文档库 最新最全的文档下载
当前位置:文档库 › 如何检验数据是否服从正态分布

如何检验数据是否服从正态分布

如何检验数据是否服从正态分布
如何检验数据是否服从正态分布

如何检验数据是否服从正态分布

一、图示法

1、P-P图

以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。

2、Q-Q图

以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。

以上两种方法以Q-Q图为佳,效率较高。

3、直方图

判断方法:是否以钟形分布,同时可以选择输出正态性曲线。

4、箱式图

判断方法:观测离群值和中位数。

5、茎叶图

类似与直方图,但实质不同。

二、计算法

1、偏度系数(Skewness)和峰度系数(Kurtosis)

计算公式:

g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U检验。两种检验同时得出U0.05的结论时,才可以认为该组资料服从正态分布。由公式可见,部分文献中所说的“偏度和峰度都接近0……可以认为……近似服从正态分布”并不严谨。

2、非参数检验方法

非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk(W 检验)。

SAS中规定:当样本含量n≤2000时,结果以Shapiro – Wilk(W检验)为准,当样本含量n >2000时,结果以Kolmogorov – Smirnov(D检验)为准。

SPSS中则这样规定:(1)如果指定的是非整数权重,则在加权样本大小位于3和50之间时,计算Shapiro-Wilk统计量。对于无权重或整数权重,在加权样本大小位于3和5000之间时,计算该统计量。由此可见,部分SPSS教材里面关于“Shapiro –Wilk适用于样本量3-50之间的数据”的说法是在是理解片面,误人子弟。(2)单样本Kolmogorov-Smirnov检验可用于检验变量(例如income)是否为正态分布。

对于此两种检验,如果P值大于0.05,表明资料服从正态分布。

三、SPSS操作示例

SPSS中有很多操作可以进行正态检验,在此只介绍最主要和最全面最方便的操作:

1、工具栏--分析—描述性统计—探索性

2、选择要分析的变量,选入因变量框内,然后点选图表,设置输出茎叶图和直方图,选择输出正态性检验图表,注意显示(Display)要选择双项(Both)。

3、Output结果

(1)Descriptives:描述中有峰度系数和偏度系数,根据上述判断标准,数据不符合正态分布。

S k=0,K u=0时,分布呈正态,Sk>0时,分布呈正偏态,Sk<0时,分布呈负偏态,时,Ku>0曲线比较陡峭,Ku<0时曲线比较平坦。由此可判断本数据分布为正偏态(朝左偏),较陡峭。

(2)Tests of Normality:D检验和W检验均显示数据不服从正态分布,当然在此,数据样本量为1000,应以W检验为准。

(3)直方图

直方图验证了上述检验结果。

(4)此外还有茎叶图、P-P图、Q-Q图、箱式图等输出结果,不再赘述。结果同样验证数据不符合正态分布。

如何检验数据是否服从正态分布

如何检验数据是否服从正态分布呢 法一:在SPSS中,正态分布的检验方法有:计算偏度系数(Skewness)和峰度系数(Kurtosis)、Kolmogorov-Smirnov检验(KS检验或D检验)、Shapiro-Wilk(SW检验或W检验)、直方图、QQ图等。 下面本葱通过具体例子给大家介绍如何用SPSS检验数据是否为正态分布: 首先需要有一组数据,如:74 75 78 77 80 80 90 76 62 79,按下述格式输入SPSS 中。 依此点击分析-描述统计-描述 就会看到下述图片,点击绘制,我们可以选择输出图片(茎叶图、直方图),如果想要输出图片,在输出应该选择两者都。选择确定,就可以看到结果了。 输出结果如何解读?

此表,是对数据的统计描述,我们可以关注下最下方的偏度(Skewness)和峰度(Kurtosis)。 偏度SK越趋近0,数据越服从正态分布,众数=中位数=平均数;SK>0,为正偏态或左偏,众数<中位数<平均数;SK<0,为负偏态或右偏,众数>中位数>平均数。 峰度KG越趋近3,数据越服从正态分布;KG>3,峰度尖锐;KG<3,峰度扁平。(或exceess_KG=KG-3,exceess_KG越趋近0,数据越服从正态分布) 但是仅根据偏度和峰度还不足以判断数据是否服从正态分布,需要做进一步的检验。

上表是生成的KS检验(D检验)和SW检验(W检验)的检验结果,此处我们关注的显著性是Sig.即P值。当P>0.05时,可以认为数据是呈正态分布的。数据分析师培训由上表可以看出,KS检验和SW检验显著性均>0.05。 由于样本数量为10,小样本时关注SW检验的结果,所以此处显著性0.145,可以认为数据是正态分布的。 在输出结果部分还可以生成直方图、茎叶图、QQ图等,可以根据图形做出观测,若要检验是否服从正态分布还是需要用算法进行检测。 法二: 结果可见: One-Sample Kolmogorov-Smirnov Test KW胸水 N79

