文档库 最新最全的文档下载
当前位置:文档库 › 大容量高功率锂离子电池研究进展_毕道治

大容量高功率锂离子电池研究进展_毕道治

大容量高功率锂离子电池研究进展_毕道治
大容量高功率锂离子电池研究进展_毕道治

收稿日期:2007-05-20

作者简介:毕道治(1926-),男,河北省人,教授级高工。

Biography:BIDao-zhi(1926-),male,professor.

大容量高功率锂离子电池研究进展

毕道治

(天津电源研究所,天津300381)

摘要:发展电动车是解决能源危机和环境污染的有效手段之一。大容量高功率锂离子蓄电池是电动车的理想储能电源,因为它具有单体电压高、循环及使用寿命长、比能量高和良好的功率输出性能等优点。介绍了国内外大容量高功率锂离子蓄电池的研究进展,包括关键材料、技术性能和安全问题,并以作者的观点提出了大容量高功率锂离子蓄电池的发展前景和近期研究内容。关键词:锂离子蓄电池;电极活性材料;电解液;电动车;混合电动车中图分类号:TM912.9

文献标志码:A

文章编号:1008-7923(2008)02-0114-06

Researchprogressofhighcapacityandhighpower

Li-ionbatteries

BIDao-zhi

(TianjinPowerSourceInstitute,Tianjin300381,China)

Abstract:Developmentofelectricvehicleisoneoftheeffectivemeanstoovercomeproblemsofenvironmentpollutionandenergycrisis.HighcapacityandhighpowerLi-ionstoragebatteryisanappropriatepowersourceforelectricvehicleduetoitshighcellvoltage,longercyclelife,higherenergydensityandhighpowercharacteristics.ThedevelopmentstatusofhighcapacityandhighpowerLi-ionstoragebatteries,includingkeymaterials,technicalperformanceandsafetyproblemsarereviewedinthispaper.ThetechnicalissuesandthefutureofhighcapacityandhighpowerLi-ionbatteriesarefinalllydescribedinwriter'spointofview.

Keywords:Li-ionstoragebattery;electrodeactivematerial;electrolyte;EV;HEV

环境污染和能源危机是目前人类面临的两大课题,而燃油汽车的大量普及则是造成上述问题的主要原因之一。发展电动车是有效解决上述问题的重要手段,因为电动车具有能源多样化、污染排放少和能源利用效率高的优点。发展电动车的技术瓶颈问题是迄今为止还没有哪种电池使电动车的性价比能与燃油汽车相比。通过比较各类动力电池的典型性

能,可以看出锂离子电池具有单体电压高、比能量大和自放电小的优点,但也存在安全性差、

成本高和长期循环和贮存后性能下降的问题。为了充分利用并发挥锂离子电池的优势,克服其存在的缺点,世界各主要国家的政府、汽车制造商和相关科技人员都对大容量、高功率动力用锂离子蓄电池的研究非常重视。纷纷制定发展计划、投入大量人力、物力、财力积极进行研制。文章对大容量、高功率锂离子蓄电池的关键材料、性能水平和安全性等方面的研究进展进行综合评述,并探讨了今后的研发方向。

1大容量高功率锂离子电池的关键材料1.1

正极材料

在设计大容量高功率锂离子电池时,应着重考

虑选用安全性好、环境友好而且资源丰富成本低的材料。几种生产应用及正在研制的锂离子电池正极材料的性能对比列于表1。

表1

锂离子蓄电池正极材料性能对比

Table1PerformancecomparisonofdifferentpositivematerialsforLi-ionbatteries

LiCoO2

Li(Ni0.8Co0.2)O2

LiMn2O4

Li(NiCoMn)O2

LiFePO4

比容量/mAh?g-1140-160170-200110-120150-220160-170电位/V(vsLi/Li+)

3.73.63.83.6-3.9*3.5密度/g/cm35.01

4.96

4.28

4.69

3.60

循环性能好好良较好好安全性差差好较好好成本

较高

较低

性能

材料名称

LiCoO2是小型锂离子电池普遍采用的层状结构

材料,由于在充电和高温状态下存在安全问题,加之成本高,钴是稀贵资源,不宜在大容量高功率电池中采用。Li(Ni0.8Co0.2)O2成本比前者低,比容量高,但安全性比前者更差(其DSC热流750kJ/g,LiCoO2650kJ/

g),用于高功率电池时必须进行掺杂和表面包覆处

理。尖晶石LiMn2O4成本低,安全性好,资源丰富,是最早研究的动力锂离子蓄电池正极材料。缺点是循环性能差(尤其在高温下),比能量低。近年来经过研究改进,采用掺杂Al和表面包覆技术改善了循环性能,成为大容量高功率锂离子电池具有应用前景的正极材料。为了满足高功率电池要求,需控制材料粒径在6-10μm。Li(NiCoMn)O2三元过渡金属层状氧化物,简称三元材料,由于在层状结构中以Ni和Mn取代部分钴,不但减少了钴用量,降低了成本,而且提高了晶体结构稳定性,在提高安全性的同时也提高了比容量。因为它可提高充电电压到4.6V仍保持良好可逆性,但不可逆容量也较大[1]。合成方法一般有固相法和共沉淀法,由于共沉淀法先制成(NiCoMn)

(OH)2前驱体,然后再与Li2CO3、LiNO3、LiOH等锂源

在750~1000℃烧结而成。取得产品类似球形,锂化后稍有收缩,具有流动性好、成分均匀的特点[2]。橄榄石型LiFePO4是1997年A.K.Padhi等[3]首先提出的,具有资源丰富、成本低、稳定性的优点,其安全性是目前所有新开发的正极材料中最好的。又由于这种材料充电电位较低,可允许0.7V的过充电电压,非常有利于多个电池串联时的均匀性控制。缺点是密度低,导电率低。目前研究重点是通过掺杂及表面包覆

工艺提高其电子导电性以改善其高倍率放电性能[4]。已研发了多种合成方法,如高温固相法、低温液相法、溶胶凝胶法、共沉淀法、水热法、微波法和机械法等。合成的关键是抑制Fe3+的生成。

1.2负极材料

负极活性材料仍以碳基材料为主,包括中间相

碳微球(MCMB)、天然石墨(NGR)和硬碳(HC)。MCMB为球形,流动性好,易于制成优良的高密度电极,但价格较高;NGR比容量大,价格低,缺点是不可逆容量较大,而且由于辊压电极时表面上的石墨片层取向平行于导流体,影响锂离子的扩散途径,对高倍率放电不利,所以NGR的改性与表面修饰是研究的主要方向[5]。目前从实用角度考虑NGR与其它碳材混用较为普遍;HC是指难于石墨化的碳材,该材料的优点是具有较大比容量和大于石墨的锂离子扩散系数,缺点是不可逆容量较大,有电位滞后现象。由于

