文档库 最新最全的文档下载
当前位置:文档库 › 第一角投影法和第三角投影法

第一角投影法和第三角投影法

第一角投影法和第三角投影法
第一角投影法和第三角投影法

第一角投影法和第三角投影法(GB/T14692—1993)

注:绘制机械制图时,应以采用正投影法为主,以轴侧投影法及透视投影法为辅.

第一章解三角形练习题及答案

必修5第一章《解三角形》练习题 一、选择题 1.在ABC ?中,6=a , 30=B , 120=C ,则ABC ?的面积是( ) A .9 B .18 C .39 D .318 2.在ABC ?中,若 b B a A cos sin = ,则B 的值为( ) A . 30 B . 45 C . 60 D . 90 3.在ABC ?中,若B a b sin 2=,则这个三角形中角A 的值是( ) A . 30或 60 B . 45或 60 C . 60或 120 D . 30或 150 4.在ABC ?中,根据下列条件解三角形,其中有两个解的是( ) A .10=b , 45=A , 70=C B .60=a ,48=c , 60=B C .7=a ,5=b , 80=A D .14=a ,16=b , 45=A 5.已知三角形的两边长分别为4,5,它们夹角的余弦是方程02322 =-+x x 的根,则第三边长是( ) A .20 B .21 C .22 D .61 6.在ABC ?中,如果bc a c b c b a 3))((=-+++,那么角A 等于( ) A . 30 B . 60 C . 120 D . 150 7.在ABC ?中,若 60=A ,16=b ,此三角形面积3220=S ,则a 的值是( ) A .620 B .75 C .51 D .49 8.在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为( ) A . 223 B .233 C .2 3 D .33 9.在ABC ?中,若12+= +c b , 45=C , 30=B ,则( ) A .2,1= =c b B .1,2==c b C .221,22+== c b D .2 2 ,221=+=c b 10.如果满足 60=∠ABC ,12=AC ,k BC =的△ABC 恰有一个,那么k 的取值范围是( ) A .38=k B .120≤

高中数学必修五 第一章 解三角形知识点归纳

高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若2 2 2 a b c +<,则90C >. 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12 、请同学们自己复习巩固三角函数中 诱导公式及辅助角公式(和差角、倍角等) 。

机械制图三视图的第三角法和第一角如何区分

三视图的第三角法和第一角法划分: 一、第一角投影法 1.凡将物体置於第一象限内,以「视点(观察者)」→「物体」→「投影面」关系而投影视图的画法,即称为第一角法。亦称第一象限法 2.第一角投影箱之展开方向,以观察者而言,为由近而远之方向翻转展开。 3.第一角法展开后之视图排列如下,以常用之三视图(前视、俯视、右侧视图)而言,其右侧视图位於前视图之左侧,俯视固则位於前视图之正下方。 二.、第三角投影法 1.凡将物体置於第三象限内,以「视点(观察者)」→「投影面」→「物体」关系而投影视图的画法,即称为第三角法。亦称第三象限法。

2.第三角投影箱之展开方向,以观察者而言,为由远而近之方向翻转展开。 3.第三角法展开后之六个视固排列如下,以常用之三视图而言,其右侧视图位於前视图之右侧,而俯视图则位於前视图之正上方。 CNS 相关规定 CNS中国国家标准之象限投影符号,系将一截头圆锥之前视图与左侧视图,依投影之排列而得。主要之区别为第一角法符号(左侧视图排在右边),而第三角法符号(左侧视图位在左边)。 对於正投影方法之使用,CNS规定第一角法或第三角法同等适用。但在同一张图纸上不可混合使用,且须在标题概内或其他明显处绘制符号或加注「第一角法」或「第三角法」字样。以作为读图之识别。 由於第二象限投影与第四象限投影因水平投影面旋转后与直立投影面重叠,致使投影视图线条混淆不清,增加绘固及识图不便,故不予采用。 欧洲各国盛行第一角法投影制,所以第一角法投影亦有「欧式投影制」之称呼。例如德国(DIN)、瑞士(VSM)、法国(NF).挪威(NS)等国家使用之。 美国采用第三角投影制,故有「美式投影制」之称呼。除美国(ANSI)外,尚盛行於美洲地区。而中华民国(CNS)、国际标准化机构(ISO)与日本[JIS]则采第一角法及第三角两制并行。 视图之排列,应依投影原理上下左右对齐排列,不得任意更换或未依据投影方式排置。 六种视图中最常用之三视图组合为:前视图、上视圆及右侧视图,一般均以L字形或逆向L字形之方式排列於图纸上。 我们国内用的是第一角画法,国外用第三角画法的比较多 第一角画法和第三角画法的区别是视图放的位置 第一角画法:左视图放右边,右视图放左边,上视图放下面,依此类推 第三角画法:左视图放左边,右视图放右边,上视图放上面,依此类推 在我们国家有关制图方面的国家标准中规定,我国采用第一角投影法。但有些国家(如美国、日本)则采用第三角投影法。伴随着我国的对外开放和WTO的加入及对外贸易和国际间技术交流的日趋增多,我们会越来越多的接触到采用第三角投影法绘制的图纸。为了更好地进行国际间的技术交流和发展国际贸易的需要,我们应该了解和掌握第三角投影法。 如图