总结正态性检验的几种方法

总结正态性检验的几种方法 1.1 正态性检验方法 1)偏度系数 样本的偏度系数(记为1g )的计算公式为 ()233133 1(1)(2)(1)(2)n i i n n g x x n n s n n s μ==-=----∑, 其中s 为标准差,3μ为样本的3阶中心距,即()331 1n i i x x n μ==-∑。 偏度系数是刻画数据的对称性指标,关于均值对称的数据其偏度系数为0,右侧更分散的数据偏度系数为正,左侧更分散的数据偏度系数为负。 (2)峰度系数 样本的峰度系数(记为2g ),计算公式为 ()2424 122 44(1)(1)3(1)(2)(3)(2)(3)(1)(1)3(1)(2)(3)(2)(3)n i i n n n g x x n n n s n n n n n n n n s n n μ=+-=-------+-=------∑, 其中s 为标准差,4μ为样本的3阶中心距,即()441 1n i i x x n μ==-∑。 当数据的总体分布为正态分布时,峰度系数近似为0,;当分布为正态分布的尾部更分散时,峰度系数为正;否则为负。当峰度系数为正时,两侧极端数据较多,当峰度系数为负时,两侧极端数据较少。 (3)QQ 图 QQ 图可以帮助我们鉴别样本的分布是否近似于某种类型的分布。现假设总体为正态分布()2 ,N μσ,对于样本12,,,n x x x L ,其顺序统计量是(1)(2)(),,,n x x x L 。设()x Φ为标准正 态分布()0,1N 的分布函数,1 ()x -Φ是反函数,对应正态分布的QQ 图是由以下的点 1()0.375,,1,2,,0.25i i x i n n -??-??Φ= ? ?+???? L , 构成的散点图,若样本数据近似为正态分布,在QQ 图上这些点近似地在直线上 y x σμ=+, 附近,此直线的斜率是标准差σ,截距式均值,μ,所以利用正态QQ 图可以做直观的正态性检验。若正态QQ 图上的点近似地在一条直线上,可以认为样本的数据来自正态分布总

数据不服从正态分布,怎么进行方差分析

方差分析基于三个基本假设,只有符合以下三个假设条件才能进行方差分析 (1)效应的可加性 (2)方差是齐性的 (3)分布的正态性 是否服从正态分布可通过SPSS进行正态性检验,以A、B、C三个自交系发芽实验为例。

如果样本量较小(<50),并且对正态Q-Q图或其它图形方法的结果诠释不够有把握,推荐采用Shapiro-Wilk检验如上图所示。每组自变量都会有一个Shapiro-Wilk正态性检验结果。如果数据符合正态分布,显著性水平应该大于0.05。Shapiro-Wilk检验的无效假设是数据服从正态分布,备择假设是数据不服从正态分布。因此,如果拒绝无效假设(p<0.05),表示数据不服从正态分布。本例中每组正态性检验P值均大于0.05。如果样本量大于50,推荐使用正态Q-Q图等图形方法进行正态判断,因为当样本量较大时,Shapiro-Wilk检验会把稍稍偏离正态分布的数据也标记为有统计学差异,即数据不服从正态分布。Q-Q图中点离线越近,数据越服从正态分布。 若不服从正态分布可进行数据转换,对转换后呈正态分布的数据进行单因素方差分析。当各组因变量的分布形状相同时,正态转换才有可能成功。数据是比例或以百分率表示的,其分布趋向于二项分布,方差分析时应作反正弦转换,用下式把它们转化成一个相应的角度:如发芽率、昆虫死亡率,发病率等。数据转化方式如下图所示:

直接进行分析:由于单因方差分析对于偏离正态分布比较稳健,尤其是在各组样本量相等或近似相等的情况下,而且非正态分布实质上并不影响犯I型错误的概率。因此可以直接进行检验,但是结果中仍需报告对正态分布的偏离。检验结果的比较:将转换后和未转换的原始数据分别进行单因素方差分析,如果二者结论相同,则再对未转换的原始数据进行分析。

如何检验数据是否服从正态分布

如何检验数据是否服从正态分布 一、图示法 1、P-P图 以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。 2、Q-Q图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。 以上两种方法以Q-Q图为佳,效率较高。 3、直方图 判断方法:是否以钟形分布,同时可以选择输出正态性曲线。 4、箱式图 判断方法:观测离群值和中位数。 5、茎叶图 类似与直方图,但实质不同。 二、计算法 1、偏度系数(Skewness)和峰度系数(Kurtosis) 计算公式: g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U检验。两种检验同时得出U0.05的结论时,才可以认为该组资料服从正态分布。由公式可见,部分文献中所说的“偏度和峰度都接近0……可以认为……近似服从正态分布”并不严谨。 2、非参数检验方法 非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk(W 检验)。 SAS中规定:当样本含量n≤2000时,结果以Shapiro – Wilk(W检验)为准,当样本含量n >2000时,结果以Kolmogorov – Smirnov(D检验)为准。 SPSS中则这样规定:(1)如果指定的是非整数权重,则在加权样本大小位于3和50之间时,计算Shapiro-Wilk统计量。对于无权重或整数权重,在加权样本大小位于3和5000之间时,计算该统计量。由此可见,部分SPSS教材里面关于“Shapiro –Wilk适用于样本量3-50之间的数据”的说法是在是理解片面,误人子弟。(2)单样本Kolmogorov-Smirnov检验可用于检验变量(例如income)是否为正态分布。 对于此两种检验,如果P值大于0.05,表明资料服从正态分布。 三、SPSS操作示例

