文档库 最新最全的文档下载
当前位置:文档库 › 复变函数习题三参考答案

复变函数习题三参考答案

复变函数习题三参考答案
复变函数习题三参考答案

习题三 3.1计算积分

2C

z dz ?

,其中C 是:

(1)原点到()2i +的直线段; (2)原点到2再到()2i +的折线; (3)原点到i 再沿水平到()2i +的折线。 解:(1)C 的参数方程为()()22201z t i t ti

t =+=+≤≤

()2dz i dt =+

于是

()()()222

1

222113

C

i i d z d t i z t +++==

?

(2)12C C C =+,1C 参数方程为()02z t

t =≤≤,

2C 参数方程为()201z it

t =+≤≤

()()1

2

2

21

2

2

2

2

1

22113

C

C C z dz z dz z dz t dt id it i t +=

+=+=+?

???? (3)12C C C =+,1C 参数方程为()01z it

t =≤≤,

2C 参数方程为()02z t i

t =+≤≤

()()()1

2

2

1

2

2

2

22

1

2113

C

C C z dz z dz z dz it idt dt t i i +=

+++==????? 3.2设C 是,i z e θ

θ=是从π-到π的一周,计算: (1)

()Re C

z dz ?

;(2)()Im C

z dz ?;(3)C

zdz ?

解:cos sin i z e i θ

θθ==+,()sin cos dz i d θθθ=-+

(1)()()Re cos sin cos C

z dz i d i π

π

θθθθπ-=-+=??;

(2)()()Im sin sin cos C

z dz i d π

π

θθθθπ-=-+=-?

?;

(3)

()()cos sin sin cos 2C

zdz i i d i π

π

θθθθθπ-=--+=?

?

3.3计算积分C

z zdz ?

,其中C 是由直线段11,0x y -≤≤=及上半单位圆周组成的正向闭

曲线。

解:12C C C =+,1C 表示为z x iy =+,()11,0x y -≤≤=;

2C 表示为()cos sin 0z x iy i θθ

θπ=+=+≤≤,()sin cos dz i d θθθ=-+,

()()1

2

1

1

cos sin sin cos C

C C z zdz z zdz z zdz

x xdx i i d i

π

θθθθθπ-=+=+--+=?

????

3.5沿下列指定曲线的正向计算积分

()21C dz

z z +? 的值:

(1)1:2C z =;(2)3:2C z =;(3)1:2C z i +=;(4)3

:2

C z i -=。 解:()()()

111

22f z z z i z i =

--

-+ (1)

()211111

2002221C C C C dz dz dz dz i i z z i z i z z ππ=--=--=-++???? ; (2)

()21111120221C C C C dz dz dz dz i i i z z i z i z z πππ=--=--=-++???? ; (3)

()21111100221C C C C dz dz dz dz i i z z i z i z z ππ=--=--=--++???? ; (4)

()21111120221C C C C dz dz dz dz i i i z z i z i z z πππ=--=--=-++????

3.6设区域D 为右半平面,z 为D 内的圆周1z =上的任意一点,用在D 内的任意一条曲线C 连接原点与z ,证明:20Re 14

z d επ

ε??=??+???。 证明:函数

2

1

1ε+在右半平面解析,故从0到z 沿任意曲线C 的积分与路径无关,积分路径换为先沿实轴从0到1,再沿圆周到z 点。

1222000=111i z

i d dx ie d x e η

θηε

ηε++++??? 0

4

2cos i

d θ

π

ηη

=

+?

所以20Re 14

z d επ

ε??=?

?+???

3.8设C 为正向椭圆22149

x y +=,定义()22C f z d z εεεε-+=-? ,z 不在C 上,求()()()1,,f f i f i '''-。

解: z 在C 内部时,22

z

εεε-+-在=z ε处不解析,

()()22

222C f z d i z z z εεεπε-+==-+-? ,

()()

21

1224z f i z z i ππ==-+=;

()()()22122z i

f i i z i ππ='=-=-+;

()4f i i π''-=

3.9计算下列积分: (1)

2

sin

i

i

zdz ππ-?;

(2)11

i

z

ze dz +?;(3)()2

12i

iz dz +?;(4)()

()

1ln 11i

z dz z ++?