1.本章规划(第一章 解三角形)

wenjian 第一章解三角形 本章规划 《课程标准》和教科书把“解三角形”这部分内容安排在数学必修五de第一部分,位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆de方程等与本章知识联系密切de内容,使这部分内容de处理有了比较多de工具,某些内容可以处理得更加简洁.教学中应加强与前后各章教学内容de联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,提高教学效益,并有利于学生对于数学知识de学习和巩固.要重视与内容密切相关de数学思想方法de 教学,并且在提出问题、思考解决问题de策略等方面对学生进行具体示范、引导. 1.教学内容 全章有三大节内容: 第一大节:正弦定理和余弦定理,这一节通过初中已学过de三角中de边角关系,让学生从已有de几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角de边角关系.我们是否能得到这个边、角de关系准确量化de表示呢?”重点是正弦定理de概念和推导方法,体现了从特殊到一般de思想,并可以向学生提出用向量来证明正弦定理,这一点可以让学生探究.在引入余弦定理内容时,提出探究性问题“如果已知三角形de两条边及其所夹de角,根据三角形全等de判定方法,这个三角形是大小、形状完全确定de三角形.我们仍然从量化de角度来研究这个问题,也就是研究如何从已知de两边和它们de夹角计算出三角形de另一边和两个角de问题”.设置这些问题,都是为了加强数学思想方法de 教学.比如对于余弦定理de证明,常用de方法是借助于三角形de方法,需要对三角形进行讨论,方法不够简洁,教科书则用了向量de方法,发挥了向量方法在解决问题中de威力.第二大节:应用举例,在应用两个定理解决有关de解三角形和测量问题de过程中,一个问题也常常有多种不同de解决方案,应该鼓励学生提出自己de解决办法,并对于不同de方法进行必要de分析和比较.对于一些常见de测量问题甚至可以鼓励学生设计应用de 程序,得到在实际中可以直接应用de算法.学生往往不能把实际问题抽象成数学问题,不能把所学de数学知识应用到实际问题中去,对所学数学知识de实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法de能力较强,但当面临一种新de问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题de科学思维方法了解不够.针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题. 第三大节:实习作业,适当安排一些实习作业,目de是让学生进一步巩固所学de知识,提高学生分析问题和解决实际问题de能力、动手操作de能力以及用数学语言表达实习过程和实习结果de能力,增强学生应用数学de意识和数学实践能力.教师要注意对学生实习作业de指导,包括对实际测量问题de选择,及时纠正实际操作中de 错误,解决测量中出现de一些问题. 2.作用与地位 本章de两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形de边角关系de结论.学习数学de最终目de是应用数学,而如今比较突出de两个问题是,学生应用数学de意识不强,创造能力较弱.为解决此问题,教学中要用联系de观点,从新de角度看过去de问题,使学生对于过去de知识有了新de认识,同时使新知识建立在已有知识de 坚实基础上,形成良好de知识结构. 3.学习目标 本章de中心内容是如何解三角形,正弦定理和余弦定理是解三角形de工具,最后落实wenjian 1

