文档库 最新最全的文档下载
当前位置:文档库 › 《勾股定理》勾股定理的逆定理(含答案)精讲

《勾股定理》勾股定理的逆定理(含答案)精讲

《勾股定理》勾股定理的逆定理(含答案)精讲
《勾股定理》勾股定理的逆定理(含答案)精讲

第3章《勾股定理》: 3.2 勾股定理的逆定理

填空题

1.你听说过亡羊补牢的故事吗如图,为了防止羊的再次丢次,小明爸爸要在高0.9m,宽 1.2m的栅栏门的相对角顶点间加一个加固木板,这条木板需 m 长.

(第1题)(第2题)(第3题)2.如图,将一根长24cm的筷子,底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长度为h cm,则h的最小值是 cm.

3.如图所示的一只玻璃杯,最高为8cm,将一根筷子插入其中,杯外最长4厘米,最短2厘米,那么这只玻璃杯的内径是厘米.

4.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯米.

(第4题)(第5题)(第6题)

5.如图所示的圆柱体中底面圆的半径是错误!,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.(结果保留根号)

6.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC 的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是 m.(结果不取近似值)7.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑板爱好者从A点滑到E点,则他滑行的最短距离约为 m.(边缘部分的厚度忽略不计,结果保留整数)

(第7题)(第8题)(第9题)

8.如图,有一圆柱,其高为12cm,底面半径为3cm,在圆柱下底面A点处有一只蚂蚁,它想得到上底面B处的食物,则蚂蚁经过的最短距离为 cm.(π取3)

9.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.

10.如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A,B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是米.

(第10题)(第11题)(第12题)11.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是米.(精确到0.01米)12.如图是一个三级台阶,它的每一级的长、宽、高分别为7寸、5寸和3寸,A 和B是这个台阶的两个相对端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度是寸.

13.观察下列一组数:

列举:3、4、5,猜想:32=4+5;

列举:5、12、13,猜想:52=12+13;

列举:7、24、25,猜想:72=24+25;

列举:13、b、c,猜想:132=b+c;

请你分析上述数据的规律,结合相关知识求得b= ,c= .

解答题

14.如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.

(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;

(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.

15.如图,点O是等边△ABC内一点.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠AOB=110°.

(1)求证:△COD是等边三角形;

(2)当α=150°时,试判断△AOD的形状,并说明理由;

(3)探究:当α为多少度时,△AOD是等腰三角形.

16.先请阅读下列题目和解答过程:

“已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4①

∴c2(a2-b2)=(a2+b2)(a2-b2)②

∴c2=a2+b2③

∴△ABC是直角三角形.”④

请解答下列问题:

(1)上列解答过程,从第几步到第几步出现错误?

(2)简要分析出现错误的原因;

(3)写出正确的解答过程.

17.如图,四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠BAD=90°,

(1)试说明:BD⊥BC;

(2)计算四边形ABCD的面积.

18.如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于F.

(1)求证:△ACE≌△BCD;

(2)直线AE与BD互相垂直吗?请证明你的结论.

19.请阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.

解:

∵a2c2-b2c2=a4-b4,A

∴c2(a2-b2)=(a2+b2)(a2-b2),B

∴c2=a2+b2,C

∴△ABC为直角三角形.D

问:

(1)在上述解题过程中,从哪一步开始出现错误:;

(2)错误的原因是;

(3)本题正确的结论是:.

20.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.

21.张老师在一次“探究性学习”课中,设计了如下数表:

n 2 3 4 5 …

a 22-1 32-1 42-1 52-1 …

b 4 6 8 10 …

c 22+1 32+1 42+1 52+1 …

(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:

a= ,b= ,c= ;

(2)猜想:以a,b,c为边的三角形是否为直角三角形并证明你的猜想.

22.如图,在△ABC中,CD⊥AB于D,AC=4,BC=3,DB=9

5

(1)求CD,AD的值;

(2)判断△ABC的形状,并说明理由.

23.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图3备用)

24.如图,小明用一块有一个锐角为30°的直角三角板测量树高,已知小明离树的距离为3米,DE为1.68米,那么这棵树大约有多高?(精确到0.1米, 3 ≈1.732).

25.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?

26.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=错误!m.求点B到地面的垂直距离BC.

27.如图(1)所示,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE位置上,如图所示,测得BD=0.5米,求梯子顶端A下落了多少米?

28.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB 于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?

29.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km 的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.

(1)A城是否受到这次台风的影响?为什么?

(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?

30.如下图,在四边形ABCD中,∠B=90°,AB=8,BC=6,CD=24,AD=26,求四边形ABCD的面积.

答案:

填空题

1.故答案为:1.5m.

考点:勾股定理的应用.

专题:应用题.

分析:用勾股定理,两直角边的平方和等于斜边的平方进行解答.

解答:解:由图可知这条木板的长为错误!=错误!=1.5m.

点评:本题较简单,只要熟知勾股定理即可.

2.故答案为:11cm.

考点:勾股定理的应用.

专题:应用题.

分析:筷子如图中所放的方式时,露在杯子外面的长度最小,在杯中的筷子与圆柱形水杯的底面直径和高构成了直角三角形,由勾股定理可求出筷子在水杯中的长度,筷子总长度减去杯子里面的长度即露在外面的长度.

解答:解:设杯子底面直径为a,高为b,筷子在杯中的长度为c,根据勾股定理,得:c2=a2+b2,故:c=错误!=错误!=13cm,h=24-13=11cm.

点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.

3.故答案为:6厘米.

考点:勾股定理的应用.

分析:根据最长4cm,可得筷子长为12cm.那么可得AC长,那么利用勾股定理可得内径.

解答:解:根据条件可得筷子长为12厘米.

如图AC=10厘米,BC=错误!=错误!=6厘米.

点评:主要考查学生对解直角三角形的应用的掌握情况.

4.故答案为:2cm.

考点:勾股定理的应用.

专题:应用题.

分析:根据题意,将梯子下滑的问题转化为直角三角形的问题解答.

解答:解:在直角三角形AOB中,根据勾股定理,得:

OB=6m,

根据题意,得:OB′=6+2=8m.

又∵梯子的长度不变,

在Rt△A′OB′中,根据勾股定理,得:OA′=6m.

则AA′=8-6=2m.

点评:熟练运用勾股定理,注意梯子的长度不变.

5.故答案为:2 2 .

考点:平面展开-最短路径问题.

专题:压轴题.

分析:先将图形展开,再根据两点之间线段最短可知.

解答:

解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.

∵AB=π?错误!=2,CB=2.

∴AC=AB2+BC2 =8 =2 2 ,

故答案为:2 2 .

点评:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.

6.故答案为:3 5 m.

考点:平面展开-最短路径问题.

专题:压轴题;转化思想.

分析:求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P在展开图中的距离,就是这只小猫经过的最短距离.

解答:解:圆锥的底面周长是6π,则6π=nπ×6 180

∴n=180°,即圆锥侧面展开图的圆心角是180度.

则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.

∴在圆锥侧面展开图中BP=32+62 =45 =3 5 m.

故小猫经过的最短距离是3 5 m.

故答案是:3 5 m.

点评:正确判断小猫经过的路线,把曲面的问题转化为平面的问题是解题的关键.7.故答案为:22m.

考点:平面展开-最短路径问题.

专题:压轴题.

分析:要求滑行的最短距离,需将该U型池的侧面展开,进而根据“两点之间线段最短”得出结果.

解答:解:其侧面展开图如图:

AD=πR=4π,AB=CD=20m.DE=CD-CE=20-2=18m,

在Rt△ADE中,AE=AD2+DE2 =错误!≈21.9≈22m.

故他滑行的最短距离约为22m.

点评:U型池的侧面展开图是一个矩形,此矩形的宽等于半径为4m的半圆的周长,矩形的长等于AB=CD=20m.本题就是把U型池的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.

8.故答案为:15cm.

考点:平面展开-最短路径问题.

专题:压轴题.