解:(1)

()21

sin 1cos 22

i

i

i

i zdz z dz πππ

π--=-??

sin 2sin 2242

4z i z i

z z z z ππ==-????

=--- ?

?

????

sin 22

i

i ππ=-

; (2)()

()1111111

1

1

11i

i

z z i z i z

i i ze dz ze e dz i e e ie ++++++=-=+-=?

?;

(3)

()

()2

3

111112233

i

i i iz dz iz i -++=

+=

?; (4)

()()()()222

11ln 111ln 1ln 1ln 2122

i

i z dz z i z +??=+=+-??+? 2

2

11ln 2ln 2224i π????=+-?? ???????

2

23ln 2

ln 23288

i ππ=-

-+ 3.10设()3

2e f z dz z πε

εε==-? ,求()(),f i f i -;当2z >时,求()f z 。

解:z 在2z <内部时,3

e

z

π

εε-在=z ε处不解析,()3

3

22z e f z dz ie z π

ε

πεπε===-? , (

)(3

322z i

z i

f i ie ie i π

π

πππ====-; (

)(3

3

22z i z i

f i ie

ie

i ππ

πππ-=--===+;

当2z >时,

3

e

z

πεε-将处处解析,所以()3

20e f z dz z π

ε

εε==

=-?

3.11沿下列指定曲线的正向计算各积分: (1)

()5

cos ,:11C

z

dz C z r z π=>-? ;

(2)

()()

2

3

1

,:111C

dz C z r z

z =<--? ;

(3)

2

sin 3

,:2

2C

z

dz C z z π=?

?

- ??

?? ; (4)

()

3

,:1,z

C

e dz C z a z a =-? 为1a ≠的任何数;

(5)

2sin ,:229C z

dz C z i z -=+? ;

(6)12

3

cos C C z

dz z +?,其中1:2C z =取正向,2:3C z =取负向。 解:(1)cos z π在由:1C z r =>围成的区域内解析,

()()()

541

5

cos 2cos 4!

12

1z C z

i i

dz z z ππππ===-

-? ;

(2)函数()()()

231

11f z z z =

--在由:1C z r =<围成的区域内无奇点,处处解析,所

()()2

3

1

011C

dz z

z =--? ;

(3)函数()2

sin 2z

f z z π=

??- ??

?在由3

:2

C z =

围成的区域内无奇点,处处解析,所以

2

sin 02C

z

dz z π=?

?

- ??

?? ;

(4)当1a >时,()()

3

z

e f z z a =

-在由:1C z =围成的区域内无奇点,处处解析,所以

()

3

0z

C

e dz z a =-? ;

当1a <时,()()

3

z

e f z z a =

-在由:1C z =围成的区域内有奇点z a =,

()

()3

22!

z

z a z a

C

e i dz e e i z a ππ=''

==-? ;

(5)函数()2

sin 9

z

f z z =

+在由:22C z i -=围成的区域内有奇点3z i =-, 32sin sin sin 32sin 3sinh 393333

z i C C z

z z i z i dz dz i i z z i z i πππ=--====++-?? ; (6)设2:3C z -

=取正向,

1212333cos cos cos C C C C z z z

dz dz dz z z z -+=-???

()()00

22cos cos 2!2!z z i i z z ππ==''''=-

0=

3.12设()f z 在1z ≤上解析且()01f =,试求:

()11122z f z z dz i z z π=????±+ ????

???? 。 解:()()()()221112111

222z z z f z f z f z z dz dz i z z i z z ππ==??+??????±+=± ???????????

?? ()()()2

201z f z f z ='??=±+??

()()()2

221z z f z z f z =??'=±?++??