第一角投影法与第三角投影法

第一角投影法与第三角投影法 当前,世界上各国的机械工程图样,基本上采用正投影法来表达机件的结构和形状。所不同的是:有的国家采用第一角投影法;有的国家则采用第三角投影法;还有的国家则两种投影法并用。在国际标准150128一1982《技术制图一画法通则》,中,对机械工程图样采用的投影法作了明砷的规定:在表达机件结构时,第一角和第三角没影法具有同等效力。 第一角投影法: 1.凡将物体置于第一象限内,以「视点(观察者)」→「物体」→「投影面」关系而投影视图的画法,即称为第一角法。亦称第一象限法。 2.第一角投影箱之展开方向,以观察者而言,为由近而远之方向翻转展开。 3.第一角法展开后之视图排列如下,以常用之三视图(前视、俯视、右侧视图)而言,其右侧视图位於前视图之左侧,俯视固则位于前视图之正下方。 第三角投影法: 1.凡将物体置于第三象限内,以「视点(观察者)」→「投影面」→「物体」关系而投影视图的画法,即称为第三角法。亦称第三象限法。 2.第三角投影箱之展开方向,以观察者而言,为由远而近之方向翻转展开。 3.第三角法展开后之六个视图排列如下,以常用之三视图而言,其右侧视图位于前视图之右侧,而俯视图则位于前视图之正上方。 各国根据国情均有所侧重,其中俄罗斯、乌克兰、德国、罗马尼亚、捷克、斯洛伐克以及东欧等国均主要用第一角投影,而美国、日本、法国、英国、加拿大、瑞士、澳大利业、荷兰和墨西哥等国均主要用第三角投影。解放前我国也采用第三角投影,新中国成立后改用第一角投影。在引进的国外机械图样和科技书刊中经常会遇到第三角投影。 ISO国际标准规定了第一角和第三角的投影标记(图1和图2)。在标题栏中,画有标记符号,根据这些符号可识别图样画法,但有的图纸无投影标记。 图1 第一角画法标记符号图2 第三角画法标记符号 第三角投影空间可由正平面V、水平面H、侧平面W将其划分成八个区域,分别为第1、第2、第3、第4、第5、第6、第7、第8分角,如图3所示。 图3 将物体放在第一分角内投影称为第一角投影;将物体放在第三分角内投影称为第

三角法测距

三角法红外测距原理介绍 工作原理: Sharp的红外传感器都是基于一个原理,三角测量原理。红外发射器按照一定的角度发射红外光束,当遇到物体以后,光束会反射回来,如图1所示。反射回来的红外光线被CCD检测器检测到以后,会获得一 个偏移值L,利用三角关系,在知道了发射角度a,偏移距L,中心矩X,以及滤镜的焦距f以后,传感器 到物体的距离D就可以通过几何关系计算岀来了。 OCD检测器 滤镜 X 红外线发射器 图1:三角测量原理 可以看到,当D的距离足够近的时候,L值会相当大,超过CCD的探测范围,这时,虽然物体很近,但

是传感器反而看不到了。当物体距离D很大时,L值就会很小。这时CCD检测器能否分辨得岀这个很小 的L值成为关键,也就是说CCD的分辨率决定能不能获得足够精确的L值。要检测越是远的物体,CCD

的分辨率要求就越高。 非线性输岀: Sharp GS2XX 系列的传感器的输出是非线性的。没个型号的输出曲线都不同。所以,在实际使用前,最 好能对所使用的传感器进行一下校正。对每个型号的传感器创建一张曲线图,以便在实际使用中获得真实 有效的测量数据。下图是典型的 Sharp GP2D12的输出曲线图。 从上图中,可以看到,当被探测物体的距离小于 10cm 的时候, 输岀电压急剧下降,也就是说从电压读数来看,物体的距离应该是 越来越远了。但是实际上并不是这样的, 想象一下,你的机器人本 来正在慢慢的靠近障碍物,突然发现障碍物消失了, 一般来说,你 的控制程序会让你的机器人以全速移动,结果就是, "砰"的一声。 当然了,解决这个方法也不是没有, 这里有个小技巧。只需要改变 一下传感器的安装位置,使它到机器人的外围的距离大于最小探测 距离就可以了。如图3所示: 图2: Sharp GP2D12输出曲线 0.6 Q.2 価M 5ft 轴SO 帕M 90 DI MIMC 屯 to obiect leml 3.2.2.2.1 .uk V 1 Hr £ fly >m 冷"3 雷-<

高中数学必修5第一章解三角形全章教案整理

课题: §1.1.1正弦定理 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中, 角与边的等式关系。 从而在直角三角形ABC 中,sin sin sin a b c A B C == 思考:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则 sin sin a b A B =, C 同理可得 sin sin c b C B =, b a 从而sin sin a b A B =sin c C = A c B 从上面的研探过程,可得以下定理 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 sin sin a b A B =sin c C = [理解定理] (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)sin sin a b A B =sin c C =等价于sin sin a b A B =,sin sin c b C B =,sin a A =sin c C 从而知正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b =。 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。 例1.在?ABC 中,已知045A =,075B =,40a =cm ,解三角形。 例2.在?ABC 中,已知20=a cm ,202b =cm ,045A =,解三角形。