分析:本题应先把圆柱展开即得其平面展开图,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πr,蚂蚁经过的最短距离为连接A,B 的线段长,由勾股定理求得AB的长.

解答:解:圆柱展开图为长方形,

则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πrcm,蚂蚁经过的最短距离为连接A,B的线段长,

由勾股定理得AB=122+(3π)2 =错误!=错误!=15cm.

故蚂蚁经过的最短距离为15cm.(π取3)

点评:解答本题的关键是计算出圆柱展开后所得长方形长和宽的值,然后用勾股定理计算即可.

9.故答案为:10.

考点:平面展开-最短路径问题.

分析:根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.

解答:解:将点A和点B所在的两个面展开,

则矩形的长和宽分别为6和8,

故矩形对角线长AB=62+82 =10,

即蚂蚁所行的最短路线长是10.

点评:本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.

10.故答案为:2.5.

考点:平面展开-最短路径问题;勾股定理.

分析:先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.

解答:

解:三级台阶平面展开图为长方形,长为2,宽为(0.2+0.3)×3,

则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.

可设蚂蚁沿台阶面爬行到B点最短路程为x,

由勾股定理得:x2=22+[(0.2+0.3)×3]2=2.52,

解得x=2.5.

点评:本题用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.

11.故答案为:2.60.

考点:平面展开-最短路径问题.

分析:解答此题要将木块展开,然后根据两点之间线段最短解答.

解答:

解:由题意可知,将木块展开,

相当于是AB+2个正方形的宽,

∴长为2+0.2×2=2.4米;宽为1米.

于是最短路径为: 2.42+12 =2.60米.

故答案为:2.60.

点评:本题主要考查两点之间线段最短,有一定的难度,是中档题.

12.故答案为:25寸.

考点:平面展开-最短路径问题.

分析:根据两点之间线段最短,运用勾股定理解答.

解答:解:将台阶展开矩形,线段AB 恰好是直角三角形的斜边,两直角边长分别为24寸,7寸,

由勾股定理得AB=72+242 =25寸. 点评:本题结合实际,运用两点之间线段最短等知识来解答问题.

13.故答案为:b=84,c=85;

考点:勾股数. 专题:规律型.

分析:认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数

的平方是第二、三个数的和;最后得出第n 组数为(2n+1),((2n +1)2?12

), ((2n +1)2+12 ),由此规律解决问题.32-12

解答:在32=4+5中,4=32-12 ,5=32+12

; 在52=12+13中,12=52-12 ,13=52+12

; …

则在13、b 、c 中,b=132-12 =84,c=132+12

=85; 点评:认真观察各式的特点,总结规律是解题的关键. 解答题

14.考点:等边三角形的性质;全等三角形的判定与性质;勾股定理的逆定理. 专题:探究型.

分析:根据等边三角形的性质利用SAS 判定△ABP≌△CBQ,从而得到AP=CQ ;设PA=3a ,PB=4a ,PC=5a ,由已知可判定△PBQ 为正三角形从而可得到PQ=4a ,再根据勾股定理判定△PQC 是直角三角形.

解答:解:(1)猜想:AP=CQ ,

证明:∵∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,

∴∠ABP=∠QBC.

又AB=BC ,BP=BQ ,

∴△ABP≌△CBQ,

∴AP=CQ;

(2)由PA:PB:PC=3:4:5,

可设PA=3a,PB=4a,PC=5a,

连接PQ,

在△PBQ中

由于PB=BQ=4a,且∠PBQ=60°,

∴△PBQ为正三角形.

∴PQ=4a.

于是在△PQC中

∵PQ2+QC2=16a2+9a2=25a2=PC2

∴△PQC是直角三角形.

点评:此题考查学生对等边三角形的性质,直角三角形的判定及全等三角形的判定方法的综合运用.

15.考点:等边三角形的判定;全等三角形的判定与性质;等腰三角形的判定;勾股定理的逆定理.

专题:证明题;压轴题;探究型

分析:此题有一定的开放性,要找到变化中的不变量才能有效解决问题.

解答:(1)证明:∵CO=CD,∠OCD=60°,

∴△COD是等边三角形;(3分)

(2)解:当α=150°,即∠BOC=150°时,△AOD是直角三角形.(5分)

∵△BOC≌△ADC,

∴∠ADC=∠BOC=150°,

又∵△COD是等边三角形,

∴∠ODC=60°,

∴∠ADO=90°,

即△AOD是直角三角形;(7分)

(3)解:①要使AO=AD,需∠AOD=∠ADO.

∵∠AOD=360°-∠AOB-∠COD-α=360°-110°-60°-α=190°-α,∠ADO=α-60°,

∴190°-α=α-60°

∴α=125°;

②要使OA=OD,需∠OAD=∠ADO.

∵∠AOD=190°-α,∠ADO=α-60°,

∵∠OAD=180°-(∠AOD+∠ADO)=50°,

∴α-60°=50°

∴α=110°;

③要使OD=AD,需∠OAD=∠AOD.

∵190°-α=50°

∴α=140°.

综上所述:当α的度数为125°,或110°,或140°时,△AOD是等腰三角形.(12分)

说明:第(3)小题考生答对1种得(2分),答对2种得(4分).

点评:本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.

16.考点:勾股定理;等腰三角形的判定;勾股定理的逆定理.

专题:阅读型.

分析:从公式入手,式子的左边提取公因式,式子的右边符合平方差公式,并分解,两边同一个不为零的数,从而得到勾股定理.

解答:解:(1)从第②步到第③步出错(写成第“2”或“二”等数字都不扣分;另外直接写“第③步”

或“到第③步”都算正确),(2分)

(2)等号两边不能同除a2-b2,因为它有可能为零.(4分)

(3)(从头或直接从第③步写解答过程都行),

∵a2c2-b2c2=a4-b4,

∴c2(a2-b2)=(a2+b2)(a2-b2),

移项得:c2(a2-b2)-(a2+b2)(a2-b2)=0,

得(a2-b2)(c2-a2-b2)=0,(5分)

∴a2=b2或c2=a2+b2(6分)

∴△ABC是直角三角形或等腰三角形.(7分)

点评:正确理解勾股定理来验证直角三角形,从公式的角度入手,得出结论从而验证.

17.考点:勾股定理;勾股定理的逆定理.

分析:(1)先根据勾股定理求出BD的长度,然后根据勾股定理的逆定理,即可证明BD⊥BC;(2)根据两个直角三角形的面积即可求解.

解答:解:(1)∵AD=3,AB=4,∠BAD=90°,

∴BD=5.

又BC=12,CD=13,

∴BD2+BC2=CD2.

∴BD⊥BC.

(2)四边形ABCD的面积=△ABD的面积+△BCD的面积=6+30=36.

点评:综合运用了勾股定理及其逆定理,是基础知识比较简单.

18.考点:勾股定理的逆定理;直角三角形全等的判定.

专题:证明题.

分析:(1)根据SAS 判定△ACE≌△BCD,从而得到∠EAC=∠DBC,根据角之间的关系可证得AF⊥BD.

(2)互相垂直,只要证明∠AFD=90°,从而转化为证明∠EAC+∠CDB=90即可

解答:

(1)证明:∵△ACB 和△ECD 都是等腰直角三角形,

∴AC=BC,CE=CD ,∠ACE=∠BCD=90°,

在△ACE 和△BCD,

?

????∠AC =BC

∠ACE =∠BCD CE =CD ∴△ACE≌△BCD(SAS );

(2)解:直线AE 与BD 互相垂直,理由为:

证明:∵△ACE≌△BCD,

∴∠EAC=∠DBC,

又∵∠DBC+∠CDB=90°,

∴∠EAC+∠CDB=90°,

∴∠AFD=90°,

∴AF⊥BD,

即直线AE 与BD 互相垂直.

点评:此题主要考查学生对全等三角形的判定及直角三角形的判定的掌握情况.

19.故答案为:(1)第C 步 (2)等式两边同时除以a 2-b 2 (3)直角三角形或等腰三角形

考点:勾股定理的逆定理.

专题:阅读型.