HC具有较宽的嵌锂电位范围和良好的锂离子扩散

系数,便于锂离子快速嵌入而不析出金属锂,特别适合HEV对大功率充电特性的要求[6]。

尖晶石型钛酸锂(Li4Ti5O12)的特点是在锂离子嵌入/脱嵌过程中体积基本无变化(零体积效应),因此具有非常好的循环性能,同时其氧化还原电位较高(1.55V,vsLi/Li+),不易生成厚的SEI膜和难于析出金属锂,有利于电池的循环稳定性和长寿命。是长寿命、高功率锂离子电池值得注意的负极材料。缺点是电压低,成本高。

硅、锡等锂合金材料虽然具有高的比容量,但充放电过程中体积变化太大,循环性能差,一般不作为

*取决于充电截止电压4.2-4.6V

电池工业ChineseBatteryIndustry

毕道治:大容量高功率锂离子电池研究进展

高功率型锂离子蓄电池的主要材料。

1.3电解液

电解液是大容量高功率锂离子电池的重要材料之一,是影响高功率性能和安全性能的重要因素。目前仍采用LiPF6为电解质盐,碳酸乙烯脂(EC)和直链碳酸脂的混合溶剂电解液。美国ANL探索使用Li-BOB盐或LiBOB与LiPF6的混合盐。认为对稳定SEI延长循环寿命有益。电解液对隔膜材料(微孔聚丙烯,聚乙烯)的润湿性随溶剂的种类而变。一般EC和PC的润湿性较差,而直链碳酸脂DMC和DEC具有较好润湿性,含有DEC的混合溶剂具有较好的润湿性和离子导电性。所以综合考虑电化学稳定性、离子导电率、隔膜润湿性、高低温性能等,一般电解液均含有EC和DEC等基本成分。在电解液方面研究较多的是各种功能添加剂,如为提高SEI膜的稳定性添加碳酸亚乙脂(VC)、VEC和含硫和硼的添加剂等[7];为防止过充电常添加联苯;为提高安全性添加磷酸脂类阻燃剂和氟取代溶剂等[8]。

2大容量高功率锂离子蓄电池的研发及应用现状2.1电动工具用高功率锂离子电池

目前无线电动工具日益普及,对电池年需求量已达将近5亿只,形成了一定规模市场。现在Cd-Ni电池是主导产品,然而随着环保呼声日益强烈,最终淘汰Cd-Ni电池势在必行。电动工具制造商逐渐看好高功率锂离子电池。

一些代表性电动工具用锂离子电池列于表2。电池一般可用10C倍率放电,比能量达到100Wh/kg,循环寿命>400次,自放电<7%/月,电池可在-20℃工作,性能比Cd-Ni电池优越得多。表中所列的以LiMn2O4和LiFePO4作为正极材料的高功率电池产品都已投入规模生产。

表2电动工具用高功率锂离子蓄电池

Table2Thehigh-powerLi-ionbatteriesforelectrictools

制造商电池型号容量

/Ah

电压/V比能量

/Wh?L-1

正极材料负极材料最高最低

索尼us18650V

us23650T

1.60

2.50

4.2

4.1

2.5

2.5

250

250

Li(NiCoMn)O2+LiMn2O4

同上

无定型碳

石墨

莫利IMP267003.004.22.5285LiMn2O4无定型碳A123/比克267003.004.22.5-LiFePO4石墨

天津力神26650

18650

3.00

1.80

4.2

4.2

2.5

2.5

270

Li(NiCoMn)O2

同上

石墨

石墨

2.2电动自行车用大容量锂离子蓄电池

作为欠发达国家平民的代步工具,电动自行车近年来已形成一个新兴产业,据我国有关统计报导,2006年产量已接近1800万辆,其中90%以上仍采用铅蓄电池。但铅蓄电池比能量太低,致使电池重量达12 ̄15kg。主要材料铅存在污染环境问题。一般认为锂离子蓄电池是最有希望的替代产品,目前主要障碍是价格偏高及安全问题。一般设计容量在10 ̄15Ah,也有采用两个标准D型电池并联的方案。设计电压有24V和36V。此类电池的比能量一般可达100Wh/kg以上,因此电池组重量为铅蓄电池的1/3左右,即3 ̄5kg。为了保证安全性,产品均附有专用充电器。表3列出我国主要生产厂的产品性能。2.3混合动力车(HEV)用超高功率锂离子电池混合动力车是电动车中目前唯一进入商品市场并加快发展的电动车。以日本丰田和本田两家汽车公司处于市场领导地位,2006年全球销量已接近40万辆,最近又提出PHEV(Plug-inHEV油电混合)和FCEV(FuelCellElectricVehicle电电混合)新的混合动力车概念,它结合了HEV和BEV的优点,可利用城市低峰电进行家庭充电。目前市场销售的HEV中,以MH-Ni电池为主,但随着超高功率锂离子蓄电池技术的日益成熟,有可能逐步取代MH-Ni电池部分市场。

表4汇总了国外HEV高功率锂离子蓄电池的研发现状,其中的功率值为50%DOD时10s脉冲的计算功率。

日本新阳光计划高功率锂离子电池的研发目标为比能量>70Wh/kg,比功率>1800W/kg,寿命15年用于FCV和HEV。从表4数据可看出所有参加研发

电池工业

ChineseBatteryIndustry

第13卷第2期

2008年4月

生产厂

容量容量

/Ah正级材料负极材料电极结构

工作温度范

围/℃

循环寿命/次(100%DOD)

备注

天津力神10Li(NiCoMn)O2

MCMB卷绕方型-25~55>500通过热箱150℃

蓝天双环10LiCoO2MCMB

圆柱-25~55~500---

苏州星恒

10

LiMn2O4掺杂人造石墨

极板组方型

-40~45

>500

通过UL认证

表3

我国主要电动自行车用锂离子电池性能

Table3PerformanceofthemainLi-ionbatteriesforEBsinChina

的厂家日立、GS-Yuasa、松下研发成果均超出指标要求。松下2005年底已完成22万次循环测试,日立电池在50%DOD下脉输出功率为2000W/kg,经41万次循环测试,性能无明显衰降。

日本NEDO于2007年2月公布了新的电动汽车用电池开发计划,斥资100亿日元通过“产学研”结合方式开发PHEV和BEV用电池,2015年目标比能量100W/kg,寿命10年,2015年以后比能量达