三角法与向量法解平面几何题(正)

第27讲 三角法与向量法解平面几何题 相关知识 在ABC ?中,R 为外接圆半径,r 为内切圆半径,2 a b c p ++=,则 1,正弦定理: 2sin sin sin a b c R A B C ===, 2,余弦定理:2 2 2 2cos a b c bc A =+-,2 2 2 2cos b a c ac B =+-,2 2 2 2cos c a b ab C =+-. 3,射影定理:cos cos a b C c B =+,cos cos b a C c A =+,cos cos c a B b A =+. 4,面积:211sin 2sin sin sin 224a abc S ah ab C rp R A B C R = ==== = (sin sin sin )rR A B C ++ 2 221(cot cot cot )4 a A b B c C = ++. A 类例题 例1.在ΔABC 中,已知b =asinC ,c =asin (900 -B ),试判断ΔABC 的形状。 分析 条件中有边、角关系, 应利用正、余弦定理, 把条件统一转化为边或者是角的关系, 从而判定三角形的形状。 解 由条件c = asin (900 - B ) = acosB = c b c a ac b c a a 222 22222-+=-+ 2 2222c b c a =-+? 是直角A b c a ?+=?2 22 1sin sin sin =?=A A C c A a 是直角?? ?C a c C c a sin sin =?=?. Q C a b sin =?=? c b ΔABC 是等腰直角三角形。 例2.(1)在△ABC 中,已知cosA =13 5,sinB =53 ,则cosC 的值为( ) A .6516 B .6556 C .65566516或 D . 65 16- 解 ∵C = π - (A + B ),∴cosC = - cos (A + B ),又∵A ∈(0, π),∴sinA = 13 12,而sinB =53 显然sinA > sinB ,∴A > B , ∵A 为锐角, ∴B 必为锐角, ∴ cosB = 5 4 ∴cosC = - cos (A + B ) = sinAsinB - cosAcosB =65 1654135531312=?-?.选A . 说明 △ABC 中,sinA > sinB ?A > B . 根据这一充要条件可判定B 必为锐角。 (2)在Rt △ABC 中,C =90°,A =θ,外接圆半径为R ,内切圆半径为r ,

第一角与第角投影法

第一角投影法,,与第三角投影法 一、第一角投影法 1.凡将物体置於第一象限内,以「视点(观察者)」→「物体」→「投影面」关系 而投影视图的画法,即称为第一角法。亦称第一象限法。, 2.第一角投影箱之展开方向,以观察者而言,为由近而远之方向翻转展开。 3.第一角法展开后之视图排列如下,以常用之三视图(前视、俯视、右侧视图)而 言,其右侧视图位於前视图之左侧,俯视固则位於前视图之正下方。 二、第三角投影法 1.凡将物体置於第三象限内,以「视点(观察者)」→「投影面」→「物体」关系 而投影视图的画法,即称为第三角法。亦称第三象限法。 2.第三角投影箱之展开方向,以观察者而言,为由远而近之方向翻转展开。 3.第三角法展开后之六个视固排列如下,以常用之三视图而言,其右侧视图位於前视图之右侧,而俯视图则位於前视图之正上方。 在工程图的配置文件修改,如图示: 附件 2005-5-15 20:52

06.jpg(22.62 KB) 自改革开放以来,我引进了不少国外设备、图纸和其它技术资料,有不少发达国家的机械图样投影方法与我国所采用的投影方法不同。为了更好地学习发达国家的先进技术,故快速看懂国外机械图纸很有必要。 1 概述 当今世界上,ISO国际标准规定,第一角和第三角投影同等有效。各国根据国情均有所侧重,其中俄罗斯、乌克兰、德国、罗马尼亚、捷克、斯洛伐克以及东欧等国均主要用第一角投影,而美国、日本、法国、英国、加拿大、瑞士、澳大利业、荷兰和墨西哥等国均主要用第三角投影。解放前我国也采用第三角投影,新中国成立后改用第一角投影。在引进的国外机械图样和科技书刊中经常会遇到第三角投影。ISO 国际标准规定了第一角和第三角的投影标记(图1和图2)。在标题栏中,画有标记符号,根据些符号可识别图样画法,但有的图纸无投影标记。

必修5第一章《解三角形》全章教案

数学5 第一章 解三角形 课题: §1.1.1 正弦定理 授课类型:新授课 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, A 则 sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中, sin sin sin a b c A B C = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得 sin sin c b C B = , b a