正态性检验的几种方法

正态性检验的几种方法 一、引言 正态分布是自然界中一种最常见的也是最重要的分布。因此,人们在实际使用统计分析时,总是乐于正态假定,但该假定是否成立,牵涉到正态性检验。目前,正态性检验主要有三类方法:一是计算综合统计量,如动差法、Shapiro-Wilk 法(W 检验)、D ’Agostino 法(D 检验)、Shapiro-Francia 法(W ’检验)。二是正态分布的拟合优度检验,如2χ检验、对数似然比检验、Kolmogorov-Smirov 检验。三是图示法(正态概率图Normal Probability plot),如分位数图(Quantile Quantile plot ,简称QQ 图)、百分位数(Percent Percent plot ,简称PP 图)和稳定化概率图(Stablized Probability plot ,简称SP 图)等。而本文从不同角度出发介绍正态性检验的几种常见的方法,并且就各种方法作了优劣比较,还进行了应用。 二、正态分布 2.1 正态分布的概念 定义1若随机变量X 的密度函数为 ()()()+∞∞-∈= -- ,,21 2 2 2x e x f x σμπ σ 其中μ和σ为参数,且()0,,>+∞∞-∈σμ 则称X 服从参数为μ和σ的正态分布,记为()2,~σμN X 。 另我们称1,0==σμ的正态分布为标准正态分布,记为()1,0~N X ,标准正态分布随机变量的密度函数和分布函数分别用()x ?和()x Φ表示。 引理1 若()2,~σμN X ,()x F 为X 的分布函数,则()?? ? ??-Φ=σμx x F 由引理可知,任何正态分布都可以通过标准正态分布表示。 2.2 正态分布的数字特征

正态分布讲解(含标准表)

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线 b 单位 O 频率/组距 a 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 2 2 () 2 , 1 (),(,) 2 x x e x μ σ μσ ? πσ - - =∈-∞+∞ 式中的实数μ、)0 (> σ σ是参数,分别表示总体的平均数与标准差,, ()x μσ ? 的图象为正态分布密度曲线,简称正态曲线. 讲解新课:

一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2 σ μN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响

SPSS统计分析1:正态分布检验.

正态分布检验 一、正态检验的必要性[1] 当对样本是否服从正态分布存在疑虑时,应先进行正态检验;如果有充分的理论依据或根据以往积累的信息可以确认总体服从正态分布时,不必进行正态检验。 当然,在正态分布存疑的情况下,也就不能采用基于正态分布前提的参数检验方 法,而应采用非参数检验。 二、图示法 1、P-P图 以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。 2、Q-Q图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。 Q-Q图为佳,效率较高。 以上两种方法以 3、直方图 判断方法:是否以钟形分布,同时可以选择输出正态性曲线。 4、箱式图 判断方法:观测离群值和中位数。 5、茎叶图 类似与直方图,但实质不同。 三、计算法 1、峰度(Kurtosis)和偏度(Skewness) (1)概念解释 峰度是描述总体中所有取值分布形态陡缓程度的统计量。这个统计量需要与正态分布相比较,峰度为0表示该总体数据分布与正态分布的陡缓程度相同;峰度大于0表示该总体数据分布与正态分布相比较为陡峭,为尖顶峰;峰度小于0表示该总体数据分布与正态分布相比

较为平坦,为平顶峰。峰度的绝对值数值越大表示其分布形态的陡缓程度与正态分布的差异 程度越大。 峰度的具体计算公式为: 注:SD就是标准差σ。峰度原始定义不减3,在SPSS中为分析方便减3后与0作比较。 偏度与峰度类似,它也是描述数据分布形态的统计量,其描述的是某总体取值分布的对称性。这个统计量同样需要与正态分布相比较,偏度为0表示其数据分布形态与正态分布的偏斜程度相同;偏度大于0表示其数据分布形态与正态分布相比为正偏或右偏,即有一条长尾巴拖在右边,数据右端有较多的极端值;偏度小于0表示其数据分布形态与正态分布相比为负偏或左偏,即有一条长尾拖在左边,数据左端有较多的极端值。偏度的绝对值数值越大表示其分布形态的偏斜程度越大。 偏度的具体计算公式为: 各种正态分布,尽管μ和σ可以分别取不同的值,但偏度都等于0,峰度都等于3,它们的密度函数曲线的形状都是一样的[1]。(SPSS中峰度减3与0比较 (2)适用条件 样本含量应大于200。 (3)检验方法 计算得到的峰度、偏度根据正态分布的值3、0(SPSS中为0、0)来直观判断是 否接近。 应对二者分别进行U检验来定量描述显著性,方法如下[2]:峰度U检验:|峰度-3| / 峰度标准差 <= U0.05 = 1.96(SPSS中将3替换为0)偏度U检验:|偏度-0| / 偏度标准差 <= U0.05 = 1.96 如果上述都成立,则可认为在0.05显著水平符合正态分布(下例偏度可判断不符合。

