文档库 最新最全的文档下载
当前位置:文档库 › 平面几何基本定理

平面几何基本定理

平面几何基本定理
平面几何基本定理

.

一.平面几何

1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边

的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理)

3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则

有)(22222BP AP AC AB +=+; 中线长:2

222

22a c b m a -+=

4. 垂线定理:2

2

2

2

BD BC AD AC CD AB -=-?⊥

线

C b B c A a

bc

c p b p a p p a h a sin sin sin ))()((2===---=

5. 角平分线定理:三角形一个角的平分线分对边所成的两条线

段与这个角的两边对应成比例.

如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定

理)

角平分线长:2

cos 2)(2A

c b bc a p bcp c b t a +=-+=

(其中

p 为周长一半)

6. 正弦定理:

R C

c

B b A a 2sin sin sin ===,

(其中R 为三角形外接圆半径) 7. 余弦定理:C ab b a c

cos 2222

-+=

8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin

9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C

两点间的一点D ,则有AB 2

·DC +AC 2

·BD -AD 2

·BC =BC ·DC ·BD 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一

半.(圆外角如何转化?)

11. 弦切角定理:弦切角等于夹弧所对的圆周角

12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定

理):切线长定理:)

13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD

中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边

14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙

O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作

一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2

-r 2

|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.

15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两

组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD

16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过

点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近

两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距

离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点

18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、

△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF =

CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向

外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙

A 1 、⊙

B 1的圆心构成的△——外拿破仑的三角形,⊙

C 1 、

⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心

19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形

中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:

(1)三角形的九点圆的半径是三角形的外接圆半径之半 (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点

(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕

20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心

依次位于同一直线(欧拉线)上.

21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半

径为r ,外心与内心的距离为d ,则d 2

=R 2

-2Rr .

22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各

边距离的和.

23. 重心:三角形的三条中线交于一点,并且各中线被这个点分

成2:1的两部分;)3

,3(C B A C B A y y y x x x G ++++

重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC

.

于D ,则D 为BC 的中点,则1:2:=GD AG ;

(2)设

G 为△ABC 的重心,则

ABC ACG BCG ABG S S S S ????===3

1

(3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则

2;32=++===AB

KH

CA FP BC DE AB KH CA FP BC DE (4)设G 为△ABC 的重心,则

2

22222333GC AB GB CA GA BC +=+=+)

(3

1

222222CA BC AB GC GB GA ++=++22222223PG GC GB GA PC PB PA +++=++(P 为

△ABC 内任意一点);

④到三角形三顶点距离的平方和最小的点是重心,即

222GC GB GA ++最小;

⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).

24. 垂心:三角形的三条高线的交点;

)cos cos cos cos cos cos ,cos cos cos cos cos cos (C

c B b A a y C c

y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍

(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;

(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;

(4)设O ,H 分别为△ABC 的外心和垂心,

HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,

25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到

三角形各边距离相等

),(

c

b a cy by ay

c b a cx bx ax I C

B A

C B A ++++++++

内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然 (

2

I

△ABC

C AIB B AIC A BIC ∠+?=∠∠+?=∠∠+

?=∠21

90,2190,2190(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心

(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC

于D ,交△ABC 外接圆于点K ,则

a

c

b KD IK KI AK ID AI +=

== (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I

在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为

r ,令)(2

1

c b a p ++=①pr S ABC =?;②

c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ???=.

26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心

到三角形各顶点距离相等;

2sin 2sin 2sin 2sin ,

2sin 2sin 2sin 2sin 2sin 2sin (

B A By Ay

C B A Cx Bx Ax O B

A C

B A +

++++++

外心性质:(1)外心到三角形各顶点距离相等

(2)设O 为△ABC 的外心,则A BOC ∠=∠2或

A BOC ∠-?=∠2360

(3)?

=S abc R 4;(4)锐角三角形的外心到三边的

距离之和等于其内切圆与外接圆半径之和

27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;

设△ABC 的三边,,,c AB b AC a BC ===令)(2

1c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,旁心性质

1

,21

,2190A C BI C BI A C BI C B A ∠=∠=∠∠-

?=∠(对于顶角B ,C 也有类似的式子) (2))(2

1

C A I I I C B A ∠+∠=

∠ (3)设

A AI 的连线交△ABC 的外接圆于D ,则

DC DB DI A ==(对于C B CI BI ,有同样的结论)

(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径

'R 等于△ABC 的直径为2R .

28. 三

C B A R R

abc C ab ah S a ABC sin sin sin 24sin 21212==

==?)

cot cot (cot 42

22C B A c b a ++++=

))()((c p b p a p p pr ---==,其中a h 表示BC 边上的

.

高,R 为外接圆半径,r 为内切圆半径,)(2

1c b a p ++=

29. 三角形中内切圆,旁切圆和外接圆半径的相互关系

;

2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin 4C

B A R r

C B A R r C B A R r C B A R r c b a ====

.

1111;2tan

2tan ,2tan 2tan ,2tan 2tan r

r r r B A r r C A r r C B r r c b a c b a =++===

30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB

或其延长线和一条不经过它们任一顶点的直线的交点分别为

P 、Q 、R 则有

1=??RB

AR

QA CQ PC BP .

(逆定理也成立) 31. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线

交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线

32. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、

B 、

C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线

交于点P 、Q 、R ,则P 、Q 、R 三点共线

33. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、

AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件

AZ ZB ·BX XC ·CY

YA

=1 34. 塞瓦定理的应用定理:设平行于△ABC 的边BC 的直线与两

边AB 、AC 的交点分别是D 、E ,又设BE 和CD 交于S ,则

AS 一定过边BC 的中点M

35. 塞瓦定理的逆定理:(略)

36. 塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一

点,三角形的三条高线交于一点,三角形的三条角分线交于一点

37. 塞瓦定理的逆定理的应用定理2:设△ABC 的内切圆和边

BC 、CA 、AB 分别相切于点R 、S 、T ,则AR 、BS 、CT 交于

一点.

