1.161 kg/m 8.314298 Vm RT ρ?==? 25C 时混合气体流量: )/(2.229215 .27315 .29821003h m =? 混合气体的粘度可近似取为空气的粘度,查手册得25C 时空气的黏度为: 518.1100.065/()v pa s kg m h -=??=?μ 由手册查得,25C 时氨在空气中的扩散系数为: 220.236/0.08496/v D cm s m h == 3.1.3气相平衡数据 有手册查得氨气的溶解度系数为

30.725/()H kmol kPa m =? 计算得亨利系数 998.2 76.410.72518.02 L S E kPa HM ρ= = =? 相平衡常数为 76.410.7543101.3E m P === 3.2物料衡算 进塔气相摩尔比为:05263.005 .0105 .01=-= Y 出塔气相摩尔比为:003158.0)94.01(05263.0)1(12=-?=-=A Y Y ? 对于纯溶剂吸收过程,进塔液相组成为:02=X (清水) 惰性气体流量:)/(06.89)05.01(4 .222100 h kmol V =-?= 最小液气比: 7090.007543.0/05263.0003158 .005263.0/)(21212121min =--=--=--=X m Y Y Y X X Y Y V L 取实际液气比为最小液气比的2倍,则可得吸收剂用量为: ) /(287.12606.894180.14180 .17090.02)(2min h kmol L V L V L =?==?== 03876.06584 .113) 003158.005263.0(06.89)(211=-?=-= L Y Y V X V ——单位时间内通过吸收塔的惰性气体量,kmol/s; L ——单位时间内通过吸收塔的溶解剂,kmol/s; Y 1、Y 2——分别为进塔及出塔气体中溶质组分的摩尔比,kmol/kmol; X 1、X 2——分别为进塔及出塔液体中溶质组分的摩尔比,kmol/kmol;

脱硫吸收塔的直径和喷淋塔高度设计

吸收塔的直径和喷淋塔高度设计 脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU=)ln() ()(***2 2*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =×1025.07.04W G -]4[ 82.0W a k L ?=]4[ (2) 其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B) *1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B) k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a ) x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B) G 气相空塔质量流速,kg/(m 2﹒h) W 液相空塔质量流速,kg/(m 2﹒h) y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲) k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa) k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3) 式(2)中?为常数,其数值根据表2[4]

相关文档