第三角法和第一角法

第三角法和第一角法 第三角法和第一角法划分: 一、第一角投影法 1.凡将物体置于第一象限内,以「视点(观察者)」→「物体」→「投影面」关系而投影视图的画法,即称为第一角法。亦称第一象限法。 2.第一角投影箱之展开方向,以观察者而言,为由近而远之方向翻转展开。 3.第一角法展开后之视图排列如下,以常用之三视图(前视、俯视、右侧视图)而言,其右侧视图位于前视图之左侧,俯视固则位于前视图之正下方。 二.、第三角投影法 1.凡将物体置于第三象限内,以「视点(观察者)」→「投影面」→「物体」关系而投影视图的画法,即称为第三角法。亦称第三象限法。 2.第三角投影箱之展开方向,以观察者而言,为由远而近之方向翻转展开。 3.第三角法展开后之视固排列如下,以常用之三视图而言,其右侧视图位于前视图之右侧,而俯视图则位于前视图之正上方。

CNS 相关规定 CNS中国国家标准之象限投影符号,系将一截头圆锥之前视图与左侧视图,依投影之排列而得。主要之区别为第一角法符号(左侧视图排在右边),而第三角法符号(左侧视图位在左边)。 对于正投影方法之使用,CNS规定第一角法或第三角法同等适用。但在同一张图纸上不可混合使用,且须在标题概内或其它明显处绘制符号或加注「第一角法」或「第三角法」字样。以作为读图之识别。 由于第二象限投影与第四象限投影因水平投影面旋转后与直立投影面重叠,致使投影视图线条混淆不清,增加绘固及识图不便,故不予采用。 欧洲各国盛行第一角法投影制,所以第一角法投影亦有「欧式投影制」之称呼。例如德国(DIN)、瑞士(VSM)、法国(NF).挪威(NS)等国家使用之。 美国采用第三角投影制,故有「美式投影制」之称呼。除美国(ANSI)外,尚盛行于美洲地区。而中华民国(CNS)、国际标准化机构(ISO)与日本[JIS]则采第一角法及第三角两制并行。 视图之排列,应依投影原理上下左右对齐排列,不得任意更换或未依据投影方式排置。六种视图中最常用之三视图组合为:前视图、上视圆及右侧视图,一般均以L字形或逆向L字形之方式排列于图纸上。 我们国内用的是第一角画法,国外用第三角画法的比较多 第一角画法和第三角画法的区别是视图放的位置 第一角画法:左视图放右边,右视图放左边,上视图放下面,依此类推 第三角画法:左视图放左边,右视图放右边,上视图放上面,依此类推 来自https://www.wendangku.net/doc/0714127351.html,/hiautocad/blog/item/9464e903671ca088d43f7c97.html 第一角法与第三角法的区别 该贴对于那些对于对第一角法与第三角法不很清楚的同行有帮助! 1. 任何物体在空间位置都有八个位置,即所谓视角。因此就产生了不同的投影视图。第一角画法又叫“苏联”画法,也就是先见视图——再见实物。第三角画法又叫“ 美国”画法,其特点就是先见实物——再见视图。就其投影规律来讲第三角画法较为合理,因为它的视图名字就是它的视图位置,正象有的朋友讲的那样画轴侧图好象容易些。其实只要你熟练掌握了投影规律,两种画法都是一样的。目前以美国为代表的画法有日本,德国,加拿大等先进的资本主义国家,但英国除外。以前以苏联为首的东欧前社会主义国家都采用第一角视图画法,我们国家的整个工业体系,在五六十年代是全盘照搬前苏联那一套,当然采用的是第一角画法了。目前台湾翔虹CAD的画法属于美国画法,所以说了如上的话。 2. 简单地说,第一视角就是:图纸-实物-你的眼睛,即实物放在图纸和你的眼睛中间,从眼睛方向投影到图纸上;第三视角就是:实物-图纸-你的眼睛,即图纸放在实物和你的眼睛中间,实物往你的眼睛方向投影到图纸上.还有不能像以上所说的:简单说就是左视图在左边,右视图在右边! 3. 一角法又称投影法,而三角发又称镜象法