38. 西摩松(Simson )定理:从△ABC 的外接圆上任意一点P

向三边BC 、CA 、AB 或其延长线作垂线,设其垂足分别是D 、

E 、R ,则D 、E 、R 共线,(这条直线叫西摩松线Simson line )

39. 西摩松定理的逆定理:(略)

40. 关于西摩松线的定理1:△ABC 的外接圆的两个端点P 、Q

关于该三角形的西摩松线互相垂直,其交点在九点圆上 41. 关于西摩松线的定理2(安宁定理):在一个圆周上有4点,

以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点

42. 史坦纳定理:设△ABC 的垂心为H ,其外接圆的任意点P ,

这时关于△ABC 的点P 的西摩松线通过线段PH 的中心. 43. 史坦纳定理的应用定理:△ABC 的外接圆上的一点P 的关于边BC 、CA 、AB 的对称点和△ABC 的垂心H 同在一条(与西摩松线平行的)直线上.这条直线被叫做点P 关于△ABC 的镜象线.

44. 牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.

45. 牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的

圆心,三点共线. 46. 笛沙格定理1:平面上有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F )的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线. 47. 笛沙格定理2:相异平面上有两个三角形△ABC 、△DEF ,

设它们的对应顶点(A 和D 、B 和E 、C 和F )的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线. 48. 波朗杰、腾下定理:设△ABC 的外接圆上的三点为P 、Q 、

R ,则P 、Q 、R 关于△ABC 交于一点的充要条件是:弧AP +

弧BQ +弧CR =0(mod2π) .

49. 波朗杰、腾下定理推论1:设P 、Q 、R 为△ABC 的外接圆

上的三点,若P 、Q 、R 关于△ABC 的西摩松线交于一点,则

A 、

B 、

C 三点关于△PQR 的的西摩松线交于与前相同的一点.

50. 波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交

点是A 、B 、C 、P 、Q 、R 六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点. 51. 波朗杰、腾下定理推论3:考查△ABC 的外接圆上的一点P

的关于△ABC 的西摩松线,如设QR 为垂直于这条西摩松线该外接圆的弦,则三点P 、Q 、R 的关于△ABC 的西摩松线交于一点.

52. 波朗杰、腾下定理推论4:从△ABC 的顶点向边BC 、CA 、

AB 引垂线,设垂足分别是D 、E 、F ,且设边BC 、CA 、AB

的中点分别是L 、M 、N ,则D 、E 、F 、L 、M 、N 六点在同一个圆上,这时L 、M 、N 点关于关于△ABC 的西摩松线交于一点

53. 卡诺定理:通过△ABC 的外接圆的一点P ,引与△ABC 的三

边BC 、CA 、AB 分别成同向的等角的直线PD 、PE 、PF ,与三边的交点分别是D 、E 、F ,则D 、E 、F 三点共线. 54. 奥倍尔定理:通过△ABC 的三个顶点引互相平行的三条直

线,设它们与△ABC 的外接圆的交点分别是L 、M 、N ,在△ABC 的外接圆上取一点P ,则PL 、PM 、PN 与△ABC 的三边BC 、

CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三

点共线.

55. 清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的

两点,P 点的关于三边BC 、CA 、AB 的对称点分别是U 、V 、

W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的

交点分别是D 、E 、F ,则D 、E 、F 三点共线.

56. 他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点

P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,

.

如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2

=OQ ×OP 则称P 、Q 两点关于圆O 互为反点)

57. 朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中

任三点作三角形,在圆周取一点P ,作P 点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.

58. 从三角形各边的中点,向这条边所对的顶点处的外接圆的切

线引垂线,这些垂线交于该三角形的九点圆的圆心 59. 一个圆周上有n 个点,从其中任意n -1个点的重心,向该

圆周的在其余一点处的切线所引的垂线都交于一点 60. 康托尔定理1:一个圆周上有n 个点,从其中任意n -2个

点的重心向余下两点的连线所引的垂线共点.

61. 康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两

点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线. 62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L

三点,则M 、N 两点的关于四边形ABCD 的康托尔线、L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.

63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、

L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.

64. 费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切. 65. 莫利定理:将三角形的三个内角三等分,靠近某边的两条三

分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.

66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点

A 和D 、

B 和E 、

C 和F ,则这三线共点.

67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB

和DE 、BC 和EF 、CD 和FA 的(或延长线的)交点共线. 68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之

比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :

n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆

称为阿波罗尼斯圆.

69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,

过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.

70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交

于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.

71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、

CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛

尔刚点.

72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是

三角形中的任意一点,过M 向三边作垂线,三个垂足形成的

三角形的面积,其公式: 2

2

2ABC D 4||R d R S S EF -=??.

二.集合

1.元素与集合的关系

U x A x C A ∈??,U x C A x A ∈??.

2.德摩根公式

();()U U U U U U C A B C A C B C A B C A C B

==3.包含关系

A B A A B B

=?=U U A B C B C A ????

U A C B ?=ΦU C A B R ?=

4.集合12{,,

,}n a a a 的子集个数共有2n 个;真子集有2n

–1个;非空子集有2n

–1个;非空的真子集有2n

–2个. 5.集合A 中有M 个元素,集合B 中有N 个元素,则可以构造M*N 个从集合A 到集合B 的映射;

6.容斥原理

()()card A B cardA cardB card A B =+-

()()

card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C

A card A

B

C ---+

.