()20f '=±

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 ( tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 22 2=- (C )z z z z 22 2≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为 i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i -(C )等于0(D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

复变函数课后习题答案(全)69272

习题一答案 1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (1) 1 32i + (2) (1)(2) i i i -- (3)13 1 i i i - - (4)821 4 i i i -+- 解:(1) 132 3213 i z i - == + , 因此: 32 Re, Im 1313 z z ==-, 232 arg arctan, 31313 z z z i ==-=+ (2) 3 (1)(2)1310 i i i z i i i -+ === --- , 因此, 31 Re, Im 1010 z z =-=, 131 arg arctan, 31010 z z z i π ==-=-- (3) 133335 122 i i i z i i i -- =-=-+= - , 因此, 35 Re, Im 32 z z ==-, 535 ,arg arctan, 232 i z z z + ==-= (4)821 41413 z i i i i i i =-+-=-+-=-+ 因此,Re1,Im3 z z =-=, arg arctan3,13 z z z i π ==-=-- 2.将下列复数化为三角表达式和指数表达式: (1)i(2 )1-+(3)(sin cos) r i θθ + (4)(cos sin) r i θθ -(5)1cos sin (02) i θθθπ -+≤≤

解:(1)2 cos sin 2 2 i i i e π π π =+= (2 )1-+2 3 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22 i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+ 2 2sin [cos sin ]2sin 22 22 i i e πθ θπθ πθ θ ---=+= 3. 求下列各式的值: (1 )5)i - (2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+-- (4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 (6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- 5 552(cos()sin()))66 i i ππ =-+-=-+ (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin )i i i θθθθ-+-- 2[cos()sin()](cos sin ) 33)sin()][cos()sin()]44 i i i i ππ θθππ θθ-+-+= -+--+-

复变函数习题三参考答案

习题三 3.1计算积分 2C z dz ? ,其中C 是: (1)原点到()2i +的直线段; (2)原点到2再到()2i +的折线; (3)原点到i 再沿水平到()2i +的折线。 解:(1)C 的参数方程为()()22201z t i t ti t =+=+≤≤ ()2dz i dt =+ 于是 ()()()222 1 222113 C i i d z d t i z t +++== ? (2)12C C C =+,1C 参数方程为()02z t t =≤≤, 2C 参数方程为()201z it t =+≤≤ ()()1 2 2 21 2 2 2 2 1 22113 C C C z dz z dz z dz t dt id it i t += +=+=+? ???? (3)12C C C =+,1C 参数方程为()01z it t =≤≤, 2C 参数方程为()02z t i t =+≤≤ ()()()1 2 2 1 2 2 2 22 1 2113 C C C z dz z dz z dz it idt dt t i i += +++==????? 3.2设C 是,i z e θ θ=是从π-到π的一周,计算: (1) ()Re C z dz ? ;(2)()Im C z dz ?;(3)C zdz ? 解:cos sin i z e i θ θθ==+,()sin cos dz i d θθθ=-+ (1)()()Re cos sin cos C z dz i d i π π θθθθπ-=-+=??; (2)()()Im sin sin cos C z dz i d π π θθθθπ-=-+=-? ?; (3) ()()cos sin sin cos 2C zdz i i d i π π θθθθθπ-=--+=? ? 3.3计算积分C z zdz ? ,其中C 是由直线段11,0x y -≤≤=及上半单位圆周组成的正向闭 曲线。 解:12C C C =+,1C 表示为z x iy =+,()11,0x y -≤≤=;

复变函数试题及答案

1、复数i 212--的指数形式是 2、函数w = z 1将Z S 上的曲线()1122 =+-y x 变成W S (iv u w +=)上 的曲线是 3.若01=+z e ,则z = 4、()i i +1= 5、积分()?+--+i dz z 22 22= 6、积分 ?==1sin 21z dz z z i π 7、幂级数()∑∞ =+0 1n n n z i 的收敛半径R= 8、0=z 是函数 z e z 1 11--的 奇点 9、=??? ? ??-=1Re 21z e s z z 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w 二、单选题(每小题2分) 1、设α为任意实数,则α1=( ) A 无意义 B 等于1 C 是复数其实部等于1 D 是复数其模等于1 2、下列命题正确的是( ) A i i 2< B 零的辐角是零 C 仅存在一个数z,使得 z z -=1 D iz z i =1 3、下列命题正确的是( ) A 函数()z z f =在z 平面上处处连续 B 如果()a f '存在,那么()z f '在a 解析 C 每一个幂级数在它的收敛圆周上处处收敛 D 如果v 是u 的共轭调和函数,则u 也是v 的共轭调和函数