分析:通过给出的条件化简变形,找出三角形三边的关系,然后再判断三角形的形状. 解答:解:(1)C ;

(2)方程两边同除以(a 2-b 2),因为(a 2-b 2)的值有可能是0;

(3)∵c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2)

∴c 2=a 2+b 2或a 2-b 2=0

∵a 2-b 2=0

∴a+b=0或a-b=0

∵a+b≠0

∴c 2=a 2+b 2或a-b=0

∴c 2=a 2+b 2或a=b

∴该三角形是直角三角形或等腰三角形.

点评:本题考查了因式分解和公式变形等内容,变形的目的就是找出三角形三边的关系再判定三角形的形状.

20.考点:勾股定理;勾股定理的逆定理.

分析:如图,连接BD.由勾股定理求得BD的长度;然后根据勾股定理的逆定理判定△BDC是直角三角形,则四边形ABCD的面积=直角△ABD的面积+直角△BDC 的面积.

解答:

解:∵在△ABD中,AB⊥AD,AB=3,AD=4,

∴BD=AB2+AD2 =32+42 =5.

在△BDC中,CD=12,BC=13,BD=5.

∵122+52=132,即CD2+BD2=BC2,

∴△BDC是直角三角形,且∠BDC=90°,

∴S四边形A B C D=S△A B D+S△B D C=1

2

AB?AD+

1

2

BD?CD

1

2

×3×4+

1

2

×5×12=36,

即四边形ABCD的面积是36.

点评:本题考查了勾股定理、勾股定理的逆定理.注意:勾股定理应用的前提条件是在直角三角形中.

21.故答案填:n2-1,2n,n2+1;

考点:勾股定理的逆定理;列代数式.

专题:应用题;压轴题.

分析:(1)结合表中的数据,观察a,b,c与n之间的关系,可直接写出答案;(2)分别求出a2+b2,c2,比较即可.

解答:解:(1)由题意有:n2-1,2n,n2+1;

(2)猜想为:以a,b,c为边的三角形是直角三角形.

证明:∵a=n2-1,b=2n;c=n2+1

∴a2+b2=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2

而c2=(n2+1)2

∴根据勾股定理的逆定理可知以a,b,c为边的三角形是直角三角形.

点评:本题需仔细观察表中的数据,找出规律,利用勾股定理的逆定理即可解决问题.

22.考点:勾股定理的逆定理.

分析:利用勾股定理求出CD和AD则可,再运用勾股定理的逆定理判定△ABC是直角三角形.

解答:解:(1)∵CD⊥AB且CB=3,BD=9

5

,故△CDB为直角三角形,

∴在Rt△CDB中,CD=CB2?BD2 =32?(9

5)

2 =

12

5

在Rt△CAD中,AD=AC2?CD2 =42?(12

5)

2 =

16

5

(2)△ABC为直角三角形.

理由:∵AD=16

5

,BD=

9

5

,∴AB=AD+BD=

16

5

+

9

5

=5,

∴AC2+BC2=42+32=25=52=AB2,

∴根据勾股定理的逆定理,△ABC为直角三角形.

点评:本题考查了勾股定理和它的逆定理,题目比较典型,是一个好题目.

23.故答案为:32m或(20+4 5 )m或80

3

m.

考点:勾股定理的应用;等腰三角形的性质.

专题:分类讨论.

分析:根据题意画出图形,构造出等腰三角形,根据等腰三角形及直角三角形的性质利用勾股定理解答.

解答:解:在Rt△ABC中,∠ACB=90°,AC=8,BC=6

由勾股定理有:AB=10,应分以下三种情况:

①如图1,当AB=AD=10时,

∵AC⊥BD,

∴CD=CB=6m,

∴△ABD的周长=10+10+2×6=32m.

②如图2,当AB=BD=10时,

∵BC=6m,

∴CD=10-6=4m,

∴AD=4 5 m,

∴△ABD的周长=10+10+4 5 =(20+4 5 )m.

③如图3,当AB为底时,设AD=BD=x,则CD=x-6,由勾股定理得:AD=82+(x?6)2 =x

解得,x=25

3

∴△ABD的周长为:AD+BD+AB=80

3

m.

点评:本题考查的是勾股定理在实际生活中的运用,在解答此题时要注意分三种情况讨论,不要漏解.

24.考点:勾股定理的应用.

分析:因为∠CAD=30°,则AC=2CD,再利用勾股定理求得CD的长,再加上DE 的长就求出了树的高度.

解答:解:在Rt△ACD中,∠CAD=30°,AD=3,

设CD=x,则AC=2x,由AD2+CD2=AC2,

得,32+x2=4x2,x= 3 =1.732,

所以大树高1.732+1.68≈3.4(米).

点评:此题主要考查了学生利用勾股定理解实际问题的能力.

25.考点:勾股定理的应用.

分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.

解答:解:如图,

设大树高为AB=10m,

小树高为CD=4m,

过C点作CE⊥AB于E,则EBDC是矩形,

连接AC,

∴EB=4m,EC=8m,AE=AB-EB=10-4=6m,

在Rt△AEC中,AC=AE2+EC2 =错误!=10m,

故小鸟至少飞行10m.

点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.

26.考点:勾股定理的应用.

分析:在Rt△ADE中,运用勾股定理可求出梯子的总长度,在Rt△ABC中,根据已知条件再次运用勾股定理可求出BC的长.

解答:解:在Rt△DAE中,

∵∠DAE=45°,

∴∠ADE=∠DAE=45°,AE=DE=8 ,

∴AD 2=AE 2+DE 2=36m(8 )2+(8 )2=16,

∴AD=4,即梯子的总长为4米.

∴AB=AD=4.

在Rt△ABC 中,∵∠BAC=60°,

∴∠ABC=30°,

∴AC=12

AB=2, ∴BC 2=AB 2-AC 2=42-22=12, ∴BC=12 =2 3 m ;

∴点B 到地面的垂直距离BC=2 3 m .

点评:本题考查了勾股定理的应用,如何从实际问题中整理出直角三角形并正确运用勾股定理是解决此类题目的关键.

27.考点:勾股定理的应用.

分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC 和CE 的长即可.

解答:解:在Rt△ACB 中,AC 2=AB 2-BC 2=2.52-1.52=4,

∴AC=2,

∵BD=0.5,

∴CD=2.

在Rt△ECD 中,EC 2=ED 2-CD 2=2.52-22=2.25,

∴EC=1.5,

∴AE=AC -EC=2-1.5=0.5. 答:梯子顶端下滑了0.5米.

点评:注意此题中梯子的长度是不变的.熟练运用勾股定理.

28.考点:勾股定理的应用.

分析:根据使得C ,D 两村到E 站的距离相等,需要证明DE=CE ,再根据△DAE≌△EBC,得出AE=BC=10km ; 解答:解:∵使得C ,D 两村到E 站的距离相等.

∴DE=CE,

∵DA⊥AB 于A ,CB⊥AB 于B ,

∴∠A=∠B=90°,

∴AE 2+AD 2=DE 2,BE 2+BC 2=EC 2,

∴AE 2+AD 2=BE 2+BC 2,

设AE=x ,则BE=AB-AE=(25-x ),

∵DA=15km,CB=10km ,

∴x 2+152=(25-x )2+102,

解得:x=10,

∴AE=10km,

∴收购站E应建在离A点10km处.

点评:本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.

29.考点:勾股定理的应用.

专题:应用题.

分析:(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若AC>200则A城不受影响,否则受影响;

(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,

在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.

解答:解:(1)由A点向BF作垂线,垂足为C,

在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,

因为160<200,所以A城要受台风影响;

(2)设BF上点D,DA=200千米,则还有一点G,有

AG=200千米.

因为DA=AG,所以△ADG是等腰三角形,

因为AC⊥BF,所以AC是BF的垂直平分线,CD=GC,

在Rt△ADC中,DA=200千米,AC=160千米,

由勾股定理得,CD=DA2?AC2 =2002?1602 =120千米,

则DG=2DC=240千米,

遭受台风影响的时间是:t=240÷40=6(小时).