三.二次函数,二次方程

1·二次函数的解析式的三种形式

(1)一般式2()(0)f x ax bx c a =++≠;

(2)顶点式

2()()(0)f x a x h k a =-+≠;

(3)零点式12()()()(0)f x a x x x x a =--≠. 2·解连不等式()N f x M <<常有以下转化形式

()N f x M <

?|()|22

M N M N

f x +--

()0()f x N M f x ->- ?

11

()f x N M N

>--. 3·方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21

.

件.特别地, 方程)0(02

≠=++a c bx ax

有且只有一个实根

在),(21k k ,等价于0)()(21

2221

1k k a b

k +<-<,或0)(2=k f 且22122k a

b

k k <-<+. 4·闭区间上的二次函数的最值

二次函数

)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上

的最值只能在a

b

x 2-=处及区间的两端点处取得,具体如下:

(1)当a>0时,若[]q p a

b

x ,2∈-=,则

{}min max max ()(),()(),()2b

f x f f x f p f q a =-=;

[]q p a

b

x ,2?-=,{}max max ()(),()f x f p f q =,

{}min min ()(),()f x f p f q =.

(2)当

a<0

时,若

[]q p a

b

x ,2∈-

=,则{}min ()min (),()f x f p f q =,若[]q p a

b

x ,2?-=,则

{}

max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.

5·一元二次方程的实根分布

依据:若

()()0f m f n <,则方程0)(=x f 在区间

(,)m n 内至少有一个实根 .

设q px x x f ++=2)(,则

(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为

0)(=m f 或2402

p q p

m ?-≥?

?->??; (2)方程0)(=x f 在区间(,)m n 内有根的充要条件为

()()0f m f n <或2

()0()0402

f m f n p q p m n >??>???-≥?

?<-

>?或()0

()0

f n af m =??

>?; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402

p q p

m ?-≥?

?-

(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥?.

(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤?.

(3)

)(24>++=c bx ax x f 恒成立的充要条件是

00a b c ≥??

≥??>?

或2

040a b ac

.

四.简易逻辑

1·真值表

2

3

4·充要条件

(1)充分条件:若p q ?,则p 是q 充分条件.

(2)必要条件:若q p ?

,则p 是q 必要条件.

(3)充要条件:若p q ?,且q p ?,则p 是q 充要

.

条件.

注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.

五.函数

1· 函数的单调性

(1)设[]2121,,x x b a x x ≠∈

?那么

[]1212()()()0

x x f x f x -->?

[]b a x f x x x f x f ,)(0)

()(2

121在?>--上是增函数;

[]1212()()()0x x f x f x --

()(2

121在?<--上是减函数.

(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.

2·如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.

3·奇偶函数的图象特征

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;在对称区间上,奇函数的单调性相同,欧函数相反;,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数,如果一个奇函数的定义域包括0,则必有f(0)=0;

4若函数)(x f y =是偶函数,则)()(a x f a x f --=+;

若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+. 5· 对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成

立,则函数)(x f 的对称轴是函数2

b

a x +=;两个函数

)(a x f y +=与)(x b f y -= 的图象关于直线

2

b

a x +=对称. 6·若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2

(a

对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.

7 多项式函数1

10()n n n n P x a x a x

a --=+++的奇偶性 多项式函数()P x 是奇函数?()P x 的偶次项(即奇数项)的

系数全为零.

多项式函数()P x 是偶函数?()P x 的奇次项(即偶数项)

的系数全为零. 8

函数

()y f x =的图象的对称性 (1)函数()y f x =的图象关于直线

x a

=对称

()()f a x f a x ?+=- (2)()f a x f x ?-=.

(2)函数

()

y f x =的图象关于直线

2

a b x +=

对称

()()f a mx f b mx ?+=- ()()f a b mx f mx ?+-=.

9

两个函数图象的对称性 (1)函数

()y f x =与函数()y f x =-的图象关于直线

0x =(即y 轴)对称.

(2)函数()y f mx a =-与函数()y f b mx =-的图象关

于直线2a b

x m

+=对称.

(3)函数)(x f y =和)(1

x f y -=的图象关于直线y=x 对

称.

10 若将函数

)(x f y =的图象右移a 、上移b 个单位,得到

函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.

11 互为反函数的两个函数的关系

a b f b a f =?=-)()(1.

12若函数)(b kx f y +=存在反函数,则其反函数为

])([1

1b x f k

y -=-,并不是)([1b kx f y +=-,而函数

)([1b kx f y +=-是])([1

b x f k

y -=的反函数.

13 几个常见的函数方程 (1)正比

数()f x cx =,()()(),(1)f x y f x f y f c +=+=. (2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠. (3)

函数

()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.

(4)幂函数()f x x α

=,'()()(),(1)f xy f x f y f α==. (5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,

0()

(0)1,lim 1x g x f x

→==.

14 几个函数方程的周期(约定a>0)

(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0

)()(=+=a x f x f ,或)0)(()

(1

)(≠=+x f x f a x f ,

或1

()()

f x a f x +=-(()0)

f x ≠,

或[]1

(),(()0,1)2

f x a f x =+∈,则)(x f 的周期T=2a ;

(3)

)0)(()

(1

1)(≠+-

=x f a x f x f ,则)(x f 的周期

T=3a ;

.

(4)

)

()(1)()()(212121x f x f x f x f x x f -+=

+且

1212()1(()()1,0||2)f a f x f x x x a =?≠<-<,则)

(x f 的周期T=4a ;

(5)

()()(2)(3)(4)f x f x a f x a f x a f x a +++++++

()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周

期T=5a ;

(6))()()(a x f x f a x f +-=+,

则)(x f 的周期T=6a.