正态分布检验

Shapiro-Wilk 检验含义:Shapiro —Wilk 检验法是S.S.Shapiro 与 M.B.Wilk提出用顺序统计量W来检验分布的正态性,对研究的对象总体先提出假设认为总体服从正态分布,再将样本量为n的样本按大小顺序排列编秩,然后由确定的显著性水平a ,以及根据样本量为n时所对应的系数a i,根据特定公式计算出检验统计量W.最后查特定的正态性W检 验临界值表,比较它们的大小,满足条件则接受假设认为总体服从正态分布,否则拒绝假设,认为总体不服从正态分布? W检验全称Shapiro-Wilk检验,是一种基于相关性的算法。计算可得到一个相关系数,它越接近1就越表明数据和正态分布拟合得越好。 w检验是检验样本容量8< n < 50,样本是否符合正态分布的一种方法。 计算式为: E-Lj k -訓 其检验步骤如下: ①将数据按数值大小重新排列,使x1W,接受正态性假设。

正态分布是许多检验的肚础,比如F检验,t检验,卡方检验等在总体不是正太分布是没有任何盘义。因此,対一个样本是否来口正态总、体的检验是至关巫要的。当然,我们无法证明某个数据的确来口正态总体,但如果使用效率高的检验还?无法否认总体是正太的检验,我『]就没有理山否认那些和正太分布有关的检验有意义,下而我就对正态性检验方法进行简单的归纳和比较。 一.图示法 1.P-P 图 以样本的累计频率作为横坐标,以按照正态分布计算的相应累计概率作为纵坐标,以样本值表现为直角坐标系的散点。如果数据服从 F态分布,则样本点应鬧绕第一象限的对角线分布。 2.Q-Q 图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为直角坐标系的散点。如果数据服从正太分布,则样本点应围绕第一彖限的对角线分布。 以上两种方法以Q-Q图为佳,效率较高。 3.直方图 判断方法:是否以钟型分布,同时可以选择输出正态性曲线。 4.箱线图 判断方法;观察矩形位置利中位数,若矩形位于中间位置且中位数位于矩形的中间位迓,则分布较为对称,否则是偏态分布。 5.茎叶图

spss_大数据正态分布检验方法及意义要点

spss 数据正态分布检验方法及意义判读 要观察某一属性的一组数据是否符合正态分布,可以有两种方法(目前我知道这两种,并且这两种方法只是直观观察,不是定量的正态分布检验): 1:在spss里的基本统计分析功能里的频数统计功能里有对某个变量各个观测值的频数直方图中可以选择绘制正态曲线。具体如下:Analyze-----Descriptive S tatistics-----Frequencies,打开频数统计对话框,在Statistics里可以选择获得各种描述性的统计量,如:均值、方差、分位数、峰度、标准差等各种描述性统计量。在Charts里可以选择显示的图形类型,其中Histograms选项为柱状图也就是我们说的直方图,同时可以选择是否绘制该组数据的正态曲线(With nor ma curve),这样我们可以直观观察该组数据是否大致符合正态分布。如下图: 从上图中可以看出,该组数据基本符合正态分布。 2:正态分布的Q-Q图:在spss里的基本统计分析功能里的探索性分析里面可以通过观察数据的q-q图来判断数据是否服从正态分布。 具体步骤如下:Analyze-----Descriptive Statistics-----Explore打开对话框,选择Plots选项,选择Normality plots with tests选项,可以绘制该组数据的q-q 图。图的横坐标为改变量的观测值,纵坐标为分位数。若该组数据服从正态分布,则图中的点应该靠近图中直线。 纵坐标为分位数,是根据分布函数公式F(x)=i/n+1得出的.i为把一组数从小到大排序后第i个数据的位置,n为样本容量。若该数组服从正态分布则其q-q图应该与理论的q-q图(也就是图中的直线)基本符合。对于理论的标准正态分布,其q-q图为y=x直线。非标准正态分布的斜率为样本标准差,截距为样本均值。 如下图:

检验正态分布中什么是1 sigma原则,2sigma原则,3sigma原则

sigma原则:数值分布在(baiμ-σ,μ+σ)中的概率为du0.6526; 2sigma原则zhi:数值分布在(μ-2σ,μ+2σ)中的概率dao为0.9544; 3sigma原则:数值分布在(μ-3σ,μ+3σ)中的概率为0.9974; 其中在正态分布中σ代表标准差,μ代表均值x=μ即为图像的对称轴。 由于“小概率事件”和假设检验的基本思想“小概率事件”通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的。 由此可见X落在(μ-3σ,μ+3σ)以外的概率小于千分之三,在实际问题中常认为相应的事件是不会发生的,基本上可以把区间(μ-3σ,μ+3σ)看作是随机变量X实际可能的取值区间,这称之为正态分布的“3σ”原则。 扩展资料: 曲线应用 综述 1、估计频数分布一个服从正态分布的变量只要知道其均数与标准差就可根据公式即可估计任意取值范围内频数比例。 2、制定参考值范围 (1)正态分布法适用于服从正态(或近似正态)分布指标以及可以通过转换后服从正态分布的指标。 (2)百分位数法常用于偏态分布的指标。表3-1中两种方法的单双侧界值都应熟练掌握。

3、质量控制:为了控制实验中的测量(或实验)误差,常以作为上、下警戒值,以作为上、下控制值。这样做的依据是:正常情况下测量(或实验)误差服从正态分布。 4、正态分布是许多统计方法的理论基础。检验、方差分析、相关和回归分析等多种统计方法均要求分析的指标服从正态分布。许多统计方法虽然不要求分析指标服从正态分布,但相应的统计量在大样本时近似正态分布,因而大样本时这些统计推断方法也是以正态分布为理论基础的。 sigma原则:数值分布在(μ—σbai,μ+σ)中的概率du为0.6526 2sigma原则zhi:数值分dao布在(μ—2σ,μ+2σ)中的概率为0.9544 3sigma原则:数值分布在(μ—3σ,μ+3σ)中的概率为0.9974 其中在正态分布中σ代表标准差,μ代表均值x=μ即为图像的对称轴。 3σ准则又称为拉依达准则,它是先假设一组检测数据只含有随机误差,对其进行计算处理得到标准偏差,按一定概率确定一个区间,认为凡超过这个区间的误差,就不属于随机误差而是粗大误差,含有该误差的数据应予以剔除。且3σ适用于有较多组数据的时候。 可以认为,数值分布几乎全部集中在(μ-3σ,μ+3σ)区间内,超出这个范围的可能性仅占不到0.3%.

SPSS检验正态分布

下面我们来看一组数据,并检验“期初平均分” 数据是否呈正态分布(此数据已在SPSS里输入好) 在SPSS里执行“分析—>描述统计—>频数统计表”(菜单见下图,英文版的可以找到相应位置),然后弹出左边的对话框,变量选择左边的“期初平均分”,再点下面的“图表”按钮,弹出图中右边的对话框,选择“直方图”,并选中“包括正态曲线”

设置完后点“确定”,就后会出来一系列结果,包括2个表格和一个图,我们先来看看最下面的图,见下图, 上图中横坐标为期初平均分,纵坐标为分数出现的频数。从图中可以看出根据直方图绘出的曲线是很像正态分布曲线。如何证明这些数据符合正态分布呢,光看曲线还不够,还需要检验:

检验方法一:看偏度系数和峰度系数 我们把SPSS结果最上面的一个表格拿出来看看(见下图): 偏度系数Skewness=-0.333;峰度系数Kurtosis=0.886;两个系数都小于1,可认为近似于正态分布。 检验方法二:单个样本K-S检验 在SPSS里执行“分析—>非参数检验—>单个样本K-S检验,弹出对话框,检验变量选择“期初平均分”,检验分布选择“正态分布”,然后点“确定”。 检验结果为:

从结果可以看出,K-S检验中,Z值为0.493,P值(sig 2-tailed)=0.968>0.05,因此数据呈近似正态分布 检验方法三:Q-Q图检验 在SPSS里执行“图表—>Q-Q图”,弹出对话框,见下图: 变量选择“期初平均分”,检验分布选择“正态”,其他选择默认,然后点“确定”,最后可以得到Q-Q图检验结果,结果很多,我们只需要看最后一个图,见下图。

正态性检验的一般方法汇总

正态性检验的一般方法 姓名:蓝何忠 学号:1101200203 班号:1012201 正态性检验的一般方法 【摘要】:正态分布是自然界中一种最常见的也是最重要的一种分布.因此,人们在实际使用统计分析时,总是乐于正态假定,但该假定是否成立,牵涉到正态性检验.在一般性的概率统计教科书中,只是把这个

问题放在一般性的分布拟合下作简短处理,而这种万精油式的检验方法,对正态性检验不具有特效.鉴于此,该文从不同角度出发介绍正态性检验的几种常见的方法,并且就各种方法作了优劣比较, 【引言】一般实际获得的数据,其分布往往未知。在数据分析中,经常要判断一组数据的分布是否来自某一特定的分布,比如对于连续性分布,常判断数据是否来自正态分布,而对于离散分布来说,常判断是否来自二项分布.泊松分布,或判断实际观测与期望数是否一致,然后才运用相应的统计方法进行分析。 几种正态性检验方法的比较。 2?一、拟合优度检验: (1)当总体分布未知,由样本检验总体分布是否与某一理论分布一致。 H0: 总体X的分布列为p{X=}=,i=1,2,…… H1:总体 X. 的分布不为 构造统计量 为真时H0发生的理为为样本中发生的实际频数,其中论频数。2)检验原理(2?意味着对于,=,观测频数与期望频数完全一致,若=0,则即完全拟合。 2?观察频数与期望频数越接近,则值越小。 2?当原假设为真时,有大数定理,与不应有较大差异,即值应较小。