200Wh/kg,2030年达500Wh/kg。

美国能源部(DOE)和USABC已支持了3代动力锂离子电池的研发,分别为LiNi0.8Co0.15Al0.05O2/Gr、

LiMn2O4/Gr与LiMn2O4/Li4Ti5O12、Li1+X(Ni1/3Co1/3Mn1/3)1-XO2/Gr与C-LiFePO4/Gr;同时也对含硼电解质盐(LiBOB

等)添加剂,含氟难燃溶剂进行了研究。USABC在

2002年启动了FreedomCAR&VehicleTechnology

混合动力车计划;2006年研发状况与HEV电池目标对比见表5。USABC在2007年2月发布了PHEV研究目标,计划开发高比功率/能量型(纯电驱动10英里)和高比能/功率型(纯电驱动40英里)两类HEV用锂离子电池。计算得知高比功率/能量型电池组比能量为56.7Wh/kg,比功率为500W/kg,高比能/功率型电池组比能量要求为96.7Wh/kg,比功率为

208.3W/kg,两类电池寿命均要求15年/30万次。并

对价格、高低温性能提出要求。

韩国SDI现研究采用18650型电池进行组合开

发HEV高功率锂离子电池,单体电池DOD60%时脉冲功率>3500W/kg,组合电池比能量为31Wh/kg,计划2010年实现HEV高功率锂离子电池产业化,

LG公司采用叠片式软包装结构,正极采用尖晶石,

负极分别采用石墨和硬碳(性能参见表4)。

我国“十五”863电动车专项支持了混合动力车用锂离子电池技术开发,电池比功率从2002年的

491W/kg增长到2005年的1220W/kg,正极采用LiMn2O4,负极用石墨,模拟工况下循环寿命只积累到

30000次。

单体电池通过了滥用试验规范要求。苏州表4

国外主要电池制造商研制的HEV用高功率锂离子电池性能水平

Table4Theperformancelevelofhigh-powerLi-ionbatteriesforHEVsdevelopedbythemainbatterymanufacturers

制造商

正极材料负极材料

达到水平

结构特点

W/kgWh/kg日立

Mn基材料HC2104>607.9Ah圆柱型GYC

LiNi0.55Mn0.3Co0.15O2NRR.HC

282010310Ah椭圆型松下

LiNi0.57Co0.3Al0.17O2非晶碳(SC)

3400927Ah方型SAFTLiNi0.57Co0.3Al0.17O2

NGR189267.67Ah圆柱型LG

Mn尖晶石

HC

3200

66

7.5Ah软包装

项目目标(助力型HEV)

研发现状

脉冲放电功率/W25(18s)25-40能量回收脉冲功率/kW20(10s)20-35可用能量/Wh@3kW

300300-500循环寿命/次300K300K+使用寿命/年1510冷启动功率/kW@-30℃

5(2s)3-5工作温度/℃-35-52-10-40最大系统重量/kg4025-48最大系统体积/L3220-40售价(年产10万台计)/美元

500

900+

表5

HEV用高功率锂离子蓄电池研发现状与目标对比

(FreedomCAR)

Table5TheR&DstatusandtargetofhighpowerLi-ion

batteriesforHEVs

星恒公司生产的混合动力车用锂离子电池已通过美国UL安全认证。

2.4纯电动车(BEV)用大容量锂离子电池

法国SAFT公司开发的大容量用于纯电动车的锂离子蓄电池容量从27Ah到45Ah。电池在模拟工况下深充放(80%DOD)循环寿命已积累近2500次,第2000次放电曲线与第一次放电曲线的初始段几乎重合,容量只下降了9%。

我国“十五”863电动车专项也部分支持了纯电动车用大容量锂离子电池的开发,设计制造出50-100Ah容量范围的多个电池品种(包括圆柱型和方型),单电池比能量达到120Wh/kg,但深放电(80%DOD)循环寿命只有600次,只有部分单体电池可通过滥用试验规范要求。北京中信国安盟固利公司研制的大容量电动车用锂离子电池,单体容量为100Ah,正极材料为LiMn2O4,比能量(单体电池)达到100-120Wh/kg,正在做公交车装车运行试验。天津蓝天双环公司研发的大容量电动车用锂离子蓄电池,单体容量为80Ah,在天津清源电动车公司纯电动轿车做装车试验,一次充电行驶252.7km(40km/h),最高车速123km/h,加速至50km/h需6s,加速至100km/h需21s,爬坡度达到20%。

3大容量高功率锂离子电池的安全问题

3.1对电池内部各要素相互反应的认识

安全性是大容量高功率锂离子电池至关重要的问题。当前,为了提高其安全性和抗滥用性,应从单电池本身、电池模块设计及电池组系统设计3个方面着手。现仅介绍提高单电池抗滥用安全性的研究进展。

通过热流分析得知,当电池温度上升时,首先反应的是SEI膜的分解,发热量最大的是金属锂与电解液和黏结剂(PVDF)的反应,而正极材料LiMn2O4的热稳定性远高于Li(NiCo)O2,由于电池内各要素的相互作用,最终导致热失控。因此,为了提高安全性,首先要选择安全性好的(分解温度高,发热量小)正极活性材料和控制金属锂在负极上的析出。

3.2电池内活性材料的安全性

安全性较高的正极材料是LiMn2O4和LiFePO4,它们在电池过充时没有多余的锂放出,并且不产出氧。而LiCoO2,LiNiO2等层状结构材料过充时将会有大量金属锂在负极产生并放出氧,对安全是巨大威胁。因此大容量高功率锂离子电池应选用LiMn2O4和LiFePO4以及放热量较小的三元材料。如果选用层状结构正极材料应通过掺杂提高结构稳定性/或通过表面包覆阻断与电解液的直接反应,同时稳定材料的表面结构。

负极材料宜采用包覆的天然石墨和HC,由于HC具有大电流充电接受能力,更适于大功率锂离子电池采用。采用Li4Ti5O12为负极材料对大功率锂离子电池更有利,可获得良好的寿命和安全性。但对成本和比能量有负面影响。

电解液宜选用有效的功能添加剂或采用含氟难燃溶剂也有利于提高安全性。

3.3电池设计

电池形状分圆柱型、方型、长圆型及软包装,圆柱卷绕工艺易于大量生产,较易控制电芯的制备张力,保证良好的功率特性,并利于提高抗变形能力。但圆柱卷绕型不利于散热,对大容量电池的直径大小,既要保证容量,又要避免影响散热。对于高功率混合动力车而言,单体容量应设计在10Ah以下以提高安全性。

电池正、负极容量比是大容量高功率锂离子蓄电池设计中的又一重要因素。原则是保证过充时负极不析出金属锂,具体比例应根据正、负极材料种类及电化学特性而定。当然对电池极板的引流设计也应重视,以保证电流在整个极板上的均匀分布并减少局部过热现象。