六 指数与对数

1·分数指数幂

(1)m n

a

=

(0,,a

m n N *>∈,且1n >).

(2)1

m

n

m n

a

a

-

=

(0,,a m n N *

>∈,且1n >).

2·根式的性质

(1

)n a =.(2)当n

a =;当n 为

,0||,0

a a a a a ≥?==?

-

(1) (0,,)r s r s a a a a r s Q +?=>∈.

(2)

()(0,,)r s rs a a a r s Q =>∈.

(3)()

(0,0,)r

r r ab a b a b r Q =>>∈.

注: 若a >0,p 是一个无理数,则a p

表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用. 4·指数式与对数式的互化式

log b a N b a N =?=(0,1,0)a a N >≠>.

5·对数的换底公式

log log log m a m N N a

=

(0a >,且1a ≠,0m >,且1m ≠,

0N >).

推论

log log m n a a n

b b m

=

(0a >,且1a >,,0m n >,且1m ≠,1n ≠,

0N >).

6·对数的四则运算法则

若a >0,a ≠1,M >0,N >0,则

(1)

log ()log log a a a MN M N

=+;(2)

log log log a

a a M

M N N

=-; (3)log log ()n

a a M n M n R =∈. 7·设函数

)

0)((log )(2≠++=a c bx ax x f m ,记

ac b 42-=?.若)(x f 的定义域为R ,则0>a ,且0a ,且0≥?.对于0=a 的情形,

需要单独检验.

8·对数换底不等式及其推广

若0a

>,0b >,0x >,1

x a ≠

,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1

(,)a

+∞上log ()

ax y bx =为增函数.

(2)当a b <时,在1(0,

)a 和1

(,)a +∞上log ()ax y bx =为减函数.

推论:设1n m >>,0p >,0a >,且1a ≠,则

1

log ()log m p m n p n

++<.(

2

2

log log log 2

a a a m n

m n +<. 9·平均增长率的问题

如果原来产值的基础数为N ,平均增长率为p ,则对于时

间x 的总产值

y ,有(1)x y N p =+.

39.数列的同项公式与前n 项的和的关系

11

,

1,2n n n s n a s s n -=?=?

-≥?( 数列{}n a 的前n 项的和为

12n n s a a a =+++).

七 数列

1

·

*11(1)()n a a n d dn a d n N =+-=+-∈;

n

1()

2n n n a a s +=

1(1)

2

n n na d -=+

211

()22d n a d n =+-. 2·等比数列的通项公式1*11()n n

n

a a a q q n N q

-==

?∈; 其前n 项的和公式为

11

(1),11,1n n a q q s q na q ?-≠?=-??=?或11,11,1

n n a a q

q q s na q -?≠?

-=??=?.

3·等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公

式为

1(1),1(),11n n n b n d q a bq d b q d q q -+-=??

=+--?≠?-?

其前n 项和公式为

(1),(1)

1(),(1)111n n nb n n d q s d q d

b n q q q q +-=??=-?-+≠?---?

.

.

八 三角函数

1·常见三角不等式

(1)若(0,)2

x π

∈,则sin tan x x x <<. (2) 若(0,

)2

x π

∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.

2·同角三角函数的基本关系式

22sin cos 1θθ+=,tan θ=

θ

θcos sin ,tan 1cot θθ?=.

3·正弦、余弦的诱导公式

21

2(1)sin ,sin()2(1)s ,

n

n n co απαα-?

-?+=??-?

21

2(1)s ,s()2(1)sin ,

n

n co n co απαα+?

-?+=??-?

;

tan tan tan()1tan tan αβ

αβαβ

±±=

.

22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);

22cos()cos()cos sin αβαβαβ

+-=-.

sin cos a b αα+=)α?+(辅助角?所

在象限由点(,)a b 的象限决定,tan b

a

?= ).

5·半角正余切公式:sin sin tan ,cot 21cos 1cos ααα

ααα

==

+- 6·二倍角公式

sin 2sin cos ααα

=.2222cos 2cos sin 2cos 112sin ααααα

=-=-=-.

2

2tan tan 21tan α

αα

=-. 7·最简单的三角不等式及其解集

sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤?∈++-∈sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤?∈--+∈cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z

ππ>≤?∈-+∈cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z

πππ<≤?∈++-∈tan ()(arctan ,),2

x a a R x k a k k Z

π

ππ>∈?∈++∈tan ()(,arctan ),2

x a a R x k k a k Z π

ππ<∈?∈-

+∈角的变形:2()()2()()()ααβαββ

αβαβααββ

=-++=+--=+-

8·三倍角公式

3sin 33sin 4sin 4sin sin()sin()

33ππ

θθθθθθ=-=-+3cos34cos 3cos 4cos cos()cos()33ππ

θθθθθθ=-=-+32

3tan tan tan 3tan tan()tan()13tan 33

θθππ

θθθθθ-==-+-9·三角函数的周期公式

函数

sin()y x ω?=+,x ∈R 及函数cos()y x ω?=+,

x ∈R(A,ω,?为常数,且A ≠0,ω>0)的周期2T π

ω

=;函数

tan()y x ω?=+,,2

x k k Z π

π≠+

∈(A,ω,?为常数,且

A ≠0,ω>0)的周期T πω

=

.

10·正弦定理 2sin sin sin a b c

R A B C

===.

11余弦定理

2222cos a b c bc A =+-;2222cos b c a ca B =+-;

2222cos c a b ab C =+-.

12·面积定理

(1)111

222

a b c S

ah bh ch =

==(a b c h h h 、、分别表示a 、b 、c 边上的高).

(2)111

sin sin sin 222S

ab C bc A ca B =

==. (3)OAB

S ?=.