4、根式31-的值之一是( ) A i 2321- B 2 23i - C 223i +- D i 2321+- 5、下列函数在0=z 的去心邻域内可展成洛朗级数的是( ) A z 1sin 1 B z 1cos C z ctg e 1 D Lnz 6、下列积分之值不等于0的是( ) A ? =-12 3z z dz B ? =-1 2 1z z dz C ?=++1242z z z dz D ?=1 cos z z dz 7、函数()z z f arctan =在0=z 处的泰勒展式为( ) A ()∑∞ =+-02121n n n n z (z <1) B ()∑∞ =+-0 1221n n n n z (z <1) C ()∑∞ =++-012121n n n n z (z <1) D ()∑∞=-0 221n n n n z (z <1) 8、幂级数n n n z 20 1)1(∑∞ =+-在1w 的分式线性变换是( ) A )1(1>--=a z a a z e w i β B )1(1<--=a z a a z e w i β C )1(>--=a a z a z e w i β D )1(<--=a a z a z e w i β 三、判断题(每小题2分)

复变函数与积分变换习题答案

习题六 1. 求映射1 w z = 下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:2222 11i=+i i x y w u v z x y x y x y ===-+++ 221 x x u x y ax a = ==+, 所以1w z =将22x y ax +=映成直线1u a =. (2) .y kx =(k 为实数) 解: 22221i x y w z x y x y = =-++ 22 2222 x y kx u v x y x y x y = =- =- +++ v ku =- 故1 w z = 将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么? (1)Im()0, (1i)z w z >=+; 解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,. 20.u x y v x y u v y =-=+-=-< 所以Im()Re()w w >. 故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 00, 00. Im(w )>0. 若w =u +i v , 则2222 ,u v y x u v u v ==++ 因为0 + 故i w z = 将Re(z )>0, 00,Im(w )>0, 12 12w > (以(12,0)为圆心、 1 2为半径的圆)

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分 ? +i dz z 30 2。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 ()()()?? +=??????+=+=+1 3 1 0332 3 30 2 33 13313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 0330 2 3 2 33 131=??? ???==?? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t idt dz = ()()()33 1 031 0233 233133 13313-+=??????+=+=?? +i it idt it dz z i ()()()3 3331 02 3 0230233 133********i i idt it dt t dz z i +=-++= ++= ∴??? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t idt dz = ()()31 031 202 3 131i it idt it dz z i =??????==?? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = ()()()33 1 031 02 32 3113 131i i i t dt i t dz z i i -+=??????+=+=?? + ()()3 333320 2 30 2 13 13113131i i i i dz z dz z dz z i i i i +=-++= += ∴? ? ? ++ 2. 分别沿x y =与2 x y =算出积分 ()?++i dz iy x 10 2 的值。 解:x y = ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=????? ???? ??++=++=+∴ ?? +i i x i x i dx ix x i dz iy x i 213112131111 0231 0210 2 2 x y = ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 043210 2 2131142311211i i x i x i dx x i x i dz iy x i

复变函数试题与答案

复变函数试题与答案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2 321+- (D )i 2 1 23+- 3.复数)2 (tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ) )]2 3sin()23[cos( sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小

5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得2 2z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i -- 4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无 界闭区域 10.方程232=-+i z 所代表的曲线是( )

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分 ? +i dz z 30 2。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 ()()()?? +=??????+=+=+1 3 1 0332330 233 13313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 033 2 3 2 33 131=??? ???== ? ? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t idt dz = ()()()33 1 031 02 33 233133 13313-+=??????+=+=?? +i it idt it dz z i ( ()()()3 3331 02 3 02 302 33 133********i i idt it dt t dz z i +=-++= ++= ∴??? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t idt dz = ()()31 031 2 02 3 131i it idt it dz z i =??? ???==?? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = ()()()33 1 031 02323113 131i i i t dt i t dz z i i -+=??????+=+=?? + ()()3 333320 230 213 13113131i i i i dz z dz z dz z i i i i +=-++= += ∴? ? ? ++ 2. 分别沿x y =与2 x y =算出积分 ()?++i dz iy x 10 2 的值。 解:x y = ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=????? ???? ??++=++=+∴ ?? +i i x i x i dx ix x i dz iy x i 213112131111 0231 02 10 2 / 2 x y = ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 043210 2 2131142311211i i x i x i dx x i x i dz iy x i