点评:此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.

30.考点:勾股定理的应用.

分析:连接AC,根据已知条件运用勾股定理逆定理可证△ABC和△ACD为直角三角形,然后代入三角形面积公式将两直角三角形的面积求出来,两者面积相加即为四边形ABCD的面积.

3.2 勾股定理的逆定理板书设计及课后作业-最新学习文档

3.2 勾股定理的逆定理板书设计及课后作业 (1)△ABC的两边AB=5,AC=12,则BC=13.( ) (2)在△ABC中,若a=6,b=8,则c=10.( ) (3)由于0.3,0.4,0.5不是勾股数,故以0.3,0.4,0.5为边长的三角形不是直角三角形.( ) (4)由于以0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3是勾股数.( ) 2.已知三角形的三边长分别为5 cm,12 cm,13 cm,则这个三角形是_______. 3.三条线段分别长m.n,p,且满足m2-n2=p2,以这三条线段为边组成的三角形为_______.4.在△ABC中,a=9,b=40,c=41,那么△ABC是( ). A.锐角三角形B.直角三角形 C.钝角三角形’D.等腰三角形 5.分别以下列四组数为一个三角形的边长:①6,8,10;②5,12,13;③8,15,17;④4,5,6,其中能构成直角三角形的有( ). A.4组B.3组 C.2组D.1组 6.如图,在由单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是( ). A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF 7.判断由线段a,b,c组成的三角形是不是直角三角形: (1)a=7,b=24,c=25; (2)a=1.5,b=2,c=2.5; 8.如图,在△DEF中,DE=17 cm,EF=30 cm,边EF上的中线DG=8 cm,试判断△DEF 是否为等腰三角形,并说明理由. 9.如图,CD⊥AB,垂足为D,如果AD=2,DC=3,BD=4.5,那么∠ACB是直角吗?试说明理由. 10.如图是一块地的平面图,其中AD=4 m,CD=3 m,AB=13 m,BC=12 m,∠ADC =90°,求这块地的面积. 11.如图,在四边形ABCD中,AB=1,BC=2,CD=2,AD=3,且AB⊥BC.证明:AC ⊥CD. 第 1 页

勾股定理逆定理(2)教案

17.2 勾股定理的逆定理(2)教案 一、教学目标 1.灵活应用勾股定理及逆定理解决实际问题。 2.进一步加深性质定理与判定定理之间关系的认识。 二、重点、难点 1.重点:灵活应用勾股定理及逆定理解决实际问题。 2.难点:灵活应用勾股定理及逆定理解决实际问题。 三、例题的意图分析 例1(P33例2)让学生养成利用勾股定理的逆定理解决实际问题的意识。 例2(补充)培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。 四、课堂引入 创设情境:在军事和航海上经常要确定方向和位置,从而使用一 些数学知识和数学方法。 五、例习题分析 例1(P33例2) 分析:⑴了解方位角,及方位名词; ⑵依题意画出图形; ⑶依题意可得PR=12×1.5=18,PQ=16×1.5=24,QR=30; ⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°; ⑸∠PRS=∠QPR-∠QPS=45°。 小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。 练习: 1.请完成以下未完成的勾股数: (1)8、15、_______;(2)10、26、_____. 2.△ABC中,a2+b2=25,a2-b2=7,又c=5,则最大边上的高是_______. 3.以下各组数为三边的三角形中,不是直角三角形的是(). A , .7,24,25 C.4,7.5,8.5 D.3.5,4.5,5.5 4.一个三角形的三边长分别为15,20,25,那么它的最长边上的高是(). A.12.5 B.12 C . 2 D.9 5.已知:如图,∠ABD=∠C=90°,AD=12,AC=BC,∠DAB=30°,求BC的长. 6.已知:如图,AB=4,BC=12,CD=13,DA=3,AB⊥AD,求证:BC⊥BD. E

《勾股定理》勾股定理的逆定理(含答案)精讲

第3章《勾股定理》: 3.2 勾股定理的逆定理 填空题 1.你听说过亡羊补牢的故事吗如图,为了防止羊的再次丢次,小明爸爸要在高0.9m,宽 1.2m的栅栏门的相对角顶点间加一个加固木板,这条木板需 m 长. (第1题)(第2题)(第3题)2.如图,将一根长24cm的筷子,底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长度为h cm,则h的最小值是 cm. 3.如图所示的一只玻璃杯,最高为8cm,将一根筷子插入其中,杯外最长4厘米,最短2厘米,那么这只玻璃杯的内径是厘米. 4.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯米. (第4题)(第5题)(第6题) 5.如图所示的圆柱体中底面圆的半径是错误!,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.(结果保留根号) 6.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC 的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是 m.(结果不取近似值)7.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑板爱好者从A点滑到E点,则他滑行的最短距离约为 m.(边缘部分的厚度忽略不计,结果保留整数)

(第7题)(第8题)(第9题) 8.如图,有一圆柱,其高为12cm,底面半径为3cm,在圆柱下底面A点处有一只蚂蚁,它想得到上底面B处的食物,则蚂蚁经过的最短距离为 cm.(π取3) 9.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是. 10.如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A,B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是米. (第10题)(第11题)(第12题)11.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是米.(精确到0.01米)12.如图是一个三级台阶,它的每一级的长、宽、高分别为7寸、5寸和3寸,A 和B是这个台阶的两个相对端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度是寸. 13.观察下列一组数: 列举:3、4、5,猜想:32=4+5; 列举:5、12、13,猜想:52=12+13; 列举:7、24、25,猜想:72=24+25; … 列举:13、b、c,猜想:132=b+c; 请你分析上述数据的规律,结合相关知识求得b= ,c= . 解答题 14.如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ. (1)观察并猜想AP与CQ之间的大小关系,并证明你的结论; (2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.

勾股定理及其逆定理的综合应用教案教学设计导学案

知识点:勾股定理及其逆定理的综合运用 问题情境1:运用勾股定理和逆定理求面积 问题模型:已知一含有直角的四边形的边长,综合运用定理和逆定理求面积 求解模型: 【例题】 【分析】由于∠B 是直角,因此连接AC 将问题转化为直角三角形问题加以解决;求出AC 的长,再在三角形ACD 中用逆定理判定其为直角三角形,再求面积。 【答案】 练习 1.已知:如图,四边形ABCD ,AB=1,BC=43,CD=413,AD=3,且AB ⊥BC 。 求:四边形ABCD 的面积。 在已知直角三角形中运用定理求出对角线长 连对角线将四边形分为两个三角形,其中一个为直角三角形 运用逆定理判定另一三角形为直角三角形 求四边形的面积 D A B C A D C B

【答案】 连接AC ,在Rt △ABC 中用勾股定理求出AC= 4 5 ,在 △ACD 中由AD 、CD 的长结合AC 的长,运用逆定理判定它为直角三角形,求出两直角三角形面积再求和,得四边形的面积为 4 9。 【答案】 3.在△ABC 中,AB =15,AC =13,D 是BC 边上一点,AD =12,BD =9,则△ABC 的面积 为 . 【答案】84 4.如图,已知CD =6m ,AD =8m ,∠ADC =90°,BC =24m ,AB =26m .求图中阴影部分的面 积. 【答案】96cm 2 问题情境2:运用勾股定理和逆定理求四边形的角度 问题模型:已知一含一直角的四边形的边长,综合运用定理和逆定理求角度 求解模型: 在已知直角三角形中运 用定理求出对角线长 连对角线将四边形分为两个三角形,其中一个为直角三角形 运用逆定理判定另一三角形为直角三角形 用特殊角求角度 A C B D (第4题)