2?若值过大,则怀疑原假设。 2?拒绝域为R={d} ,判断统计量是否落入拒绝域,得出结论。 二、Kolmogorov-Smirnov正态性检验: Kolmogorov-Smirnov检验法是检验单一样本是否来自某一特定它的 检验方法是以样本数比如检验一组数据是否为正态分布。分布。. 据的累积频数分布与特定理论分布比较,若两者间的差距很小,则推论该样本取自某特定分布族。即对于假设检验问题: H0:样本所来自的总体分布服从某特定分布 H1:样本所来自的总体分布不服从某特定分布 统计原理:Fo(x)表示分布的分布函数,Fn(x)表示一组随机样本的累计概率函数。 #}n1,2,,x{x?,i?i?)F(x n n : x)差距的最大值,定义如下式Fn为Fo(x)与(D设 D=max|Fn(x)-Fo(x)| P{Dn>d}=a. a,对于给定的位健康男性在未进食前的血糖浓度如表所示,试测验这组35例如: =6的正态分布,标准差数据是否来自均值μ=80σ87 77 92 68 80 78 84 77 81 80 80 77 92 86 76 80 81 75 77 72 81 90 84 86 80 68 77 87 76 77 78 92 75 80 78 n=35 检验过程如下:健康成人男性血糖浓度服从正态分布 H0:假设健康成人男性血糖浓度不服从正态分布 H1: 计算过程如表:

均匀分布地和地分布服从正态分布

数学应用软件大型实验实验报告 实验序号:日期:2012 年 6 月 20日 班级信计100班姓名学号201020310216 中心极限定理的理论证明 实验 名称 问题背景描述: 图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布. 如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理. 图一: 中心极限定律揭示了正态分布的意义:在实际问题中,常常需要考虑许多随机因素所产生的总的影响,如测量误差、炮弹射击的落点与目标的偏差等。同

时许多观察表明,若一个随机变量是由大量相关独立的随机因素的综合影响所构成的,而其中每一个随机因素的单独作用是微小的,则这样的随机变量通常服从或近似服从正态分布。这种现象就是中心极限定理产生的客观背景。 实验目的: 中心极限定理的核心内容是只要n 足够大,便可以把独立同分布的随机变量和的标准化当作正态变量,所以可以利用它解决很多实际问题,同时这还有助于解释为什么很多自然群体的经验频率呈现出钟形曲线这一值得注意的事实,从而正态分布成为概率论中最重要的分布,这就奠定了中心极限定理的首要功绩。本次试验就是用具体的实验来进行验证大量随机变量的和近似服从正态分布,用100个(0,1)上的独立均匀分布的和的分布与它近似的正态分布进行比较,作图来验证中心极限定理。又再1000个数来比较两个图来验证中心极限定理。 实验原理与数学模型: 实验原理: 中心极限定律,其内容是:当N 足够大的时候,N 个具有方差和均值的独立随机变量的代数和服从正态分布率。也就是说不管这N 个随机变量原来服从什么分布率,只要他们具有方差和均值,他们的代数和总是近似服从正态分布,N 越大,近似程度越高。 中心定理之一是林德贝格-勒维中心极限定理,它的内容是: 设{}n ξ是一列独立同分布的随机变量,记 n S =1n k k ξ=∑,1E a ξ=,2 1Var ξσ=, 则中心极限定理成立,即 (0,1)d n S na N n σ-??→ 所以由定理的条件知,它也被称为同分布的中心极限定理,同时可知德莫佛-拉普拉斯中心极限定理是它的一种特殊情形。 中心极限定理的第二个就是德莫佛-拉普拉斯中心极限定理是历史上最早得 到的中心极限问题的研究成果。它的内容是: 设()x Φ为标准正态分布的分布函数,对x -∞<<+∞,有 lim ()()n n S np P x x npq →+∞-≤=Φ

如何检验数据是否服从正态分布

一、图示法 1、P-P图 以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。 2、Q-Q图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。 以上两种方法以Q-Q图为佳,效率较高。 3、直方图 判断方法:是否以钟形分布,同时可以选择输出正态性曲线。 4、箱式图 判断方法:观测离群值和中位数。 5、茎叶图 类似与直方图,但实质不同。 二、计算法 1、偏度系数(Skewness)和峰度系数(Kurtosis) 计算公式: g 1表示偏度,g 2 表示峰度,通过计算g1和g2及其标准误σ g1 及σ g2 然后作U 检验。两种检验同时得出U<=,即p>的结论时,才可以认为该组资料服从正态分布。由公式可见,部分文献中所说的“偏度和峰度都接近0……可以认为……近似服从正态分布”并不严谨。 2、非参数检验方法