高中数学必修五第一章解三角形知识点总结及练习题

第一章 解三角形 1、正弦定理: 在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有: 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . 注意:正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。 2、已知两角和一边,求其余的量。 ⑤对于已知两边和其中一边所对的角的题型要注意解的情况。(一解、两解、无解三中情况)如:在三角形AB C中,已知a 、b、A(A 为锐角)求B。具体的做法是:数形结合思想 画出图:法一:把a扰着C点旋转,看所得轨迹以AD 当无交点则B 无解、 当有一个交点则B 有一解、 当有两个交点则B有两个解。 法二:是算出CD=bsinA,看a 的情况: 当a <bsinA ,则B无解 当bs inA<a≤b,则B有两解 当a=bsi nA或a>b 时,B 有一解 注:当A 为钝角或是直角时以此类推既可。 3、三角形面积公式: 111 sin sin sin 222 C S bc ab C ac ?AB =A ==B . 4、余弦定理: 在C ?AB 中,有2 2 2 2cos a b c bc =+-A , 2 2 2 2cos b a c ac =+-B , 2222cos c a b ab C =+-. 5、余弦定理的推论: 222 cos 2b c a bc +-A =, 222 cos 2a c b ac +-B =, 222 cos 2a b c C ab +-=. (余弦定理主要解决的问题:1、已知两边和夹角,求其余的量。2、已知三边求角)

第三角投影法

第三角投影法-CAL-FENGHAI.-(YICAI)-Company One1

第三角投影法简介 目前,在国际上使用的有两种投影制,即第一角投影(又称“第一角画法”)和第三角投影(又称“第三角画法”)。中国、英国、法国及意大利等欧洲国家采用第一角投影,美国、日本、新加坡及港资台资企业采用第三叫投影。 ISO 国际标准规定:在表达机件结构中,第一角和第三角投影法同等有效。 第一角投影法起于法国,盛行于欧洲大陆、德、法、意、俄等国,其中美、日及荷兰等国原先亦采用第一角投影法,后来改采用第三角法讫今。 在三投影面体系中,若将物体放在第三分角内,并使投影面处于观察者和物体之间,这样使得的投影称为第三角投影。 第一角投影与第三角投影的空间位置: 第三 分角 第一 分角

第一分角:第三分角: 第三角投影的六个基本视图: 空间模型 六个基本视图:

工程图样上,为了区别两种投影,允许在图样(纸)上的适当位置画出第一、第三投影的特征标志符号,该符号以圆锥带的视图表示,如下图: 第一角投影与第三角投影的区别:

第一视角第三视角 上图所示是对同一物体分别进行第一角投影和第三角投影时的轴测图。 主要有如下区别: 1)第一角投影:将物体放在观察者与投影面之间,即人→物→面的相对关系。第

三角投影:将投影面放在观察者与物体之间,即人→面→物的相对关系,假定投影面为透明的平面。 2)第一角投影各投影面展开的方法:H面向下旋转, W面向由后方旋转。第三角投影投影面展开的方法: H面上向旋转,P面向右前方旋转。 第三角投影图和第一角投影图之间的快速的转换方法 第三角投影第一角投影 前视图对应主视图 右视图移到V面投影左方右视图 顶视图移到V面投影下方俯视图 左视图移到V面投影右方左视图 底视图移到V面投影上方仰视图 后视图对应后视图 每个视图可以理解为:当观察者的视线垂直于相应的投影面时,他所看到的物体的实际图像。 图样中只有两个视图时,第三角投影与第一角投影的快速辨认方法: 正面正面 第一角投影左视图中正面背离主视图,第三角投影右视图中正面向着前视图。 实例: 第一角投影:

三角法测距

三角法红外测距原理介绍 Sharp的红外传感器都是基于一个原理,三角测量原理。红外发射器按照一定的角度发射红外光束,当遇到物体以后,光束会反射回来,如图1所示。反射回来的红外光线被CCD检测器检测到以后,会获得一个偏移值L,利用三角关系,在知道了发射角度a,偏移距L,中心矩X,以及滤镜的焦距f以后,传感器到物体的距离D就可以通过几何关系计算出来了。 图1:三角测量原理 可以看到,当D的距离足够近的时候,L值会相当大,超过CCD的探测范围,这时,虽然物体很近,但是传感器反而看不到了。当物体距离D很大时,L值就会很小。这时CCD检测器能否分辨得出这个很小的L值成为关键,也就是说CCD的分辨率决定能不能获得足够精确的L值。要检测越是远的物体,CCD