勾股定理的逆定理及应用

勾股定理的逆定理及应用 下面有三组数分别是一个三角形的三边长a,b,c: ①5,12,13; ②7,24,25; ③8,15,17. 回答这样两个问题: 1.这三组数都满足a2+b2=c2吗 2.分别以每组数为三边长作出三角形,用量角器量一量,你能猜测最大的角的度数吗 _______________________________________________________________ __________________ 入门测试 1.如图,湖的两端有A,B两点,从与BA方向成直角的BC方向上的点C测得CA=130 m,CB =120 m,则AB为( ) A.30 m B.40 m C.50 m D.60 m 2.一个圆柱形的油桶高120 cm,底面直径为50 cm,则桶内所能容下的最长的木棒长为( ) A.5 cm B.100 cm C.120 cm D.130 cm 3.国庆假期中,小华与同学去玩探宝游戏,按照如图所示的探宝图,他们从门口A处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6 km处往东拐,仅走了1 km,就找到了宝藏,则门口A到藏宝点B的直线距离是( ) A.20 km B.14 km C.11 km D.10 km 4.你听说过亡羊补牢的故事吧.为了防止羊的再次丢失,牧羊人要在高m,宽m的长方形栅栏门的相对角顶点间加固一条木板,则这条木板至少需__m长. 5.历史上对勾股定理的一种证法采用了下列图形,其中两个全等的直角三角形边AE、EB在一条直线上.证明中用到的面积相等关系是( ) A.S△EDA=S△CEB B.S△EDA+S△CEB=S△CDE C.S四边形CDAE=S四边形CDEB D.S△EDA+S△CDE+S△CEB=S四边形ABCD

17.2勾股定理的逆定理(优质课)优秀教学设计

《17.2勾股定理的逆定理》教学设计 Y qzx Bmm 【内容和教材分析】 内容教材第31-33页,17.2勾股定理的逆定理. 教材分析“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面只是的继续和深化.勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一. 【教学目标】 知识与技能 1.理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理. 2.理解原命题、逆命题、逆定理的概念关系. 3.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形. 过程与方法 1.通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成过程. 2.通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用.3.通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题. 情感、态度与价值观 1.通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系. 2.在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神. 【教学重难点及突破】 重点 1.勾股定理的逆定理及运用. 2.灵活运用勾股定理的逆定理解决实际问题. 难点 1.勾股定理的逆定理的证明. 2.说出一个命题的逆命题及辨别其真假性. 【教学突破】 1.勾股定理的逆定理的题设实际上是给出了三条边的条件,其形式和勾股定理的结论形式一致.证明在此条件下的三角形是一个直角三角形,需要构造直角三角形才能完成,构造直角三角形是解决问题的关键.可以从特例推向一般,设置两个动手操作问题. 2.勾股定理的逆定理给出的是判定一个三角形是直角三角形的方法,和前面学过的一些判定方法不同,它通过计算来做判断. 3.几何中有许多互逆的命题、互逆的定理,它们从正反两个方面揭示了图形的特征性质,所以互逆命题和互逆定理是几何中的重要概念.对互逆命题、互逆定理的概念,理解它们通常困难不大.但对那些不是以“如果……那么……”形式给出的命题,叙述它们的逆命题有时就会有困难,可以尝试首先把命题变为“如果……那么……”. 4.勾股定理的逆定理可以解决生活中的许多问题.在解决实际问题时,常先画出图形,根

《勾股定理的逆定理2》习题

《勾股定理的逆定理2》习题 课堂练习 1.小强在操场上向东走80m 后,又走了60m ,再走100m 回到原地.小强在操场上向东走了80m 后,又走60m 的方向是 . 2.如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A 、B 、C 三点能否构成直角三角形?为什么? 3.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向? 课后练习 1.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,此三角形的形状为 . 2.一根12米的电线杆AB ,用铁丝AC 、AD 固定,现已知用去铁丝AC =15米,AD =13米,又测得地面上B 、C 两点之间距离是9米,B 、D 两点之间距离是5米,则电线杆和地面是否垂直,为什么? 3.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量.小明找了一卷米尺,测得AB =4米,BC =3米,CD =13米,DA =12米,又已知∠B =90°. 参考答案: 课堂练习: 1.向正南或正北. 2.能,因为BC 2=BD 2+CD 2=20,AC 2=AD 2+CD 2=5,AB 2=25,所以BC 2+AC 2= AB 2; 3.由△ABC 是直角三角形,可知∠CAB +∠CBA =90°,所以有∠CAB =40°,航向为北偏东50°. 课后练习: 1.6米,8米,10米,直角三角形; 2.△ABC 、△ABD 是直角三角形,AB 和地面垂直. N A B

初中数学_勾股定理的逆定理教学设计学情分析教材分析课后反思

《勾股定理的逆定理》教学设计 课题 勾股定理的逆定理 课型 新授课 课时 1 学习目标 1.了解逆命题、逆定理的概念;探索并掌握勾股定理的逆定理,会用勾股定理的逆定理判断直角三角形。 2.经历“探索-发现-猜想-证明”的探究过程,体会用“构造法”证明数学命题的方法,发展推理能力。 3.通过对勾股定理的逆定理的探索,培养学生的交流、合作的意识和严谨的学习态度。 学习过程 环节与内容 师生互动 设计意图 (一) 创设情境,引入新课 古埃及人制作直角 问题:据说古埃及人用下图的方 法画直角:把一根长蝇打上等距 离的13个结,然后以3个结,4 个结、5个结的长度为边长,用 木桩钉成一个三角形,其中一个 角便是直角。 教师将准备好的绳结给学生,让学生实际的操作感受 通过古埃及人制作直角的方法,提出让学生动手操作,进而使学生产生好奇心:“这样就能确定直角吗”,激发学生的求知欲,点燃其学习的激情,充分调动学生的学习积极性 (二)普度求是 ?探究活动1: 1.小试牛刀: (1)动手画一画:以3,4,5为边作 △ABC 。(回忆用“SSS ”作三角形的方法) 5 4 3 (2)大胆猜一猜:得到的△ABC 是个 什么三角形?怎样验证你的猜 想? 2. 合作探究: (1)画一画:分别以①2.5,6,6.5; ②4,5,6;③6,8,10为三角形的三边 长,作三角形。 ① 以2.5,6,6.5为边作△ABC 。 学生实际动手画图,量角,验证 教师以平等身份参与到学生活动中来,对其实践活动予以指 学生在三组线段为边画出三角形,猜测验证出其形状 学生进一步以小组为单位,按给出的三组数作出三角形(1)这 让学生如实再现情境,在自己充分操作、认知的情况下进行猜想与归纳,体验数学思考的魅力和知识创造的乐趣,使学生真正成为主动学习者。 同时回忆作图方法为后面的多组验证做好铺垫。

勾股定理的逆定理的应用 公开课获奖教案

第2课时 勾股定理的逆定理的应用 1.进一步理解勾股定理的逆定理;(重点) 2.灵活运用勾股定理及逆定理解决实际问题.(难点) 一、情境导入 某港口位于东西方向的海岸线上,“远望号”“海天号”两艘轮船同时离开港口,各自沿一固定的方向航行,“远望号”每小时航行16海里,“海天号”每小时航行12海里,它们离开港口1个半小时后相距30海里,如果知道“远望号”沿东北方向航行,能知道“海天号”沿哪个方向航行吗? 二、合作探究 探究点:勾股定理的逆定理的应用 【类型一】 运用勾股定理的逆定理求角度 如图,已知点P 是等边△ABC 内 一点,P A =3,PB =4,PC =5,求∠APB 的度数. 解析:将△BPC 绕点B 逆时针旋转60°得△BEA ,连接EP ,判断△APE 为直角三角形,且∠APE =90°,即可得到∠APB 的度数. 解:∵△ABC 为等边三角形,∴BA =BC .可将△BPC 绕点B 逆时针旋转60°得△BEA ,连EP ,∴BE =BP =4,AE =PC =5,∠PBE =60°,∴△BPE 为等边三角形,∴PE =PB =4,∠BPE =60°.在△AEP 中,AE =5,AP =3,PE =4,∴AE 2=PE 2+P A 2,∴△APE 为直角三角形,且∠APE =90°,∴∠APB =90°+60°=150°. 方法总结:本题考查了等边三角形的判 定与性质以及勾股定理的逆定理.解决问题 的关键是根据题意构造△APE 为直角三角形. 【类型二】 运用勾股定理的逆定理求边长 在△ABC 中,D 为BC 边上的点, AB =13,AD =12,CD =9,AC =15,求BD 的长. 解析:根据勾股定理的逆定理可判断出△ACD 为直角三角形,即∠ADC =∠ADB =90°.在Rt △ABD 中利用勾股定理可得出BD 的长度. 解:∵在△ADC 中,AD =12,CD =9,AC =15,∴AC 2=AD 2+CD 2,∴△ADC 是直角三角形,∠ADC =∠ADB =90°,∴△ADB 是直角三角形.在Rt △ADB 中,∵AD =12,AB =13,∴BD =AB 2-AD 2=5,∴BD 的长为5. 方法总结:解题时可先通过勾股定理的逆定理证明一个三角形是直角三角形,然后再进行转化,最后求解,这种方法常用在解有公共直角或两直角互为邻补角的两个直角三角形的图形中. 【类型三】 勾股定理逆定理的实际应用 如图,是一农民建房时挖地基的 平面图,按标准应为长方形,他在挖完后测量了一下,发现AB =DC =8m ,AD =BC =6m ,AC =9m ,请你运用所学知识帮他检验一下挖的是否合格? 解析:把实际问题转化成数学问题来解决,运用直角三角形的判别条件,验证它是