13·在三角形中有下列恒等式:

sin()sin A B C +=

② tan tan tan tan .tan .tan A B C A B C ++=

小学奥数-几何五大模型(蝴蝶模型)整理版

任意四边形、梯形与相似模型 卜亠\ 模型三蝴蝶模型(任意四边形模型) 任意四边形中的比例关系(“蝴蝶定理”): D S1: S2 = S4: S3或者S S3 =S2 S4 ② AO : OC =[S S2 : S4 S3 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 【例1】(小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD被对角线AC BD分成四个部分,△ AOB面积为1平方千米,△ BOC面积为2平方千米,△ COD勺面积为3平方千米,公园由陆地面积是 6. 92平方千米和人工湖组成,求人工湖的面积是多少平方千米? 【分析】根据蝴蝶定理求得S^AOD=3 1-'2=1.5平方千米,公园四边形ABCD的面积是12 3 45 = 7.5平方千米,所以人工湖的面积是7.5-6.92=0.58平方千米 【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC的面积:⑵AG:GC= ? 【解析】⑴根据蝴蝶定理,S BGC 1=2 3,那么S BGC=6 ; ⑵根据蝴蝶定理,AG:G^ 1 2 : 3 6 =1:3 . (? ??) 【例2】四边形ABCD的对角线AC与BD交于点0(如图所示)。如果三角形ABD的面积等于三角形BCD的

面积的 1 ,且AO =2 , DO =3,那么CO的长度是DO的长度的_____________ 倍。 3 【解析】在本题中,四边形ABCD为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。看到题目中给出条件S A BD : S BCD =1:3,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH垂直BD于H , CG垂直BD于G,面积比转化为高之比。再应用结论:三角形高相同,则面积之比等于底边之比,得出结果。请老师注意比较两种解法,使学生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题。 解法一:T AO :OC = S ABD: S BDC =1 : 3 , 二OC =2 3 =6 , ??? OC:OD =6:3 2:1 . 解法二:作AH _BD 于H , CG_BD 于G . ?- AH」CG , 3 1 ?- AO CO , 3 ?OC =2 3=6 , ?OC:OD =6:3 =2:1 ? 【例3】如图,平行四边形ABCD的对角线交于O点,A CEF、△OEF、△ODF、△BOE的面积依次是2、 4、4和6。求:⑴求A OCF的面积;⑵求A GCE的面积。 【解析】⑴根据题意可知,△BCD的面积为2 4 4 ^16,那么△BCO和:CDO的面积都是16亠2=8 , 所以A OCF 的面积为8—4=4; ⑵由于△ BCO的面积为8, △BOE的面积为6,所以A OCE的面积为8-6=2 , 根据蝴蝶定理,EG:FG 二 Sg E:S.COF =2:4 =1:2,所以S.GCE:S.GCF = EG : FG =1:2 , 1 1 2 那么S GCE S CEF 2 ~~? 1+2 3 3 【例4】图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的面积分别是6公顷和7公顷。那么最大的一个三角形的面积是多少公顷? S 'ABD S BCD 3审 S AOD =—S DOC 3

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高” A B C D F P

还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、 E 、 F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 / / 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

平面几何基本定理

. 一.平面几何 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边 的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则 有)(22222BP AP AC AB +=+; 中线长:2 222 22a c b m a -+= 4. 垂线定理:2 2 2 2 BD BC AD AC CD AB -=-?⊥ 高 线 长 : C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---= 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线 段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定 理) 角平分线长:2 cos 2)(2A c b bc a p bcp c b t a +=-+= (其中 p 为周长一半) 6. 正弦定理: R C c B b A a 2sin sin sin ===, (其中R 为三角形外接圆半径) 7. 余弦定理:C ab b a c cos 2222 -+= 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2 ·DC +AC 2 ·BD -AD 2 ·BC =BC ·DC ·BD 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一 半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角 12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定 理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边 14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙ O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作 一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2 -r 2 |.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两 组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD 16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过 点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近 两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距 离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点 18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、 △BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF = CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向 外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙ A 1 、⊙ B 1的圆心构成的△——外拿破仑的三角形,⊙ C 1 、 ⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心 19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形 中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如: (1)三角形的九点圆的半径是三角形的外接圆半径之半 (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点 (3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕 20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心 依次位于同一直线(欧拉线)上. 21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半 径为r ,外心与内心的距离为d ,则d 2 =R 2 -2Rr . 22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各 边距离的和. 23. 重心:三角形的三条中线交于一点,并且各中线被这个点分 成2:1的两部分;)3 ,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC

几何五大定理

第一大定理:共角定理(鸟头定理) 即在两个三角形中,它们有一个角相等(互补),则它们就是共角三角形。它们的面积之 比,就是对应角(相等角、互补角)两夹边的乘积之比。 雪帆华数: 这个不建议记,符合这种的直接用,不符合这种的呢?还不如直接记推导的思 路。
2013-5-20 22:15 回复
第二大定理:等积变换定理。 1、等底等高的两个三角形面积相等; 2、两个三角形(底)高相等,面积之比等于高(底)之比。 3、在一组平行线之间的等积变形。
如图所示,S△ACD=S△BCD;反之,如果 S△ACD=S△BCD,则可知直线 AB 平行于 C D。 第三大定理:梯形蝴蝶定理。
这个为了竞赛,不得不记

对,竞赛的数学图形题都是这一类型的题。 任意四边形中,同样也有蝴蝶定理。
2013-5-20 22:15 回复 2013-5-22 13:22 回复
上述的梯形蝴蝶定理,就是因为 AD‖EC 得来的。
如果知道鸟头定理是怎么推导的,这个简直就是小菜。
2013-5-20 22:16 回复
:是的,共角定理。
2013-5-21 12:22 回复
这个很好,尤其是由△ABC 和△ADC 的面积得出对角线的比,对于任意四边形都可以,可 以当个定理来用了。
2013-5-21 19:17 回复
第四大定理:相似三角形定理。 1、相似三角形:形状相同,大小不相等的两个三角形相似; 2、寻找相似模型的大前提是平行线:平行于三角形一边的直线和其他两边或两边延长线 相交,所构成的三角形与原三角形相似。 3、相似三角形性质:1.相似三角形的一切对应线段(对应高、对应边)的比等于相似比; ②相似三角形周长的比等于相似比;③相似三角形面积的比等于相似比的平方。 相似模型大致分为金字塔模型、沙漏模型这两大类,注意这两大类中都含有 BC 平行 DE 这样的一对平行线!