的分辨率要求就越高。 Sharp GS2XX系列的传感器的输出是非线性的。没个型号的输出曲线都不同。所以,在实际使用前,最好能对所使用的传感器进行一下校正。对每个型号的传感器创建一张曲线图,以便在实际使用中获得真实有效的测量数据。下图是典型的Sharp GP2D12的输出曲线图。 从上图中,可以看到,当被探测物体的距离小于10cm的时候, 输出电压急剧下降,也就是说从电压读数来看,物体的距离应该是 越来越远了。但是实际上并不是这样的,想象一下,你的机器人本 来正在慢慢的靠近障碍物,突然发现障碍物消失了,一般来说,你 的控制程序会让你的机器人以全速移动,结果就是,"砰"的一声。 当然了,解决这个方法也不是没有,这里有个小技巧。只需要改变 一下传感器的安装位置,使它到机器人的外围的距离大于最小探测 距离就可以了。如图3所示: 图2:Sharp GP2D12输出曲线

第一角和第三角视图

第五章第五章正投影 § 5一2 第一角投影與第三角投影與 一、第一角投影法 1.凡將物體置於第一象限內,以「視點(觀察者)」→「物體」→「投 影面」關係而投影視圖的畫法,即稱為第一角法。如圖5一3所示。 亦稱第一象限法。, 2.第一角投影箱之展開方向,以觀察者而言,為由近而遠之方向翻轉展 開。如圖5一4所示。 3.第一角法展開後之視圖排列如下,以常用之三視圖(前視、俯視、右 側視圖)而言,其右側視圖位於前視圖之左側,俯視固則位於前視圖之正下方。如圖5-5所示。 圖5一3 第一角投影箱圖5一4 第一角投影箱之展開 圖5-5 第一角法視圖之排列位置 二.、第三角投影法 1.凡將物體置於第三象限內,以「視點(觀察者)」→「投影面」→ 「物體」關係而投影視圖的畫法,即稱為第三角法。如固5一6所示。亦稱第三象限法。

圖5一6 第三角投影箱圖5一7 第三角投影箱之展開 2.第三角投影箱之展開方向,以觀察者而言,為由遠而近之方向翻轉展 開。如圖5一7所示。3〃第三角法展開後之六個視固排列如下,以常用之三視圖 而言,其右側視圖位於前視圖之右側,而俯視圖則位於前視圖之正上方。 如圖5一8所示。 圖5-8 第三角法視圖之排列位置 CNS 相關規定 CNS中國國家標準之象限投影符號,係將一截頭圓錐之前視圖與左側視 圖,依投影之排列而得。如圖5一9所示。主要之區別為第一角法符號(左側視圖排在右邊),而第三角法符號(左側視圖位在左邊)。 (a)截頭圓錐 (b)第一角法投影符號 (c)第三角法投影符號

圖5一9 投影符號之規定 對於正投影方法之使用,CNS規定第一角法或第三角法同等適用。但在 如前節所述:由於第二象限投影與第四象限投影因水平投影面旋轉後與直 立投影面重疊,致使投影視圖線條混淆不清,增加繪固及識圖不便,故不予採用。 歐洲各國盛行第一角法投影制,所以第一角法投影亦有「歐式投影制」之 稱呼。例如德國(DIN)、瑞士(VSM)、法國(NF).挪威(NS)等國家使用之。 美國採用第三角投影制,故有「美式投影制」之稱呼。除美國(ANSI)外, 尚盛行於美洲地區。而中華民國(CNS)、國際標準化機構(ISO)與日本[JIS] 則採第一角法及第三角兩制並行。 視圖之排列,應依投影原理上下左右對齊排列,不得任意更換或未依據 投影方式排置。 六種視圖中最常用之三視圖組合為:前視圖、上視圓及右側視圖,一般均 以L字形或逆向L字形之方式排列於圖紙上。

数学5必修第一章解三角形基础训练A组及答案

(数学5必修)第一章 解三角形 [基础训练A 组] 一、选择题 1 在△ABC 中,若0 030,6,90===B a C ,则b c -等于( ) A 1 B 1- C 32 D 32- 2 若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A A sin B A cos C A tan D A tan 1 3 在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A 直角三角形 B 锐角三角形 C 钝角三角形 D 等腰三角形 4 等腰三角形一腰上的高是3,这条高与底边的夹角为0 60,则底边长为( ) A 2 B 2 3 C 3 D 32 5 在△ABC 中,若B a b sin 2=,则A 等于( ) A 0 06030或 B 0 06045或 C 0 060120或 D 0 015030或 6 边长为5,7,8的三角形的最大角与最小角的和是( ) A 0 90 B 0 120 C 0 135 D 0 150 二、填空题 1 在Rt △ABC 中,0 90C =,则B A sin sin 的最大值是_______________ 2 在△ABC 中,若=++=A c bc b a 则,2 22_________ 3 在△ABC 中,若====a C B b 则,135,30,20 0_________ 4 在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________ 5 在△ABC 中,,26-= AB 030C =,则AC BC +的最大值是________ 三、解答题