18.2勾股定理的逆定理(三)

18.2 勾股定理的逆定理(三) 一、教学目标 1.应用勾股定理的逆定理判断一个三角形是否是直角三角形。 2.灵活应用勾股定理及逆定理解综合题。 3.进一步加深性质定理与判定定理之间关系的认识。 二、重点、难点 1.重点:利用勾股定理及逆定理解综合题。 2.难点:利用勾股定理及逆定理解综合题。 三、例题的意图分析 例1(补充)利用因式分解和勾股定理的逆定理判断三角形的形状。 例2(补充)使学生掌握研究四边形的问题,通常添置辅助线把它转化为研究三角形的问题。本题辅助线作平行线间距离无法求解。创造3、4、5勾股数,利用勾股定理的逆定理证明DE 就是平行线间距离。 例3(补充)勾股定理及逆定理的综合应用,注意条件的转化及变形。 四、课堂引入 勾股定理和它的逆定理是黄金搭档,经常综合应用来解决一些难度较大的题目。 五、例习题分析 例1(补充)已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足a 2+b 2+c 2+338=10a+24b+26c 。 试判断△ABC 的形状。 分析:⑴移项,配成三个完全平方;⑵三个非负数的和为0, 则都为0;⑶已知a 、b 、c ,利用勾股定理的逆定理判断三角形的形状为直角三角形。 例2(补充)已知:如图,四边形ABCD ,AD ∥BC ,AB=4,BC=6,CD=5,AD=3。求:四边形ABCD 的面积。 分析:⑴作DE ∥AB ,连结BD ,则可以证明△ABD ≌△EDB (ASA ); ⑵DE=AB=4,BE=AD=3,EC=EB=3;⑶在△DEC 中,3、4、5勾股数,△DEC 为直角三角形,DE ⊥BC ; ⑷利用梯形面积公式可解,或利用三角形的面积。 A B C D E D

18.2 勾股定理的逆定理(二)

八数教学案 一、课时学习目标 1.灵活应用勾股定理及逆定理解决实际问题。 2.进一步加深性质定理与判定定理之间关系的认识。 重点、难点 1.重点:灵活应用勾股定理及逆定理解决实际问题。 2.难点:灵活应用勾股定理及逆定理解决实际问题。 二、课前预习导学 1.填空题。 ⑴任何一个命题都有 ,但任何一个定理未必都有 。 ⑵“两直线平行,内错角相等。”的逆定理是 。 ⑶在△ABC 中,若a 2=b 2-c 2 ,则△ABC 是 三角形, 是直角; 若a 2<b 2-c 2,则∠B 是 。 ⑷若在△ABC 中,a=m 2-n 2,b=2mn ,c= m 2+n 2 ,则△ABC 是 三角形。 2.下列四条线段不能组成直角三角形的是( ) A .a=8,b=15,c=17 B .a=9,b=12,c=15 C .a=5,b=3,c=2 D .a :b :c=2:3:4 3.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角? ⑴a=3,b=22,c=5; ⑵a=5,b=7,c=9; ⑶a=2,b=3,c=7; ⑷a=5,b=62,c=1。 4.若三角形的三边是 ⑴1、3、2; ⑵5 1,41, 31; ⑶32,42,52 ⑷9,40,41; ⑸(m +n )2-1,2(m +n ),(m +n )2+1;则构成的是直角三角形的有( ) A .2个 B .3个 C.4个 D.5个 5.叙述下列命题的逆命题,并判断逆命题是否正确。 ⑴如果a 3>0,那么a 2>0; ⑵如果三角形有一个角小于90 °,那么这个三角形是锐角三角形; ⑶如果两个三角形全等,那么它们的对应角相等; ⑷关于某条直线对称的两条线段一定相等。 三、课堂学习研讨 例1(P75例2)在军事和航海上经常要确定方向和位置, 从而使用一些数学知识和数学方法。 分析:⑴了解方位角,及方位名词; ⑵依题意画出图形; ⑶依题意可得PR= ,PQ= ,QR= ; 小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。

勾股定理的逆定理(一)导学案

图18.2-2 通海中学勾股定理的逆定理(一)导学案 班级: 姓名: 学号: 学习目标 1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。 2.探究勾股定理的逆定理的证明方法。 3.理解原命题、逆命题、逆定理的概念及关系。 重点:掌握勾股定理的逆定理及简单应用。 难点:勾股定理的逆定理的证明。 一.预习新知(阅读教材P73 — 75 , 完成课前预习) 1.三边长度分别为3 cm 、4 cm 、5 cm 的三角形与以3 cm 、4 cm 为直角边的直角三角形之间有什么关系?你是怎样得到的? 2.你能证明以6cm 、8cm 、10cm 为三边长的三角形是直角三角形吗? 3.如图18.2-2,若△ABC 的三边长a 、b 、c 满足222c b a =+,试证明△ABC 是直角三 角形,请简要地写出证明过程. 4.此定理与勾股定理之间有怎样的关系? (1)什么叫互为逆命题 (2)什么叫互为逆定理 (3)任何一个命题都有 _____,但任何一个定理未必都有 __ 5.说出下列命题的逆命题。这些命题的逆命题成立吗? (1) 两直线平行,内错角相等; (2) 如果两个实数相等,那么它们的绝对值相等; (3) 全等三角形的对应角相等; (4) 角的内部到角的两边距离相等的点在角的平分线上。 二.课堂展示 例1:判断由线段a 、b 、c 组成的三角形是不是直角三角形: (1)17,8,15===c b a ; (2)15,14,13===c b a . (3)25,24,7===c b a ; (4)5.2,2,5.1===c b a ; 三.随堂练习

勾股定理的逆定理(3)