复变函数习题及解答

第一章 复变函数习题及解答 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1-; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π2π,0,1,2,3k k +=±±L ;主辐角为4π 3; 原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为4π i 32e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθ θθθθθθ+=+=+ 计算下列复数 1)() 10 3 i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2) ()13π/42k π i 6 3 2e 0,1,2k +=; 计算下列复数 (1 (2 答案 (1 (2)(/62/3) i n e ππ+ 已知x

【解】 令 i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到 2 2 12()2i x p q xy +=-+,根据复数相等,所以 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P Λ的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()() k k z z =, 故由共轭复数性质有:()() z P z P =.则由已知()0i ≡+b a P .两端取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 证明: 2222 121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 若 (1)(1)n n i i +=-,试求n 的值. 【解】 因为 22 2244444444(1)2(cos sin )2(cos sin ) (1)2(cos sin )2(cos sin )n n n n n n n n n n n n i i i i i i ππππππππ+=+=+-=-=- 所以 44sin sin n n ππ=- 即为4sin 0n π =所以 4 ,4,(0,1,2,)n k n k k ππ===±±L 将下列复数表为sin ,cos θθ的幂的形式 (1) cos5θ; (2)sin5θ 答案 53244235 (1) cos 10cos sin 5cos sin (2) 5cos sin 10cos sin sin θθθθθ θθθθθ-+-+ 证明:如果 w 是1的n 次方根中的一个复数根,但是1≠w 即不是主根,则必有 对于复数 ,k k αβ,证明复数形式的柯西(Cauchy)不等式:

复变函数测试题及答案

第一章 复 数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( )

(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 i (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z

(C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 0) Im()Im(z z -) 1 1.设) 2)(3() 3)(2)(1(i i i i i z ++--+= ,则=z 2.设)2)(32(i i z +--=,则=z arg 3.设4 3)arg(,5π = -=i z z ,则=z

复变函数论第三版课后习题答案

第一章习题解答 (一) 1 .设2z =z 及A rcz 。 解:由于32i z e π- = 所以1z =,2,0,1,3 A rcz k k ππ=- +=± 。 2 .设1 21z z = = ,试用指数形式表示12z z 及 12 z z 。 解:由于6 4 12,2i i z e z i e π π - += == = 所以( )646 4 12 12222i i i i z z e e e e π π π π π - - === 54( )14 6 12 2 6 112 2 2i i i i z e e e z e π ππππ+ - = = = 。 3.解二项方程440,(0)z a a +=>。 解:1 244 4 (),0,1,2,3k i i z a e ae k ππ π+= ===。 4.证明2 2 2 1212 122()z z z z z z ++-=+,并说明其几何意义。 证明:由于2 2 2 1212 122Re()z z z z z z +=++ 2 2 2 121 2 122R e () z z z z z z -=+- 所以2 2 2 12 12122()z z z z z z ++-=+ 其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0 321=++z z z , 1 321===z z z 。证明z 1,z 2,z 3是内 接于单位圆1 =z 的一个正三角形的顶点。 证 由于 1 321===z z z ,知 3 21z z z ?的三个顶点均在单位圆上。 因为 3 33 3 1z z z == ()[]()[]2 12322112121z z z z z z z z z z z z +++=+-+-= 2 1212z z z z ++= 所以, 12121-=+z z z z , 又 ) ())((1221221121212 2 1z z z z z z z z z z z z z z +-+=--=- ()3 22121=+-=z z z z