平面几何60条著名定理

1、勾股定理(毕达哥拉斯定理) 2、射影定理(欧几里得定理) 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 6、三角形各边的垂直一平分线交于一点。 7、三角形的三条高线交于一点 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD 20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,

几何五大模型之二(鸟头定理)

三角形之鸟头模型 共角定理(鸟头模型) 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在△ABC 中,D,E 分别是AB,AC 上的点如图(或D 、E 分别在BA 、CA 延长线上),则 AC AB AE AD AC AE AB AD S S ABC ADE ??=?=?? (夹角两边:大 大小 小??) 即,共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 例题讲解: 1、如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上。求三角形ABD 的面积是三角形ADC 面积的多少倍? 2、如右图,已知在△ABC 中,BE=3AE ,CD=2AD .若△ADE 的面积为1平方厘米.求三角形ABC 的面积. 3、如图在△ABC 中,D 在BA 的延长线上,E 在AC 上,且AB : AD = 5 : 2,AE :EC = 3: 2, 平方厘米12=?ADE S ,求△ABC 的面积.

4、 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘 米,求ABC △的面积. E D C B A 【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那 么三角形ABC 的面积是多少? E D C B A A B C D E 【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面 积是甲部分面积的几倍? 乙 甲 E D C B A A B C D E 甲 乙 5、 如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =, :3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积. E D C B A E D C B A

专题平面几何的四个重要定理

专题平面几何的四个重 要定理 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

竞赛专题讲座06 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、 Q、R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点 的充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求 证:。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的 中点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、 BF、CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的 比为AM:AC=CN:CE=k,且B、M、N共 线。求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、 R b、R c表示O到A、B、C的距离。

第十九讲平面几何中的几个著名定理

第十九讲平面几何中的几个著名定理 几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过演绎推理得到不少结论,这些结论一般就称为定理.平面几何中有不少定理,除了教科书中所阐述的一些定理外,还有许多著名的定理,以这些定理为基础,可以推出不少几何事实,得到完美的结论,以至巧妙而简捷地解决不少问题.而这些定理的证明本身,给我们许多有价值的数学思想方法,对开阔眼界、活跃思维都颇为有益.有些定理的证明方法及其引伸出的结论体现了数学的美,使人们感到对这些定理的理解也可以看作是一种享受.下面我们来介绍一些著名的定理. 1.梅内劳斯定理 亚历山大里亚的梅内劳斯(Menelaus,约公元100年,他和斯巴达的Menelaus是两个人)曾著《球面论》,着重讨论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理”现载在初等几何和射影几何的书中,是证明点共线的重要定理. 定理一直线与△ABC的三边AB,BC,CA或延长线分别相交于X,Y,Z,则 证过A,B,C分别作直线XZY的垂线,设垂足分别为Q,P,S,见图3-98.由△AXQ∽△BXP得

同理 将这三式相乘,得 说明(1)如果直线与△ABC的边都不相交,而相交在延长线上,同样可证得上述结论,但一定要有交点,且交点不在顶点上,否则定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为 AX×BY×CZ=XB×YC×ZA, 仍然成立. (2)梅内劳斯定理的逆定理也成立,即“在△ABC 的边AB和AC上分别取点X,Z,在BC的延长线上取点Y,如果 那么X,Y,Z共线”.梅内劳斯定理的逆定理常被用来证明三点共线. 例1 已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D,求证:D,E,F共线. 证如图3-99有 相乘后得

几何五大模型汇总

小学平面几何五大模型 一、 共角定理 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E分别是, AB AC上的点如图⑴(或D在BA的延长线上,E在AC上),则:():() S S AB AC AD AE =?? △△ 证明:由三角形面积公式S=1/2*a*b*sinC可推导出 若△ABC和△ADE中, ∠BAC=∠DAE 或∠BAC+∠DAE=180°, 则 ADE ABC S S ? ? = AE AD AC AB ? ? 二、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如下图 12 :: S S a b = ③夹在一组平行线之间的等积变形,如右图 ACD BCD S S= △△ ; 反之,如果 ACD BCD S S = △△ ,则可知直线AB平行于CD. ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. b a S2 S1 D C B A

三、蝶形定理 1、任意四边形中的比例关系(“蝶形定理”): ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 速记:上×下=左×右 蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面 可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 2、梯形中比例关系(“梯形蝶形定理”): ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +. 四、相似模型 (一)金字塔模型 (二) 沙漏模型 G F E A B C D A B C D E F G ①AD AE DE AF AB AC BC AG ===; ②22:ADE ABC S S AF AG =△△:. 相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下: ⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; A B C D O b a S 3 S 2 S 1S 4 S 4 S 3 S 2 S 1O D C B A

初中平面几何四个重要定理

初中数学知识重点整理 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、 R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的 充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求证: 。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的中 点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、BF、 CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的比 为AM:AC=CN:CE=k,且B、M、N共线。 求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、R b、R c表示O到A、B、C的距离。