18.2勾股定理的逆定理(第一课时) 、教学目标 知识目标: 1、体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。 2、探究勾股定理的逆定理的证明方法。 3、理解原命题、逆命题、逆定理的概念及关系。 能力目标:(1)通过对勾股定理的逆定理的探索,经历知识的发生、发展和形成的过程; (2)通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用。 情感目标:(1)通过用三角形的三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系; (2)通过对勾股定理的逆定理的探索,培养了学生的交流、合作的意识和 严谨的学习态度。同时感悟勾股定理和逆定理的应用价值。 、教学重点难点 重点:证明勾股定理的逆定理;用勾股定理的逆定理解决具体的问题。难点:理解勾股 定理的逆定理的推导。 、教学准备 圆规、三角板、一根打了13个等距离结的细绳子、钉子、小黑板 四、教学过程 (1)复习旧课 1、在直角三角形中,两直角边长分别是3和4,则斜边长是__________________ 。 2?—个直角三角形,量得其中两边的长分别为5 cm、3 cm则第三边的长是 3?要登上8高的建筑物,为了安全需要,需使梯子底端离建筑物6问至少需要多长的梯子? (2)情境导入 1、在古代,没有直尺、圆规等作图工具,人们是怎样画直角三角形的呢? 【实验观察】 用一根打了13个等距离结的细绳子,在小黑板上,用钉子钉在第一个结 上,再钉在第4个结上,再钉在第8个结上,最后将第十三个结与第一个结钉 在一起.然后用三角板量出最大角的度数. 可以发现这个三角形是直角三角形。 (这是古埃及人画直角的方法) 2、用圆规、刻度尺作△ ABC 使AB=5c m,AC=4c m,BC=3c m,量一量/ C。再画一个 三角形,使它的三边长分别是5 cm、12 cm、13 cm,这个三角形有 什么特征? 3、为什么用上面的三条线段围成的三角形,就一定是直角三角形呢?它们的三边有 怎样的关系?(学生分组讨论,教师适当指导) 学生猜想:如果一个三角形的三边长a,b,c满足下面的关系那么这个三角形是直角三角形。 4、指出这个命题的题设和结论,对比勾股定理,理解互逆命题。 (3)探究新知 2 2 2 1、探究:在下图中,△ ABC的三边长a,b,c满足a +b=c。如果△ ABC

人教版八年级下册勾股定理的逆定理学案

勾股定理逆定理及应用 一、基础知识点 知识点1 逆命题与逆定理 1)命题:判断一件事的语句定理:经过我们一定推理,得到的真命题 2)互逆命题:两个命题的题设、结论正好相反的命题。 若将其中一个叫做原命题,则另一个就是它的逆命题 3)逆定理:若一个定理的逆命题成立,则这个定理与原定理互为逆定理 例1.指出下列命题的题设和结论,写出其逆命题,并判断逆命题是否为真命题。 (1)两直线平行,同位角相等;(2)等边对等角; (3)如果ab=0,那么a=0且b=0;(4)如果a2=b2,那么a=b; (5)轴对称图形是等腰三角形。 知识点2 勾股定理的逆定理 1)勾股定理的逆定理:如果三角形三边长分别为a,b,c,满足a2+b2=c2,则这个三角形是以c为斜边的直角三角形。 注:勾股定理的逆定理主要用于证明三角形是直角三角形 例1.已知a、b、c为△ABC的三边,且满足a2c2?b2c2=a4?b4,则△ABC是() A. 直角三角形 B. 等腰三角形 C. 等腰三角形或直角三角形 D. 等腰直角三角形知识点3 勾股数 1)勾股数:能构成直角三角形三条边的三个正整数 2)常见的勾股数有:①3,4,5;②5,12,13; 注:这两组勾股数的倍数也是勾股数,在考察勾股数时,若出现不熟悉数组,可利用勾股定理逆定理判断,即:a2+b2=c2。 二、典型题型 题型1 勾股定理逆定理的实际应用 例1.某住在小区有一块草坪如图,已知AB=3m,BC=4m,CD=12m,DA=13m,且AB⊥BC,求这块草坪的面积。 题型2 利用勾股定理逆定理证垂直 例1.如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=4√5,CD=8. (1)求∠ADC的度数;

勾股定理逆定理实际应用

勾股定理逆定理(2)教学设计

上节课我们学习了勾股定理的逆定理,请说出它的内容及用途;并说明它与勾 组成的三角形是不 、借助三角板画出如下方位角所确定的射 . 位于东西方向的海岸线 “海天”号轮船同时离开港 号每小 12 30 号沿东北方向航行, , ABCD 学生通过思考举 手回答及总结得 出勾股定理的逆 定理。 独立思考,得出 答案后相互交流 ⑴了解方位角, 及方位名词; ⑵依题意画出图 形; ⑶依题意可得 PR=12×1.5=18, PQ=16×1.5=24, QR=30; ⑷因为 242+182=302, PQ2+PR2=QR2,根 据勾股定理的 逆定理,知∠ QPR=90°; ⑸∠PRS=∠QPR- ∠QPS=45°。 (2)教师提出你 能根据题意画出 相关图形吗? 读题是学生理 解题意的重要 环节,只有正 确接收有关信 息,才能为下 一步利用这些 信息进行分析 打好基础。 画图对学生来 说,会有一定 的难度 学生能准确的 画出也可利用 学生画的图进 行进一步的分 析(画图也是 本节课的难 点) 让学生明确, 仅仅基于测量 结果得到的结 论未必可靠, 需要进一步通 过说理等方式 使学生确信结

解:∵ AB=3,BC=4,∠B=90°, ∴ AC=5.又∵ CD=12,AD=13, ∴ AC2+CD2=52+122=169. 又∵ AD2=132=169, 即 AC2+CD2=AD2, ∴ △ACD 是直角三角形. ∴ 四边形ABCD 的面积为 问题2 通过例1及例2的学习,我们进一步学习了像18,24,30;3,4,5;5,12,13这样的勾股数,大家有没有发现18,24,30;3,4,5 这两组勾股数有什 么关系? 追问1 类似这样的关系6,8,10;9,12,15是否也是勾股数?如何验证? 追问 2 通过对以上勾股数的研究,你有什么样的猜想? 结论:若a ,b ,c 是一组勾股数,那么ak ,bk ,ck (k 为正整数)也是一组勾股数. 【活动三】巩固拓展 练习1:如图,南北向MN 为我国领域,即MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B.已知A 、C 两艇的距离是13海里,A 、B 两艇的距离是5海里;反走私艇测得离C 艇的距离是12海里.若走私艇C 的速度不变,最早会在什么时间进入我国领海? 分析:为减小思考问题的“跨度”,可将原问题分解成下述“子问题”: (1)△ABC 是什么类型的三角形? (2)走私艇C 进入我领海的最近距离是多 (在学生都尝试画了之后,教师再在黑板上或多媒体中画出示意图) 11 345123622+=????

人教版-数学-八年级下册-《勾股定理的逆定理》教学设计(第1课时)

《17.2勾股定理的逆定理》教学设计(第1课时) 一、内容和内容解析 1.内容 勾股定理的逆定理证明及简单应用;原命题、逆命题的概念及相互关系. 2.内容解析 把勾股定理的题设和结论交换,可以得到它的逆命题.本节内容证明了这个逆命题是个真命题.勾股定理的逆定理给出的是判定一个三角形是直角三角形的方法和前面学过的一些判定方法不同,它通过计算来作判断.学习勾股定理的逆定理,对拓展学生思维,体会利用计算证明几何结论的数学方法有很大的意义. 基于以上分析,可以确定本课的教学重点是探究证明勾股定理的逆定理. 二、目标和目标解析 1.目标 (1)理解勾股定理的逆定理. (2)了解互逆命题、互逆定理. 2.目标解析 达成目标(1)的标志是学生经历“实验测量-猜想-论证”的定理探究过程后,能应用勾股定理的逆定理来判定一个三角形是直角三角形; 目标(2)能根据原命题写出它的逆命题,并了解原命题为真命题时,逆命题不一定为真命题. 三、教学问题诊断分析 勾股定理的逆定理的证明是先作一个合适的直角三角形,再证明有已知条件的三角形和直角三角形全等等,这种证法学生不容易想到,难以理解,在教学时应该注意启发引导.本课的教学难点是证明勾股定理的逆定理. 四、教学过程设计 1.创设问题情境 问题1 你能说出勾股定理吗?并指出定理的题设和结论. 师生活动:学生独立回忆勾股定理,师生共同分析得出其题设和结论,教师引导指出勾股定理是从形的特殊性得出三边之间的数量关系.