其他如热熔断隔膜和安全泄压阀技术等对大容量高功率电池的安全性能也很重要。

三洋公司提出了一种双层极板概念,即用LiFe-PO4打底外涂一般正极活性材料如LiCoO2等,目的是当过充电时产生的FePO4使电阻和电压迅速上升达到保护电池。同理也有采用PTC为电极添加剂而使高温时电极电阻上升,阻断电极反应,提高安全性。

4结束语

锂离子电池不但具有当前各类蓄电池中最优的性能,而且其改进提高的空间也是最大的。为了大容量高功率锂离子蓄电池能大规模普及应用,今后,提高安全性、降低成本和延长寿命就成为研究重点。近期内的重点研究方向包括:

(1)正极材料:Li1+X(NiCoMn)1-XO2,改性LiFePO4

电池工业ChineseBatteryIndustry

毕道治:大容量高功率锂离子电池研究进展

电池工业

ChineseBatteryIndustry

第13卷第2期2008年4月

及LiMn2O4等;(2)负极材料:硬碳、包覆天然石墨、钛酸锂;(3)电解液:热稳定性更好的电解质盐,阻燃溶剂,稳定SEI膜添加剂等;(4)材料理化性能:颗粒结构和粒径设计比表面积优化,粘结剂的优选等;(5)电池结构:正负极容量比的优化、极板设计、集流设计、热设计、抗滥用设计等;(6)大量生产工艺控制方法及检测手段;不合格品的剔除方法等。

如前所述,锂离子电池还有较大改进空间,在市场需求的推动下,通过不断的技术创新,相信大容量高功率锂离子电池能在不远的将来在电动车市场得到大规模应用。

参考文献:

[1]YabunchiN,OhzukuT.NovellithiuminsertionmaterialofLiCo1/3Ni1/3Mn1/3O2foradvancedlithium-ionbatteries[J].JPowerSources,2003:119-121:171-174.

[2]YabunchiN,KoyamaY,NakayamaN,OhzukuT.SolidStateChemistryandElectrochemistryofLiCo1/3Ni1/3Mn1/3O2forad-

vancedLithium-IonBatteries[J].JElectrochemSoc,2005,152(9):1434-1437.

[3]PadhiAK,Nanjundaswamyks,GoodenoughJB.Phospho-olivinesaspositive-electrodematerialsforrechargeablebat-teries"[J].JElectrochemSoc,1997,144(4):1188-1194.[4]唐致远,韩斌,王建英,高飞.锂离子蓄电池新型正极材料LiFePO4的研究进展[J].电源技术,2005,29):556-559.[5]唐致远,吴菲.改性石墨用作锂离子蓄电池负极材料[J].电源技术,2006,30(3):155-161.

[6]HuJie,LiH,HuangXuejie.(文题不详)[J].SolidStateIon-ics,2005,176:1151-1159.

[7]KoreppC,MollerKC,BesenhardJO,etal.Film-formingelectrolyteadditivesforlithiumionbatteries:simpleapproachandsimplesolution?[C]//7thChinaInternationalBatteryFairProceedings,2006:401-421.

[8]KozonoS,NakagawaH,InamasuT,etal.Performanceoflithiumioncellswithelectrolytecontainingnon-flammablesolvent[J].GSYuasaTechnicalReport,2005,(2):26-31.

中国人的电池卓越的品质

广州轻工广州市虎头电池集团有限公司

http://www.555bf.com.cn

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

锂离子电池研究现状

锂硫电池的研究现状 近年来,随着不可再生资源的逐渐减少,清洁能源的利用逐渐得到重视,而电池作为储能装置也受到越来越多的考验。锂硫电池与传统的锂离子电池相比,优势主要在于硫的高比容量,单质硫的理论比容量为1600mAh/g ,理论比能量2600Wh/kg。并且硫是一种廉价且无毒的原材料。而与此同时,硫作为锂电池的正极材料也存在着诸多问题[1]: 1、单质硫以及最终放电产物都是绝缘的,如果与正极中掺入的导电物质结合不好,就会导致活性物质不能参与反应而失效; 2、单质硫在反应过程中会生成长链的聚硫化物离子S n2-,这种离子容易溶解在电解液中,并与锂负极反应,产生“穿梭效应”,引起自放电并使库伦效率降低; 3、在每次放电过程结束之后,都会有一些Li2S2/Li2S沉淀在正极上,并且这些不溶物随着循环次数的增加,在正极表面发生团聚,并且正极结构也会发生变化,导致这部分活性物质不能参与电化学反应而失效,并且使电池的内阻增加; 4、硫正极随充放电的进行会产生约22%的体积变化,从而导致电池物理结构破坏而失效。 针对硫作为正极材料的种种弊端,研究者们分别采用了多种方法予以解决,其中将硫与碳材料复合的研究较多。针对几种典型方法,分别举例介绍如下:一、石墨烯-硫复合材料 Wang等人采用石墨烯包覆硫颗粒的方法制作复合材料电极[2]。如图1所示,他们首先采用化学方法制备了硫单质,并利用一种特殊的表面活性剂Triton X-100在硫颗粒的表面修饰了一些PEG高分子,然后再用导电炭黑和石墨烯的分散液对硫颗粒进行包覆。这种方法的优点在于:首先,石墨烯和导电炭黑具有优异的导电性能,可以克服硫以及硫反应产物绝缘的问题;第二,导电炭黑、石墨烯和PEG高分子对硫颗粒进行了包覆,可以解决硫在电解液中溶出的问题;第三,PEG高分子具有一定的弹性,可以在一定程度上缓解体积变化带来的影响。 二、碳纳米管-硫复合材料 Zheng等人用AAO做模板制备了碳纳米管阵列[3],随后将硫加热使其浸入到碳纳米管中间,然后将AAO模板去掉,得到碳纳米管-硫复合材料,如图2所示。这种方法的优点在于碳纳米管的比表面积大,有利于硫化锂的沉积。并且长径比较大,可以较好地将硫限制在管内,防止其溶解在电解液中。碳纳米管的导电性好管壁又很薄,有利于离子导通和电子传输。同时,因为制备过程中先沉积硫,后去除模板,这样有利于使硫沉积到碳管内,减少硫在管外的残留,从而防止这部分硫的溶解。

锂离子电池研究进展

硕士研究生文献阅读报告 锂离子电池的研究进展 The research progress of lithium ion batteries 学科专业名称及代码:s1******* 研究方向:成像电子器件与系统 研究生:梁超