认识平面几何的61个著名定理

【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】 ★1、勾股定理(毕达哥拉斯定理) ★2、射影定理(欧几里得定理) ★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线和两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 ★6、三角形各边的垂直平分线交于一点。 ★7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 ★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: ()()()s c s b s a s r ---=,s 为三角形周长的一半 ★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC 的边BC 的中点为P ,则有AB 2+AC 2=2(AP 2+BP 2) 16、斯图尔特定理:P 将三角形ABC 的边BC 分成m 和n 两段,则有n×AB 2+m×AC 2=BC×(AP 2+mn ) 17、波罗摩及多定理:圆内接四边形ABCD 的对角线互相垂直时,连接AB 中点M 和对角线交点E 的直线垂直于CD 18、阿波罗尼斯定理:到两定点A 、B 的距离之比为定比m:n (值不为1)的点P ,位于将线段AB 分成m:n 的内分点C 和外分点D 为直径两端点的定圆周上 ★19、托勒密定理:设四边形ABCD 内接于圆,则有AB×CD+AD×BC=AC×BD

平面几何-五大定理及其证明

平面几何定理及其证明 梅涅劳斯定理 1 .梅涅劳斯定理及其证明 定理:一条直线与 ABC 的三边AB BC CA 所在直线分别交于点 D E 、F ,且D E 、F 均 证明:如图,过点C 作AB 的平行线,交EF 于点G. 因为 CG // AB ,所以 CG CF --------------------- ( 1) AD FA 因为 CG // AB ,所以 EC ( 2) DB BE C F ,即得 A D C F EC FA DB EC FA 2.梅涅劳斯定理的逆定理及其证明 定理:在 ABC 的边AB BC 上各有一点 D E ,在边 AC 的延长线上有一点 F ,若 二、 塞瓦定理 3 .塞瓦定理及其证明 定理:在ABC 内一点P,该点与ABC 的三个顶点相连所在的 三条直线分别交 ABCE 边AB BC CA 于点D E 、F ,且D E 、F 三点均不是 ABC 不是ABC 的顶点,则有 AD BE CF 1 DB EC 由(1)宁(2) DB 可得兀 AD BE CF DB EC FA 1 ,那么,D E 、F 三点共线. 证明:设直线EF 交AB 于点D ,则据梅涅劳斯定理有 AD / BE CF 丽 EC FA 因为AD Bl CF DB EC FA 1,所以有誥 段AB 上,所以点D 与D 重合.即得D 鴿.由于点D D 都在线 E 、F 三点共线. 证明: 运用面积比可得 AD DB S ADP S BDP S ADC S BDC 根据 等 比定理有 S ADP S ADC S ADC S ADP S APC S S BDP BDC S BDC S BDP S

平面几何的几个重要定理--托勒密定理

托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组 对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之 和). 即:ABCD AB CD AD BC AC BD ?+?≥? 定理:在四边形中,有: ABCD 并且当且仅当四边形内接于圆时,等式成立; () ABCD E BAE CAD ABE ACD AB BE ABE ACD AB CD AC BE AC CD AB AE BAC EAD ABC AED AC AD BC ED AD BC AC ED AC AD AB CD AD BC AC BE ED AB CD AD BC AC BD E BD A B C ∠=∠∠=∠ ??∴=??=? =∠=∠∴?? ∴=??=? ∴?+?=?+ ∴?+?≥? 证:在四边形内取点,使, 则:和相似 又且和相似 且等号当且仅当在上时成立,即当且仅当、、、 一、直接应用托勒密定理 例1如图2,P是正△ABC外接圆的劣弧上任一点(不与B、C重合), 求证:PA=PB+PC. 分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为 繁冗.若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB, ∵AB=BC=AC.∴PA=PB+PC. 二、完善图形借助托勒密定理 例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2 证明:如图,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是 圆内接四边形. 由托勒密定理,有AC·BD=AB·CD+AD·BC.① 又∵ABCD是矩形,∴AB=CD,AD=BC,AC=BD.② 把②代人①,得AC2=AB2+BC2. 例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD, 求证:AD·BC=BD(AB+AC). 证明:连结CD,依托勒密定理,有AD·BC=AB·CD+AC·BD. ∵∠1=∠2,∴BD=CD. 故AD·BC=AB·BD+AC·BD=BD(AB+AC). 三、构造图形借助托勒密定理 例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1. 证明:如图作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB, 使AC=a,BC=b,BD=x,AD=y. 由勾股定理知a、b、x、y是满足题设条件的. 据托勒密定理,有AC·BD+BC·AD=AB·CD. ∵CD≤AB=1,∴ax+by≤1. 四、巧变原式妙构图形,借助托勒密定理 例5已知a、b、c是△ABC的三边,且a2=b(b +c),求证:∠A=2∠B. 分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进 而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c. 证明:如图,作△ABC 的外接圆,以A为圆心,BC为半径作弧交圆于 D,连结BD、DC、DA.∵AD=BC,ACD BDC =∴∠ABD=∠BAC. 又∵∠BDA=∠ACB(对同弧),∴∠1=∠2. 依托勒密定理,有BC·AD=AB·CD+BD·AC.① 而已知a2=b(b+c),即a·a=b·c+b2.② ∴∠BAC=2∠ABC. 五、巧变形妙引线 借肋托勒密定理 例6在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4, 分析:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆联系起 来,可联想到托勒密定理,进而构造圆内接四边形. 如图,作△ABC的外接圆,作弦BD=BC,边结AD、CD. 在圆内接四边形ADBC中,由托勒密定理, 有AC·BD+BC·AD=AB·CD 易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC, 1.已知△ ABC 中,∠ B=2∠ C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。 则CD=DA=AB,AC=BD。由托勒密定理,AC·BD=AD·BC+CD·AB。 2.ABC BC P BC AC AB PK PL PN BC AC AB PK PL PM ? =+ 由外接圆的弧上一点分别向边、与作垂线、和, 求证:

小学数学几何五大模型教师版

几何五大模型 一、五大模型简介 (1)等积变换模型 1、等底等高的两个三角形面积相等; 2、两个三角形高相等,面积之比等于底之比,如图①所示,S1:S2=a:b; 3、两个三角形底相等,面积在之比等于高之比,如图②所示,S1:S2=a:b; 4、在一组平行线之间的等积变形,如图③所示,S△ACD=S△BCD;反之,如果S△ACD=S△BCD,则可知直线AB平行于CD。 例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

(2)鸟头(共角)定理模型 1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形; 2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。 如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点 则有:S△ABC:S△ADE=(AB×AC):(AD×AE) 我们现在以互补为例来简单证明一下共角定理! 如图连接BE,根据等积变化模型知,S△ADE:S△ABE=AD:AB、S△ABE:S△CBE=AE:CE,所以S△ABE:S△ABC=S△ABE:(S△ABE+S△CBE)=AE:AC,因此S△ADE:S△ABC=(S△ADE:S△ABE)×(S△ABE:S△ABC)=(AD:AB)×(AE:AC)。 例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC的面积。

(3)蝴蝶模型 1、梯形中比例关系(“梯形蝴蝶定理”) 例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC 的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。 2、任意四边形中的比例关系(“蝴蝶定理”):

平面几何的几个重要的定理

平面几何的几个重要的定理 一、梅涅劳斯定理: 1=??=??B A A C C B C B A h h h h h h RB AR QA CQ PC BP l C B A h h h 的垂线的长度,则:到直线 、、分别是、、证:设 注:此定理常运用求证三角形相似的过程中的 线段成比例的条件; 。 的交点,证明:与是的中点,是上,在点 的平分线,是是斜边上的高,中,:若直角例CE //BF CK DE F AC D AK E ACK CE CK ABC ∠?11PC BP R Q P AB CA BC ABC ABC l 1=??RB AR QA CQ ,则 、、的延长线分别交于或它们、、的三边的顶点,并且与不经过:若直线定理??CE //BF CKE FKB KE BK KC KF BE BK FC KF BE BK BC BP AC EP AC CK AE EK FC KF 1FC KF EK AE DA CD F E D ACK EP CK EP BC EBC CE BH 90HCB ACE HCB HBC ACE HBC ACK EBC BH B EBC ∴?∴= ====??=∴⊥?=∠+∠=∠+∠∠=∠∠=∠∠?????= 依分比定理有:=即:=于是依梅涅劳斯定理有:、、和三点对于,则:上的高作为等腰三角形 即:则:的平分线中,作在证:Θ

1 11 111111111D B D A : C B C A B D AD :BC AC D C B A D C B A K 1=,试证:、、、和、、、线分别交这四条直线于引四条直线,另两条直】从点【练习 注:此定理常用于证明三点共线的问题,且常需要多次使用 再相乘; 共线; 、、证明点引的垂线的垂足, 、、向是从点、、的外接圆上;位于点例111111C B A AB CA BC P C B A ABC P .2? 三点共线; 、、综上可得:也重合与的延长线上时,同在与类似地可证得当矛盾=这与于是可得即这时设必定重合,不然的话,与线段上,则同在与若的延长线上; 线段上,或者同在或者同在与因此,或边上的点的个数也为三点中,位于、、由于在同一直线上的= ,则:又得: ,于是由定理交于与直线证:设直线R Q P R R AB R R BR AR BR AR BR AR BR AR ,BR BR ,AR AB AR AB ,AR AR R R AB R R AB AB R R 20ABC R Q P RB AR B R AR 1RB AR QA CQ 1B R AR QA CQ 1R AB PQ ''' ' ' ' ' ' ''''''''' '> <-<->=??=???PC BP PC BP Θ三点共线; 、、求证:, ,这时若或边上的点的个数为三点中,位于、、三点,并且 上或它们的延长线上的、、的三边分别是、、:设定理R Q P PC BP 20ABC R Q P AB CA BC ABC R Q P 21RB AR QA CQ =???? C B A 1 A 1 B 1 C 三点共线; 、、依梅涅劳斯定理可知,=可得 且将上面三条式子相乘, 证:易得:1111 1 1111111111C B A 1BC AC AB CB CA BA 180PBA PCA ,PCB PAB ,PBC PAC PBA cos PB PAB cos AP BC AC PAC cos AP PCA cos CP AB CB , PCB cos CP PBC cos BP CA BA ???=∠+∠∠=∠∠=∠∠?∠?-=∠?∠?-=∠?∠?-=Θ

平面几何四大定理

平面几何四大定理 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Me nelau s)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R,则P、Q 、R共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Pto lemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(S imso n)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△A BC的边BC 上的中线,直线CF 交AD 于F 。求 证:FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B、D 之一作CF 的平行 线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F,交CB 于

平面几何四大定理 D 。 求证: 1FA CF EA BE =+。 【分析】连结并延长AG 交BC 于M,则M为BC 的中点。 DEG 截△AB M→1DB MD GM AG EA BE =??(梅氏定理) D GF 截△AC M→1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE + =MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、C A、AB 边上, λ===EA CE FB AF DC BD ,A D、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△B CE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 【评注】塞瓦定理 5. 已知△ABC 中,∠B=2∠C。求证:AC 2=AB 2+AB ·B C。

相关文档
相关文档 最新文档