追问1:你能把勾股定理的题设与结论交换得到一个新的命题吗? 师生活动:师生共同得出新的命题, 教师指出其为勾股定理的逆命题. 追问2:“如果三角形三边长、b、c满足,那么这个三角形是直角三角形.”能否把它作为判定直角三角形的依据呢?本节课我们一起来研究这个问题.【设计意图】通过对前面所学知识的归纳总结,自然合理地引出勾股定理的逆定理.问题2 实验观察:用一根打上13个等距离结的细绳子,让学生操作,以3个结间距、4个结间距、5个结间距的长度为边长,用钉子钉成一个三角形,请学生用角尺量出最大角的度数(900). 师生活动:学生动手操作,教师适时指导,并介绍这是古埃及人画直角的方法. 追问:你能计算出三边长的关系吗? 师生活动:师生共同得出. 【设计意图】介绍前人经验,启发思考,使学生意识到数学来源于生活. 实验操作:(1)画一画,下列各组数中两个数的平方和等于第三个数的平方,分别以这些数为边长(单位:cm)画三角形: ①2.5,6,6.5;②4,7.5,8.5. (2)量一量:用量角器分别测量上述各三角形的最大角的度数. (3)想一想:判断这些三角形的形状,提出猜想. 师生活动:教师引导学生画三角形,并计算三边的数量关系:,.接着度量三角形最大角的度数,发现最大角为900,并猜想:如果三角形的三边长、b、c满足,那么这个三角形是直角三角形.把勾股定理记着命题1,猜想的结论作为命题2. 【设计意图】让学生经历测量、计算、归纳和猜想的过程,了解几何知识的探索过程.问题3 命题1和命题2的题设和结论分别是什么?

勾股定理逆定理导学案

单元程序导学案 编号课题勾股定理的逆定理(一) 主备教师徐斌学科组长 一.学习目标 1.互逆命题与互逆定理; 2.勾股定理的逆定理的证明; 3.勾股定理的逆定理的运用. 二.重难点: 勾股定理的逆定理的证明与运用 三.课时安排(预习+展示)2课时 四.预习笔记要求(根据学科特点提出要求,学科组长检查签字) 从课本入手,由浅入深,自己写出每一题的过程. 导学案 一、自学(自学课本P73-P75上,完成下列练习) 1、以下各组数为边长,能组成直角三角形的是(). A.5,6,7 B.10,8,4 C.7,25,24 D.9,17,15 2、以下各组正数为边长,能组成直角三角形的是(). A.a-1,2a,a+1 B.a-1,a+1 C.a-1a+1 D.a-1a,a+1 3、什么是命题?什么是逆命题? 4、根据下列命题写出其逆命题,并判断正误 原命题:猫有四只脚. 逆命题: 原命题:对顶角相等 逆命题: 原命题:线段垂直平分线上的点,到这条线段两端距离相等.

逆命题: 原命题:角平分线上的点,到这个角的两边距离相等. 逆命题: 5.△ABC的三边长a,b,c满足a2+b2=c2,如果△ABC是直角三角形,它应该与直角 边是 a,b的直角三角形全等.实际情况是这样的吗??我们画一个直角三角形A′B′C′,使B′C′=a,A′C′=b,∠C′=90°(课本图18.2-2),再将画好的△A?′B′C′剪下,放到△ABC上,请同学们观察,它们是否能够重合?试一试! 6、以下列各组线段为边长,能构成三角形的是____________(填序号),能构成直角三角形的是____________. ①3,4,5 ②1,3,4 ③4,4,6 ④6,8,10 ⑤5,7,2 ⑥13,5,12 ⑦7,25, 24 二、自展:(典型例题解析) 例1:一个零件的形状如下图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量出了这个零件各边尺寸,那么这个零件符合要求吗? 例2:若△ABC的三边a,b,c满足条件a2+b2+c2+338=10a+24b+26c,试判定△ABC 的形状. 例3:已知:在△ABC中,AB=13cm,BC=10cm,BC边上的 中线AD=12cm.求证:AB=AC.

19.9(4)勾股定理(勾股定理的逆定理及其应用)

19.9(4)勾股定理(勾股定理的逆定理及其应用)要点归纳 应用勾股定理时要注意:在直角三角形的三边中,首先弄清那条边是斜边。 应用勾股定理逆定理时要注意:最大边的平方等于较小两边的平方和。 疑难分析 例1 将两块三角板如图放置,其中∠C=∠EDB=90°,∠A=45°,∠E=30°,AB=DE=6.求重叠部分四边形的面积。 例2 如图,P是四边形内一点,过点P作AB、BC、CD、DA 的垂线,垂足分别为E、F、G、H,已知AH=3,HD=4,DG=1,CG=5,CF=6,FB=4,且BE-AE=1,求四边形ABCD的周长。 A B

基础训练 1. 在直角三角形中,以直角边为边长的两个正方形的面积分别为36、64,则以斜边为边长 的正方形的面积为____; 2. 在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=____; 3. 一根旗杆在离地面9米处断裂,旗杆顶部落在离旗杆底部12米处,则旗杆折断之前有 ____米; 4. 如果梯子的底端离建筑物8米,那么17米长的梯子可以到达建筑物的高度是____米; 5. 若直角三角形的两边长为12和5,求以第三边为边长的等边三角形的面积是____; 6. 在△ABC中,AB=15,AC=13,边BC上的高AD=12,则△ABC的周长为____; 7. 已知在Rt△ABC中,∠C=90°,若a+b=14,c=10,则Rt△ABC的面积是(). A.24 B.36 C.48 D.60 8. 等腰三角形底边上的高为6,周长为36,则三角形的面积为(). A.56 B.48 C.40 D.32 9. 若直角三角形一直角边长为9,另两边为连续自然数,则此三角形的周长为(). A.121 B.120 C.90 D.不能确定 10. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家。若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,则小红和小颖家的直线距离为(). A.600米 B.800米 C.1000米 D.不能确定 11. 观察下列几组数据:①m2+n2、2mn、m2-n2(m﹥n﹥0)②三边之比为1:2:3;③△ABC 的三边长为a、b、c,满足a2-b2=c2。其中能作为直角三角形三边长的有(). A.1组 B.2组 C.3组 D.0组 12. 如图,公路上A、B两点相距25千米,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15千米,CB=10千米,现要在公路AB上建一车站E。 (1)若使得C、D两村到E站的距离相等,E站建在离A站多少千米处? (2)若使得C、D两村到E站的距离和最短,E站建在离A站多 13. 如图,将一个边长分别为4、8的矩形纸片ABCD折叠,使点C与点A重合,则EF的 长是多少? D' A E

3.2勾股定理的逆定理日日清

3.2勾股定理逆定理 班级: 姓名: 一、选择题: 1.在△ABC 中AB=6,AC=8,BC=10,则该三角形为 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 2.在△ABC 中,∠A、∠B、∠C 的对边分别是a 、b 、c ,下列条件中,不能判断△ABC 为直角三角形的是 ( ) A .C B A ∠-∠=∠ B .2 22b a c -= C .a:b:c=3:3:2 D .∠A:∠B:∠C=2:3:5 3.若三角形三边长分别是6、8、10,则它最长边上的高为 ( ) A .6 B .4.8 C .2.4 D .8 4.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的 ( ) A .1倍 B .2倍 C .3倍 D .4倍 二、填空题: 5.若一个直角三角形的三边长为连续整数,则它的三边长分别为 . 6.在Rt△ABC 中,斜边AB=2,则AB 2+BC 2+CA 2=______ . 7.若三角形三边之比为3:4:5,周长为24,则三角形面积 . 三、解答题: 8.如图,在四边形ABCD 中,已知:AB =1,BC =2,CD =2,AD =3,且AB⊥BC. 求证:AC⊥CD. 9.如图是一块地的平面图,AD=4m ,CD=3m ,AB=13m ,BC=12m ,∠ADC=90°,求这块

地的面积 . 10.正方形ABCD 中,F 为DC 中点,E 为BC 上一点,且EC= 4 1BC. 求证:∠EFA=90° 11.已知,△ABC 三条边分别为a 、b 、c ,若a=m 2-n 2,b=2mn ,c=m 2+n 2,其中m 、n 是正整数,且 m >n ,则△ABC 是否为直角三角形? 书写评价 优 良 中 差 成绩评价优 良 中 差 批改时间 10月15日 A B C D F E

相关文档
相关文档 最新文档