锂离子电池的研究进展 S1******* 梁超 2013年11月17 摘要:随着现今各种移动电子设备的需求越来越多,锂离子电池的需求量也在快速增长,传统锂离子电池在充放电效率及循环寿命上仍存在一些问题。文中讨论了硅微通道板在锂离子电池上的改进。采用光辅助电化学刻蚀和无电镀银方法,制备出一种可用于三维锂离子电池的覆银硅微通道板(Ag/Si一MCP)负极结构。 关键词:锂离子电池硅微通道板覆银硅微通道板 Abstract: With the demand for a variety of mobile electronic devices today, more and more demand for lithium-ion batteries is also growing rapidly, there are still some problems of the traditional lithium-ion battery charge and discharge efficiency and cycle life. The silicon micro-channel plates in lithium-ion battery improvements discussed in this paper.A three--dimensional(3-D)anode using a silver-coated Si micro-channel plate(Si-MCP)as the active materials was prepared by photo-assisted electrochemical etching followed by electroless deposition. Key Words: Lithium-ion battery Silicon micro-channel plates Silver-coated Si micro-channel plate 一、引言 锂电池(Lithium battery)是指电化学体系中含有锂(包括金属锂、锂合金和锂离子、锂聚合物)的电池。锂电池大致可分为两类:锂金属电池和锂离子电池。锂金属电池通常是不可充电的,且内含金属态的锂。锂离子电池不含有金属态的锂,并且是可以充电的。所谓锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。人们将这种靠锂离子在正负极之间的转移来完成电池充放电工作的,独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。 锂离子电池以其具有的电压高,比能量高,无记忆效应,对环境污染小等优点,已经作为一种重要的化学电池被广泛地应用于手机,笔记本电脑等数码产品中.随着便携设备小型化的发展,对电池小型化的要求也在提高. 1、传统锂电池构造及原理 正极为含锂的过渡族金属化合物,负极为碳材料。充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中.放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合.锂离子的移动产生了电流. 2、传统锂电池存在的问题 目前锂离子电池中使用最广泛的正极材料是氧化钴锂。随着各种移动电子设备的需求越来越多,锂离子电池的需求量也在快速增长,因而,氧化钴锂的需求也在增加。由于金属Co比较稀缺,并且价格昂贵。所以,目前人们正在积极开发低钴或是无钴的正极材料,同时,许多国内外研究工作者正在研究回收锂离子电池。 另外,负极材料的稳定性及其配比、电解液组成、膈膜的选择、氧化钴锂的热稳定性及其与电解液反应活性都会影响锂离子电池的安全性。在工艺方面,微短路,结构性内短路(电芯极耳过长,

大容量高功率锂离子电池研究进展_毕道治

收稿日期:2007-05-20 作者简介:毕道治(1926-),男,河北省人,教授级高工。 Biography:BIDao-zhi(1926-),male,professor. 大容量高功率锂离子电池研究进展 毕道治 (天津电源研究所,天津300381) 摘要:发展电动车是解决能源危机和环境污染的有效手段之一。大容量高功率锂离子蓄电池是电动车的理想储能电源,因为它具有单体电压高、循环及使用寿命长、比能量高和良好的功率输出性能等优点。介绍了国内外大容量高功率锂离子蓄电池的研究进展,包括关键材料、技术性能和安全问题,并以作者的观点提出了大容量高功率锂离子蓄电池的发展前景和近期研究内容。关键词:锂离子蓄电池;电极活性材料;电解液;电动车;混合电动车中图分类号:TM912.9 文献标志码:A 文章编号:1008-7923(2008)02-0114-06 Researchprogressofhighcapacityandhighpower Li-ionbatteries BIDao-zhi (TianjinPowerSourceInstitute,Tianjin300381,China) Abstract:Developmentofelectricvehicleisoneoftheeffectivemeanstoovercomeproblemsofenvironmentpollutionandenergycrisis.HighcapacityandhighpowerLi-ionstoragebatteryisanappropriatepowersourceforelectricvehicleduetoitshighcellvoltage,longercyclelife,higherenergydensityandhighpowercharacteristics.ThedevelopmentstatusofhighcapacityandhighpowerLi-ionstoragebatteries,includingkeymaterials,technicalperformanceandsafetyproblemsarereviewedinthispaper.ThetechnicalissuesandthefutureofhighcapacityandhighpowerLi-ionbatteriesarefinalllydescribedinwriter'spointofview. Keywords:Li-ionstoragebattery;electrodeactivematerial;electrolyte;EV;HEV 环境污染和能源危机是目前人类面临的两大课题,而燃油汽车的大量普及则是造成上述问题的主要原因之一。发展电动车是有效解决上述问题的重要手段,因为电动车具有能源多样化、污染排放少和能源利用效率高的优点。发展电动车的技术瓶颈问题是迄今为止还没有哪种电池使电动车的性价比能与燃油汽车相比。通过比较各类动力电池的典型性 能,可以看出锂离子电池具有单体电压高、比能量大和自放电小的优点,但也存在安全性差、 成本高和长期循环和贮存后性能下降的问题。为了充分利用并发挥锂离子电池的优势,克服其存在的缺点,世界各主要国家的政府、汽车制造商和相关科技人员都对大容量、高功率动力用锂离子蓄电池的研究非常重视。纷纷制定发展计划、投入大量人力、物力、财力积极进行研制。文章对大容量、高功率锂离子蓄电池的关键材料、性能水平和安全性等方面的研究进展进行综合评述,并探讨了今后的研发方向。

锂离子电池研究进展

华东理工大学2013—2014学年第1学期 《新能源与新材料》课程论文 2013.11 班级___复材101__ 学号__10103638__ 姓名____温乐斐_____ 开课学院材料学院任课教师张衍成绩__________

锂离子电池研究进展 温乐斐 (华东理工大学) 摘要 二次锂电池的优点是高体积、高质量比容量、长循环寿命、低放电速率,是环保型电源的理想备选之一。本文简单介绍了锂离子电池的正极材料、负极材料及电解质的种类和发展概况,并对当今锂离子电池发展所面临的问题和发展前景进行阐述。最后说明了一下其发展前途和产业化趋势。 关键词:锂电池;正极材料;负极材料;电解质;发展进程 The Research and Development of Rechargeable Lithium-ion Battery Wen Lefei (East China University of Science and Technology) Abstract The rechargeable lithium-ion battery has been extensively used in mobile communication and portable instruments due to many advantages, such as high volumetric and gravimetric energy density, long cycle life, and low self-discharge rate. In addition, it is one of the promising alternatives as the power sources. The development of researches on materials of lithium-ion battery for cathode, abode and electrolyte are introduced in this paper, at the same time lithium-ion existing problems is battery and prospects are also outlined. At last, the strategic position and some future investigating trends are also presented. Key words: Li-ion battery; cathode materials; anode materials; electrode materials; research and development; progress