非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk (W检验)。 SAS中规定:当样本含量n≤2000时,结果以Shapiro – Wilk(W检验)为准,当样本含量n >2000时,结果以Kolmogorov – Smirnov(D检验)为准。 SPSS中则这样规定:(1)如果指定的是非整数权重,则在加权样本大小位于3和50之间时,计算Shapiro-Wilk统计量。对于无权重或整数权重,在加权样本大小位于3 和 5000 之间时,计算该统计量。由此可见,部分SPSS教材里面关于“Shapiro – Wilk适用于样本量3-50之间的数据”的说法是在是理解片面,误人子弟。(2)单样本Kolmogorov-Smirnov检验可用于检验变量(例如income)是否为正态分布。 对于此两种检验,如果P值大于,表明资料服从正态分布。 三、SPSS操作示例 SPSS中有很多操作可以进行正态检验,在此只介绍最主要和最全面最方便的操作: 1、工具栏--分析—描述性统计—探索性 2、选择要分析的变量,选入因变量框内,然后点选图表,设置输出茎叶图和直方图,选择输出正态性检验图表,注意显示(Display)要选择双项(Both)。 3、Output结果 (1)Descriptives:描述中有峰度系数和偏度系数,根据上述判断标准,数据不符合正态分布。 S k =0,K u =0时,分布呈正态,Sk>0时,分布呈正偏态,Sk<0时,分布呈负偏 态,时,Ku>0曲线比较陡峭,Ku<0时曲线比较平坦。由此可判断本数据分布为正偏态(朝左偏),较陡峭。 (2)Tests of Normality:D检验和W检验均显示数据不服从正态分布,当然在此,数据样本量为1000,应以W检验为准。

条件概率与正态分布

编号 115 二项分布及其应用、条件概率与正态分布(学案) 审核人签字:_____ 领导签字:___________ 【学习目标】:1、记忆条件概率与正态分布的概念,了解正态分布曲线的特点及其所表示的意义; 2、会准确判断概型,理解n次独立重复实验的模型,并能解决一些实际问题. 【知识梳理】: 1、互相独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,即 (|)(),(|)()P B A P B P A B P A ==,这样的两个事件叫做相互独立事件。 2、如果两个事件A 与B 相互独立,那么事件A 与B , A 与 B ,A 与B 也都是 。 3、两个相互独立事件A 、B 同时发生的概率为()P A B ?= ,此公式可以推广到n 个相互独立事件的情形:12()____________.n P A A A ?? ?= 4、条件概率:一般地,设A 、B 是两个事件,且()0P A >,称() (|)() P AB P B A P A = 为在事件A 发生的条件 下事件B 发生的条件概率。条件概率具有以下性质: 5、函数,()______________x μσ?= 的图象称为正态密度曲线,简称正态曲线。 6、对于任何实数a b <,随机变量X 满足()____________,P a X b <≤≈则称X 的分布为正态分布,正 态分布完全由参数 确定。因此正态分布常记作 ,如果X 服从正态分布,则记为 。 7、正态分布的特点:(1)曲线位于x 轴上方,与x 轴不相交,曲线与x 轴之间所围成的平面图形的面积为1; (2)曲线是单峰的,它关于直线 对称; (3)曲线在x μ=处达到峰值 ; (4)当μ一定时,曲线的形状由σ确定,σ越大,曲线 ,表示总体的分布越 ; σ越小,曲线 ,表示总体的分布越 。 8、在实际应用中,通常认为服从正态分布2 (,)N μσ的随机变量X 只取(3,3)a a μμ-+之间的值,并简称 为3δ原则。 一自我检测 1.设ξ是服从二项分布B (n ,p )的随机变量,又E (ξ)=15,D (ξ)=45 4 ,则n 与p 的值为( ) A .60,34 B .60,14 C .50,34 D .50,1 4 2.设随机变量X ~N (1,52 ),且P (X ≤0)=P (X >a -2),则实数a 的值为( ) A. 4 B. 6 C. 8 D. 10 3..某校约有1000人参加摸底考试,其数学考试成绩ξ~N (90,a 2 )(a >0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的3 5,则此次数学考试成绩不低 于110分的学生人数约为( ) A. 200 B. 300 C. 400 D. 600 4、掷两枚骰子,当至少有一枚5点或6点出现时,就说这次试验成功,则在30次试验中成功次数X 的期望是 5.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班所占的概率为__________. 6.抛掷红、黄两枚骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是_________. 7..设某动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的这种动物,则它活到25岁的概率是__________. 8.如图,EFGH 是以O 为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则 (1)P (A )=__________; (2)P (B |A )=_________ 9、设在一次数学考试中,某班学生的分数服从X ~N(110,202 ),且知满分150分,这个班的学生共54人。求这个班在这次数学考试中及格(不小于90分)的人数和130分以上的人数。 。