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分? +i dz z 30 2 。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 () ()()?? +=??????+=+= +1 3 1 332 3 30 2 3313313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 33 2 3 2 33131=??? ???== ? ? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t i d t dz = () ()()33 1 31 2 33 2 3313313313-+=??????+=+= ?? +i it idt it dz z i ()()()33 3 3 1 02 30 2 30 2 33 13 3 133 133 13i i idt it dt t dz z i += - ++ = ++ = ∴ ?? ? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t i d t dz = ()()31 31 20 2 3131i it idt it dz z i =??? ???== ? ? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = () ()()33 1 31 2 32 3113131i i i t dt i t dz z i i -+=??????+=+= ?? + ()()33 3 3 32 2 30 2 13 13 113 13 1i i i i dz z dz z dz z i i i i += - ++ = + = ∴ ? ? ? ++ 2. 分别沿x y =与2 x y =算出积分()? ++i dz iy x 10 2 的值。 解:x y = ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=? ???? ???? ??++=++=+∴ ? ?+i i x i x i dx ix x i dz iy x i 213112131111 0231 210 2 2 x y = ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 0432 10 2 2131142311211i i x i x i dx x i x i dz iy x i 而()i i i i i 6 5 6121213131213 11+-=-++=??? ??+ +

复变函数与积分变换课后习题答案详解

… 复变函数与积分变换 (修订版)主编:马柏林 (复旦大学出版社) / ——课后习题答案

习题一 1. 用复数的代数形式a +ib 表示下列复数 π/43513 ; ;(2)(43);711i i e i i i i i -++++ ++. ①解i 4 πππ2222e cos isin i i 44-??????=-+-= +-=- ? ? ? ??? ?? ?? ②解: ()()()() 35i 17i 35i 1613i 7i 1 1+7i 17i 2525 +-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 13 35=i i i 1i 222 -+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy ) (z a a z a -∈+); 3 3 31313;;;.n i i z i ???? -+-- ? ? ① :∵设z =x +iy 则 ()()()()()()()22 i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-????+--+-????===+++++++ ∴ ()222 2 2 Re z a x a y z a x a y ---??= ?+??++, ()22 2Im z a xy z a x a y -?? = ?+??++. ②解: 设z =x +iy ∵ ()()()()() ()()()3 2 3 2 2 222222 3223i i i 2i i 22i 33i z x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++??=--+-+??=-+- ∴ ()332 Re 3z x xy =-, ()323Im 3z x y y =-. ③解: ∵ () ()()()(){ }3 3 2 3 2 1i 31i 311313313388-+??-+? ???== --?-?+?-?- ? ?????? ? ?? ?? ()1 80i 18 = += ∴1i 3Re 1?? -+= ? ??? , 1i 3Im 0??-+= ? ???. ④解: ∵ () ()() ()()2 3 3 23 1313 3133i 1i 38 ??--?-?-+?-?- ?? ??-+? ? = ? ??? ()1 80i 18 = += ∴1i 3Re 1??-+= ? ?? ? , 1i 3Im 0??-+= ? ??? . ⑤解: ∵()()1, 2i 211i, k n k n k k n k ?-=?=∈?=+-???. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当 21n k =+时, ()Re i 0 n =, ()()Im i 1k n =-. 3.求下列复数的模和共轭复数 12;3;(2)(32); .2 i i i i +-+-++ ①解:2i 415-+=+=. 2i 2i -+=-- ②解:33-= 33-=- ③解:()()2i 32i 2i 32i 51365++=++=?=. ()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+?+=-?-=- ④解: 1i 1i 2 22++== ()1i 11i 222i ++-??= = ??? 4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+, 则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数. 若z =x ,x ∈,则z x x ==.