锂电池负极材料的研究进展

锂离子电池负极材料研究进展介绍 来源:中国燃料电池网时间:2015-09-08 09:11 编辑:周奕 我国能源生产量和消费量均已居世界前列,但在能源供给和利用形式上存在着一系列突出问题,如能源结构不合理、能源利用效率不高、可再生能源开发利用比例低、能源利用安全水平有待进一步提高。总体上讲,我国能源工业大而不强,与发达国家相比,在技术创新能力方面还存在较大差距。因此,提高能源利用效率,调整能源结构,开发和利用可再生能源将是我国能源发展的必然选择。为了解决我国能源工业所面临的难题,寻求替代传统化石燃料的可再生绿色能源显得尤为迫切。与此同时,随着人们环保意识的日益增强和对资源利用率的关注,可充电电池逐渐成为研究的焦点,而锂原电池的成功应用大大推动了锂离子电池的研究和发展,使锂离子电池成为关注的重点。 1锂离子电池发展状况 锂电池最早出现于1958年,20世纪70年代开始进入实用化[2]。由于具有重量轻、体积小、安全性好、工作电压高、能量密度高、使用寿命长等优点成为近年来最受关注的储能器件之一。随着世界全面步入信息时代,电子化和信息化己经成为各个领域的共同发展趋势,锂离子电池也被越来越多地应用于多个方面。医疗上,锂离子电池可以为心脏起搏器、助听器等设备供能,对于病人更安全、更便捷;交通上,锂离子电池己经被广泛应用于电动单车、电动汽车上;军事上,锂离子电池可为电磁武器充能,为小型定位系统供能,甚至作为潜艇等大型作战设备的备用动力源;航天上,锂离子电池可作为航天器及各种仪器设备的电力补充单元。 电池按工作性质可以分为一次电池和二次电池[3]。一次电池是指不可循环使用的电池,如碱锰电池、锌锰电池等。二次电池指可以多次充放电、循环使用的电池,如先

Q_LBNY 002-2019LB10-FP型动力电池企业标准

Q/LBNY 广州力柏能源科技有限公司企业标准 Q/LBNY 002-2019 LB10-FP型动力电池 LB10-FP power battery 2019-12 -13发布2019-12-13实施

前言 本标准按照GB/T 1.1-2009给出的规则起草。 本标准由广州力柏能源科技有限公司,广州能源检测研究院提出并起草。 本标准由广州力柏能源科技有限公司归口。 本标准起草单位:广州力柏能源科技有限公司,广州能源检测研究院。 本标准主要起草人:邵丹、卢方、卢继典、梁伟雄、骆相宜、唐贤文、梁俊超、李向峰、丁志英。 1

LB10-FP型动力电池 1 范围 本标准规定了LB10-FP型动力电池的术语、要求、试验方法、检验规则、标志、包装、运输、贮存。 本标准适用于本公司生产的LB10-FP型动力电池,供给混合动力车,快速充电和高功率装置使用。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版本均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 2900.41 电工术语原电池和蓄电池 GB/T 19596 电动汽车术语 GB/T 31484 电动汽车用动力蓄电池循环寿命要求及试验方法 GB/T 31486 电动汽车用动力蓄电池电性能要求及试验方法 3 术语和定义 GB/T 2900.41,GB/T 19596,GB/T 31484和GB/T 31486 中界定的术语和定义适用于本文件。 4要求 4.1 外观 产品的外观不得有变形及裂纹,表面无毛刺、干燥、无外伤、无污渍,有清晰正确的标志。 4.2 极性 产品的端子极性标识应正确、清晰。 4.3 尺寸 产品的结构尺寸应符合表1的规定。 表1 结构尺寸 类别厚宽长要求(mm)18±1 68±1 110±1 4.4 重量 产品的重量应为285±5g。 2

锂离子电池三元正极材料的研究进展

锂离子电池三元正极材料的研究进展 2009年09月01日作者:丁楚雄/孟秋实/陈春华来源:《化学与物理电源系统》编辑:樊晓琳 摘要:本文综述了锂离子电池正极材料层状三元过渡金属氧化物 Li-Ni-Co-Mn-O的研究进展,讨论了三元材料的结构特性与电化学反应特征,重点介绍了三元材料的制备方法和掺杂、表面修饰等改性手段,并分析了三元材料目前存在的问题和未来的研究重点。 关键词:锂离子电池;Li-Ni-Co-Mn-O;层状结构;制备方法;改性 Abstract: The research progress of the ternary transition metal oxides LiNi1-x-yCoxMnyO2 as layered cathode materials for lithium ion batteries is reviewed. The structure and electrochemical performances of the materials are discussed. Various synthesis methods, doping and surface-modification approaches are introduced in detail. Finally, the current main problems and further research trend of the materials are pointed out. Key words: lithium ion battery; cathode; layered structure; synthesis methods; modification 1、引言 锂离子电池因其电压高、能量密度高、循环寿命长、环境污染小等优点倍受青睐[1, 2],但随着电子信息技术的快速发展,对锂离子电池的性能也提出了更高的要求。正极材料作为目前锂离子电池中最关键的材料,它的发展也最值得关注。 目前常见的锂离子电池正极材料主要有层状结构的钴酸锂、镍酸锂,尖晶石结构的锰酸锂和橄榄石结构的磷酸铁锂。其中,钴酸锂(LiCoO2)制备工艺简单,充放电电压较高,循环性能优异而获得广泛应用。但是,因钴资源稀少、成本较高、环境污染较大和抗过充能力较差,其发展空间受到限制[3, 4]。镍酸锂(LiNiO2)比容量较大,但是制备时易生成非化学计量比的产物,结构稳定性和热稳定性差[5]。锰酸锂除了尖晶石结构的LiMn2O4外,还有层状结构的LiMnO2。其中层状LiMnO2比容量较大,但其属于热力学亚稳态,结构不稳定,存在Jahn-Teller效应而循环性能较差[6]。尖晶石结构LiMn2O4工艺简单,价格低廉,充放电电压高,对环境友好,安全性能优异,但比容量较低,高温下容量衰减较严重[7]。磷酸铁锂属于较新的正极材料,其安全性高、成本较低,但存在放电电