判断正态性的几种方法总结

判断正态性的几种方法总结 展开全文 数据服从正态分布是很多分析方法的前提条件,在进行方差分析、回归分析等分析前,首先要对数据的正态性进行分析,确保方法选择正确。如果不满足正态性特质,则需要考虑使用其他方法或对数据进行处理。 检测数据正态性的方法有很多种,以下为几种常见方法:图示法、统计检验法、描述法等。 01. 正态图正态分布图可直观地展示数据分布情况,并结合正态曲线判断数据是否符合正态分布。

操作方法:SPSSAU→可视化→正态图 分析时,选择【正态图】分析方法,拖拽分析项到右侧分析框内,点击“开始正态图分析”即可得到结果。 正态图 若数据基本符合正态分布,则会呈现出中间高、两侧低、左右基本对称的“钟形”分布曲线。 若数据为定类数据或数据量较少,一般很难呈现出标准的正态分布,此时建议只要图形呈现出“钟形”也可接受数据服从正态分布。 若数据分布完全偏离正态,则说明数据不符合正态分布。02. P-P图/Q-Q图P-P图和Q-Q图,都是通过散点与正态分布的预测直线法重合程度以说明数据是否服从正态分布。 P-P图是将实际数据累积比例作为X轴,将对应正态分布累积比例作为Y轴,作散点图,反映实际累积概率与理论累积概率的符合程度。 Q-Q图将实际数据作为X轴,将对应正态分布分位数作为Y 轴,作散点图,反映变量的实际分布与理论分布的符合程度。如数据服从正态分布,则散点分布应近似呈现为一条对角直线。反之则说明数据非正态。P-P图和Q-Q图的功能一致,

使用时没有区别。 03. 正态性检验利用统计图分析正态性,往往是依靠分析者的主观判断进行。因而容易产生结果偏差。因此需要结合其他方法,对数据的正态性指标进行统计描述。 正态性检验分析定量数据是否具有正态分布特质。 操作步骤:选择【正态性检验】分析方法,拖拽分析项到右侧分析框内,点击“开始正态性检验”即可得到结果。 分析结果 如果样本量大于50,则应该使用Kolmogorov-Smirnov检验结果,反之则使用Shapro-Wilk检验的结果。 上图中,样本量为300,因而选择K-S检验。P值=0.149>0.05,说明数据服从正态分布。 04. 描述法描述法即通过描述数据偏度和峰度系数检验数据的正态性。 偏度和峰度可通过描述性分析得到,也可在正态性检验中直接查看。 理论上讲,标准正态分布偏度和峰度均为0,但现实中数据无法满足标准正态分布,因而如果峰度绝对值小于10并且偏度绝对值小于3,则说明数据虽然不是绝对正态,但基本

正态分布讲解含标准表

正态分布讲解含标准表 Revised by Jack on December 14,2020

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 式中的实数 μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσ ?的图象为正态分布密度曲 线,简称正态曲线. 讲解新课: 一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作 ),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ和标准差σ唯一决定的分布 3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称 正态曲线的作图,书 中没有做要求,教师也不必补上 讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面 均值与标准差对图形的影响,引导学生观察总结正态曲线的性质 4.正态曲线的性质: (1)曲线在x 轴的上方,与x (2)曲线关于直线x=μ对称 (3)当x=μ时,曲线位于最高点

资料的正态性检验汇总

资料的正态性检验汇总 作者:huaxie 来源:【整理】发布时间:2009-4-22 浏览: 567 访问者: 58.23.96.242 摘要提示:本文汇总了通常在对资料进行正态性检验时遇到的问题,比如Kolmogorov-Smirnov检验(简称K-S检验),还是Shapiro-Wilk检验,SPSS里面用哪个过程,SAS程 序等。 SPSS和SAS常用正态检验方法 如何在spss中进行正态分布检验 一、图示法 1、P-P图 以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。 2、Q-Q图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。 以上两种方法以Q-Q图为佳,效率较高。 3、直方图 判断方法:是否以钟形分布,同时可以选择输出正态性曲线。 4、箱式图 判断方法:观测离群值和中位数。 5、茎叶图 类似与直方图,但实质不同。 二、计算法 1、偏度系数(Skewness)和峰度系数(Kurtosis) 计算公式: g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U检验。两种检验同时得出U0.05的结论时,才可以认为该组资料服从正态分布。由公式可见,部分文献中所说的“偏度和峰度都接近0……可以认为……近似服从正态分布”并不严谨。 2、非参数检验方法 非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk(W检验)。 SAS中规定:当样本含量n≤2000时,结果以Shapiro – Wilk(W检验)为准,当样本含量n >2000时,结果以Kolmogorov – Smirnov(D检验)为准。 SPSS中则这样规定:(1)如果指定的是非整数权重,则在加权样本大小位于3和50之间时,计算Shapiro-Wilk统计量。对于无权重或整数权重,在加权样本大小位于3和5000之间时,计算该统计量。由此可见,部分SPSS教材里面关于“Shapiro –Wilk适用于样本量

相关文档