复变函数论第三版课后习题答案解析

1.设 z 1 3i ,求 z 及 Arcz 。 解:由于 z 1, Arcz 2k , k 0, 1, 。 3 (z 1 z 2)( z 1 z 2) z 1z 1 z 2z 2 (z 1z 2 z 2z 1) 2 z 1z 2 z 1 z 2 3 第一章习题解 答 (一) 2.设 z 1 i , z 3 1 ,试用指数形式表示 1 2 2 z 1z 2 及 z 1 。 z 2 4 i 6i 1 i i 解:由于 z 1 e 3 4 , z 2 3 i 2e 1 2 2 i i ( )i i 所以 z1z2 e 4i 2e 6i 2e ( 4 6)i 2e 12i i z 1 e 4 1 e (4 6)i i z 2 2e 6 2 5i 1 1 e 12 。 2 3.解二项方程 z 4 a 4 0,(a 0) 。 2k i 解: z 4 a 4 (a 4e i )4 ae 4 ,k 0,1,2,3 。 4.证明 z 1 2 2 z 1 z 2 z 1 z 2 证明:由于 2 2 z 1 z 2 z 1 2 2 z 2 2 z 1 z 2 2( z 1 所以 z 1 z 2 其几何意义是: z 2 ) 2 2 ,并说明其几何意义。 2 2 Re(z 1 z 2) z 2 2Re(z 1 z 2) z 1 z 2 2( z 1 z 2 ) 平行四边形对角线长平方和等于于两边长的和的平方。 5.设 z 1, z 2,z 3三点适合条件: z1 z2 z3 0 z 1 z 2 z3 1 。证明 z 1,z 2, z 3是内 接于单位 圆 z 1 的一个正三角形的顶点。 证 由于 z 1 z 2 z3 1 ,知 z 1z 2z 3 的三个顶点均在单位圆上。 因为 所以, z 1z 2 z 1z 2 1 , 所以 z 1 z 2

第一章复变函数习题及解答

第一章 复变函数习题及解答 1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1-; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π 2π,0,1,2,3k k +=±±;主辐角为4π 3; 原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为4π i 32e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθ θθθθθθ+=+=+ 1.2 计算下列复数 1)() 10 3 i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2) ()13π/42k π i 6 3 2e 0,1,2k +=; 1.3计算下列复数 (1 (2 答案 (1) (2)(/62/3) i n e ππ+ 1.4 已知x 的实部和虚部.

【解】 令 i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到 2 2 12()2i x p q xy +=-+,根据复数相等,所以 22 1,(p q pq p x q x ?-=??=??=±==±+ 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 1.5 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 1() ()1||||| |||||||1()az b az b az b z az b az b z bz a bz a z z bzz az b az b az +++++=====+++++ 1.6 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()() k k z z =, 故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端取共轭得 ()( ) 00i i =≡+=+b a P b a P 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 1.7 证明: 2222 121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值.

复变函数习题解答(第3章)

p141第三章习题 (一)[ 5, 7, 13, 14, 15, 17, 18 ] 5.由积分 C1/(z+ 2)dz之值证明 [0,](1 + 2 cos)/(5 + 4cos)d= 0,其中C取单位圆周|z| = 1. 【解】因为1/(z+ 2)在圆|z内解析,故 C1/(z+ 2)dz= 0. 设C: z()= ei ,[0, 2]. 则 C1/(z+ 2)dz= C1/(z+ 2)dz= [0, 2]iei /(ei + 2)d = [0, 2]i(cos+isin)/(cos+isin+ 2)d =

[0, 2]( 2 sin+i(1 + 2cos))/(5 + 4cos)d = [0, 2]( 2 sin)/(5 + 4cos)d+i [0, 2](1 + 2cos)/(5 + 4cos)d. 所以 [0, 2](1 + 2cos)/(5 + 4cos)d= 0. 因(1 + 2cos))/(5 + 4cos)以2为周期,故 [,](1 + 2cos)/(5 + 4cos)d= 0;因(1 + 2cos))/(5 + 4cos)为偶函数,故[0,](1 + 2 cos)/(5 + 4cos)d [,](1 + 2cos)/(5 + 4cos)d= 0. 7. (分部积分法)设函数f(z),g(z)在单连通区域D内解析,,是D内两点,试证 [,]f(z)g’(z)dz= (f(z)g(z))| [,] [,]g(z)f’(z)dz. 【解】因f(z),g(z)区域D内解析,故f(z)g’(z),g(z)f’(z),以及(f(z)g(z))’都在D 内解析.因区域D是单连通的,所以f(z)g’(z),g(z)f’(z),以及(f(z)g(z))’的积分都与路径无关.[,]f(z)g’(z)dz+ [,]g(z)f’(z)dz= [,](f(z)g’(z)dz+g(z)f’(z))dz

相关文档
相关文档 最新文档