(完整版)全固态锂电池技术的研究进展与展望

全固态锂电池技术的研究进展与展望 周俊飞 (衢州学院化学与材料工程学院浙江衢州324000) 摘要:现有电化学储能锂离子电池系统采用液体电解质,易泄露、易腐蚀、服役寿命短,具有安全隐患。薄膜型 全固态锂电池、大容量聚合物全固态锂电池和大容量无机全固态锂电池是一类以非可燃性固体电解质取代传统锂离 子电池中液态电解质,锂离子通过在正负极间嵌入-脱出并与电子发生电荷交换后实现电能与化学能转换的新型高 安全性锂二次电池。作者综述了各种全固态锂电池的研究和开发现状,包括固态锂电池的构造、工作原理和性能特 征,锂离子固体电解质材料与电极/电解质界面调控,固态整电池技术等方面,提出并详细分析了该技术面临的主要 科学与技术问题,最后指出了全固态锂电池技术未来的发展趋势。 关键词:储能;全固态锂离子电池;固体电解质;界面调控 1 全固态锂电池概述 全固态锂二次电池,简称为全固态锂电池,即电池各单元,包括正负极、电解质全部采用固态材料的锂二次电池,是从20 世纪50 年代开始发展起来的[10-12]。全固态锂电池在构造上比传统锂离子电池要简单,固体电解质除了传导锂离子,也充当了隔膜的角色,如图 2 所示,所以,在全固态锂电池中,电解液、电解质盐、隔膜与黏接剂聚偏氟乙烯等都不需要使用,大大简化了电池的构建步骤。全固态锂电池的工作原理与液态电解质锂离子电池的原理是相通的,充电时正极中的锂离子从活性物质的晶格中脱嵌,通过固体电解质向负极迁移,电子通过外电路向负极迁移,两者在负极处复合成锂原子、合金化或嵌入到负极材料中。放电过程与充电过程恰好相反,此时电子通过外电路驱动电子器件。目前,对于全固态锂二次电池的研究,按电解区分主要包括两大类[13]:一类是以有机聚合物电解质组成的锂离子电池,也称为聚合物全固态锂电池;另一类是以无机固体电解质组成的锂离子电池,又称为无机全固态锂电池,其比较见表1。通过表1 的比较可以清楚地看到,聚合物全固态锂电池的优点是安全性高、能够制备成各种形状、通过卷对卷的方式制备相对容易,但是,该类电池作为大容量化学电源进入储能领域仍有一段距离,主要存在的问题包括电解质和电极的界面不稳定、高分子固体电解质容易结晶、适用温度范围窄以及力学性能有提升空间;以上问题将导致大容量电池在使用过程中因为局部温度升高、界面处化学反应面使聚合物电解质开貌发生变化,进而增大界面电阻甚至导致断路。同时,具有隔膜作用的电解质层的力学性能的下降将引起电池内部发生短路,从面使电池失效[14-15]。无机固体电解质材料具有机械强度高,不含易燃、易挥发成分,不存在漏夜,抗温度性能好等特点;同时,无机材料处理容易实现大规模制备以满足大尺寸电池的需要,还可以制备成薄膜,易于将锂电池小型化,而且由无机材料组装的薄膜无机固体电解质锂电池具有超长的储存寿命和循环性能,是各类微型电子产品电源的最佳选择[10]。采用有机电解液的传统锂离子电池,因过度充电、内部短路等异常时电解液发热,有自燃甚至爆炸的危险(图3)。从图 3 可以清楚地看到,当电池因为受热或短路情况下导致温度升高后,传统的锰酸锂或钴酸锂液体电解质锂离子电池存在膨胀起火的危险,而基于纯无机材料的全固态锂电池未发生此类事故。这体现了无机全固态锂电池在安全性方面的独特优势。以固体电解质替代有机液体电解液的全固态锂电池,在解决传统锂离子电池能量密度偏低和使用寿命偏短这两个关键问题的同时,有望彻底解决电池的安全性问题,符合未来大容量新型化学储能技术发展的方向。正是被全固态锂电池作为电源所表现出来的优点所吸引,近年来国际上对全固态锂电池的开发和研究逐渐开始活跃[10-12] 2 全固态锂电池储能应用研究进展 在社会发展需求和潜在市场需求的推动下,基于新概念、新材料和新技术的化学储能新体系不断涌现,化学储能技术正向安全可靠、长寿命、大规模、低成本、无污染的方向发展。目前已开发的化学储能装置,包括各种二次电池(如镍氢电池、锂离子电池等)、超级电容器、可再生燃料电池(RFC:电解水制氢-储氢-燃料电池发电)、钠硫电池、液流储能电池等。综合各种因素,考虑用于大规模化学储能的主要是锂二次电池、钠硫电池及液流电池,而其中大容量储能用锂二次电池更具推广前景。。 全固态锂电池、锂硫电池、锂空气电池或锂金属电池等后锂离子充电电池的先导性研究在世界各地积极地进行着,计划在2020 年前后开始商业推广。在众多后锂离子充电电池中,包括日本丰田汽车、韩国三星电子和德国KOLIBRI 电池公司对全固态锂电池都表现出特别的兴趣。图 4 为未来二十年大容量锂电池的发展路径,从图 4 可以看出,全固态电

动力电池相关标准的学习总结

动力电池标准的学习总结 我国大容量动力锂电池单体电池已经具备了推广应用的条件,产业化建设成果显着。在电池单体方面,规模化生产和规模化应用的条件已经基本成熟。从动力锂电池要求的高成组性、系统集成性、高安全性等和高标准化要求出发,以下几个方面的问题甚为突出。(1)关键质量控制方法与可靠性保证技术仍需完善 标准化通常涉及产品技术及标准技术文件本身。目前,国内“以人为主”的生产线无法避免高不良率,现有主要用于铅酸蓄电池的成组应用技术和设备,不能适应新型动力电池的技术要求。这种情形一方面会导致电池生产成本的增加,另一方面使得电池性能不稳定,影响到动力电池的一致性、使用寿命等。当前发生的动力锂电池使用寿命缩短及燃烧、爆炸等安全问题,均是由这些因素所引起。 (2)标准化缺乏统一管理 由于我国行业管理等历史因素,不同类别的电池往往是由不同的工业部门的企业主要生产并主导其标准的制修订,相应地行业管理也归属不同工业部门。国家标准与多个行业标准并存,并且标准范围交叉重复的现象无论是对于产品的生产者,还是消费者都造成了相当大的困扰,并损害整个产业的健康发展。 (3)标准体系和市场化的产品与技术保障体系不完备