高中数学必修五--第一章---解三角形知识点归纳

- 1 - 高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C < ;③若222a b c +<,则90C > . 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12 、请同学们自己复习巩固三角函数中 诱导公式及辅助角公式(和差角、倍角等) 。

第三角投影法

第三角投影法简介 目前,在国际上使用的有两种投影制,即第一角投影(又称“第一角画法”)和第三角投影(又称“第三角画法”)。中国、英国、法国及意大利等欧洲国家采用第一角投影,美国、日本、新加坡及港资台资企业采用第三叫投影。 ISO国际标准规定:在表达机件结构中,第一角和第三角投影法同等有效。 第一角投影法起于法国,盛行于欧洲大陆、德、法、意、俄等国,其中美、日及荷兰等国原先亦采用第一角投影法,后来改采用第三角法讫今。 在三投影面体系中,若将物体放在第三分角内,并使投影面处于观察者和物体之间,这样使得的投影称为第三角投影。

第一角投影与第三角投影的空间位置: 第一分角: 第三分角: 第三角投影的六个基本视图: 空间模型

六个基本视图: 工程图样上,为了区别两种投影,允许在图样(纸)上的适当位置画出第一、第三投影的特征标志符号,该符号以圆锥带的视图表示,如下图:

第一角投影与第三角投影的区别: 第一视角第三视角 上图所示是对同一物体分别进行第一角投影和第三角投影时的轴测图。

主要有如下区别: 1)第一角投影:将物体放在观察者与投影面之间,即人→物→面的相对关系。第三角投影:将投影面放在观察者与物体之间,即人→面→物的相对关系,假定投影面为透明的平面。 2)第一角投影各投影面展开的方法:H面向下旋转,W面向由后方旋转。第三角投影投影面展开的方法:H面上向旋转,P面向右前方旋转。 第三角投影图和第一角投影图之间的快速的转换方法 第三角投影第一角投影 前视图对应主视图 右视图移到V面投影左方右视图 顶视图移到V面投影下方俯视图 左视图移到V面投影右方左视图 底视图移到V面投影上方仰视图 后视图对应后视图 每个视图可以理解为:当观察者的视线垂直于相应的投影面时,他所看到的物体的实际图像。 图样中只有两个视图时,第三角投影与第一角投影的快速辨认方法: 正面正面第一角投影左视图中正面背离主视图,第三角投影右视图中正面向着前视图。

三角法红外测距原理介绍

三角法红外测距原理介绍 工作原理: Sharp的红外传感器都是基于一个原理,三角测量原理。红外发射器按照一定的角度发射红外光束,当遇到物体以后,光束会反射回来,如图1所示。反射回来的红外光线被CCD检测器检测到以后,会获得一个偏移值L,利用三角关系,在知道了发射角度a,偏移距L,中心矩X,以及滤镜的焦距f以后,传感器到物体的距离D就可以通过几何关系计算出来了。 图1:三角测量原理

可以看到,当D的距离足够近的时候,L值会相当大,超过CCD的探测范围,这时,虽然物体很近,但是传感器反而看不到了。当物体距离D很大时,L值就会很小。这时CCD检测器能否分辨得出这个很小的L 值成为关键,也就是说CCD的分辨率决定能不能获得足够精确的L值。要检测越是远的物体,CCD的分辨率要求就越高。 非线性输出: Sharp GS2XX系列的传感器的输出是非线性的。没个型号的输出曲线都不同。所以,在实际使用前,最好能对所使用的传感器进行一下校正。对每个型号的传感器创建一张曲线图,以便在实际使用中获得真实有效的测量数据。下图是典型的Sharp GP2D12的输出曲线图。 图2:Sharp GP2D12输出曲线 从上图中,可以看到,当被探测物体的距离小于10cm的时候,输出电压急剧下降,也就是说从电压读数来看,物体的距离应该是越来越远了。但是实际上并不是这样的,想象一下,你的机器人本来正在慢慢的靠近障碍物,突然发现障碍物消失了,一般来说,你的控制程序会让你的机器人以全速移动,结果就是,"砰"的一声。当然了,解决这个方法也不是没有,这里有个小技巧。只需要改变一下传感器的安装位置,使它到机器人的外围的距离大于最小探测距离就可以了。如图3所示:

相关文档
相关文档 最新文档