除节能与新能源汽车科研项目中完成了几项电动汽车用动力电池标准外,动力锂电池和系统集成标准仍处于空白状态,而建立成熟的市场化的产品和技术保障体系是推广应用包括节能与新能源汽车在内的与新型动力锂电池系统的基本条件,而这一条件目前尚不具备。这两者之间不仅联系紧密,而且相互制约。为争夺市场,迫使所有企业都成为闭关自锁的独立体系,低水平重复开发和拼尽全力去建设不可能实现的自主产品和技术保障体系,产品处于完全混乱局面。(4)没有中立的动力电池系统标准符合性及安全试验平台 新型动力锂电池系统集成是一个新兴技术领域,动力锂电池系统集成涉及到关键零部件及通讯和控制网络、接口和通讯协议等产品,涉及电力、电子、计算机、自动控制等多种高新技术和产业领域,涉及到复杂的标准体系,安全问题也十分突出。产品只有通过科学、合理的标准符合性检测及安全试验,才能从根本上保证产品的质量可靠性与安全性能。当前动力电池领域存在的标准欠缺,标准化工作平台不完善,必然会影响产业的规范化、科学化发展。 标准化及安全试验工程技术平台建设的重要性主要体现在以下几个方面 (1)新技术领域需要开展标准化研究 新型动力锂电池系统集成作为一个新兴技术领域,是与铅酸蓄电池完全不同的新型蓄电池。目前主要用于铅酸蓄电池的成组应用技术

新能源汽车动力电池研究进展与展望

当代化工研究Modern Chemical R esearch 5 2019?10行业动态 新矣旨源汽车动力电池研究进展与展望 *姚乐靖 (艾青中学浙江321000) 摘耍:伴随着社会的进步,为保护环境、减少污染、开发清洁能源,发展来源丰富、环保节能的新能源汽车引起了各国的重视与研究.而开发环境友好、性能优越的动力电池是有效发展新能源汽车、提升其应用价值与前景的核心问题.本文通过对新能源汽车进行简单介绍,简要分析新能源汽车动力电池餉发展过程及各类动力电池的工作原理,并从电池性能、循环使用寿命、材料与成本等方面对各类动力电池特点与发展前景进行简要总结,对不同类型电池优势及目前存在的问题进行评述,对未来新能源汽车动力电池的发展提出前景展望与建议. 关键词:新能源汽车;动力电池;锂离子电池;应用 中图分类号:T文献标识码:A Research Progress and Prospect of Power Batteries of New Energy Vehicle Yao Lejing (Aiqing High School,Zhejiang,321000) Abstracts Along with the progress of society,in order to protect the environment,reduce pollution,develop clean energy,develop new energy vehicles with abundant sources,environmental protection and energy saving has attracted the attention and research of various countries. The development of p ower batteries with environmental production and superior performance is the core issue to effectively develop new energy vehicles and enhance their application value and prospects.This paper briefly introduces new energy vehicles,briefly analyses the development process of p ower batteries of n ew energy vehicle and the working principle of v arious power batteries,and briefly summarizes the characteristics and development p rospects of v arious power batteries f rom the aspects of b attery performance,cycle life,material and cost.This paper reviews the advantages and existing p roblems of d ifferent types of b atteries,and p uts f orward p rospects and suggestions f or the f uture development of n ew energy automotive p ower batteries. Key words i new energy vehicle^po^ver battery^lithium ion battery;application 1.前言 近年来由于环境污染和能源短缺问题的加剧,发展和利用不同类型的新型清洁能源,以替代不可再生的化石燃料及缓解环境污染问题引起了人们的广泛关注和研究。在各国政策的鼓励下,新能源汽车凭借其高能源利用率、低排放等优势迅速发展起来。按照中华人民共和国国家发展与改革委员会公告定义,新能源汽车是指采用非常规的车用燃料作为动力来源(或使用常规的车用燃料、采用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车切。而动力电池作为新能源汽车的重要组成部分,对新能源汽车的发展和应用起着至关重要的作用。如何开发和研究具有更高性能、更低成本的动力电池是推动新能源汽车实现更广泛市场化的重点问题之一。从材料易得的铅酸蓄电池,到容量较高的银氢电池,再到高性能的锂离子电池和燃料电池,动力电池的制备技术与性能提升方法不断地被研究升级,但是由于材料和技术等方面的不足,新能源汽车动力电池在性能的发挥和实用上还无法完全取代化石燃料。本文通过对不同类型的新能源汽车动力电池的介绍,从电池类型与结构、电池性能、循环使用寿命、材料与成本等角度分析其特点与优劣势,为设计与发展更高性能的动力电池提供建议。 2.新能源汽车的发展现状 新能源汽车主要分成纯电动汽车、混合动力汽车两大类。近几年我国在新能源汽车发展的方面已经有了很大的进步,诸多技术等已经有了巨大的突破,但在新能源汽车不断发展的过程中,一些问题不断的暴露出来,具体有以下几点:(1)新能源汽车产业发展战略不明确。(2)新能源汽车核心技术水平仍然不高。(3)政策依赖明显,用车环境有待提升孔 纯电动汽车是指以车载电源为动力,用电机驱动车轮行驶的车辆⑷。蓄电池是其唯一动力来源。纯电动汽车由于完全摆脱了对化石能源的依赖,对环境的污染较小,而且噪音小、结构简单、维修方便。但是纯电动汽车在高能量、低成本、长寿命以及安全性等方面具有较高的要求且存在需要改进提高的地方。混合动力汽车是指使用一种或多种动力源的车辆闻。混合动力汽车一般都是由内燃机和电动机组成,电力与化石燃料的结合即对环境有了一定的保护,又不影响汽车的使用,使其相对于纯电动汽车来说经济性和适应性更加强。我国现在更加注重混合动力汽车的发展,在不久的将来混合动力汽车会成为主流。 3.新能源汽车动力电池研究现状 根据汽车所用动力来源的不同,新能源汽车动力电池主要可以分为两大类,即蓄电池和燃料电池。应用在电动汽车上的储能技术主要是电化学储能技术,即铅酸、银氢、锂离子电池等储能技术。燃料电池主要利用氢能源的热值高、无副产物、环保等优势。近几年这些不同类型动力电池技术随着研究力度的增大都有了较大的提高,我们主要从电池原理技术、能量密度等电池性能、循环稳定性、成本和市场化等角度进行分析。 ⑴蓄电池 ① 铅酸蓄电池 铅酸蓄电池是目前新能源汽车中使用较为广泛的动力电

动力电池用正极材料磷酸铁锂的研究进展

2010年第7期广东化工 第37卷总第207期https://www.wendangku.net/doc/0714235666.html, · 59 · 动力电池用正极材料磷酸铁锂的研究进展 侯贤华,胡社军,彭薇 (华南师范大学物理与电信工程学院,广东广州 510006) [摘要]文章综述了锂离子动力电池关键正极材料磷酸铁锂的产业化制备方法,市场状况分析和近年来国内外对该正极材料的研究进展情况。结果表明:产业化制备方法目前主要是固相反应法和水热合成,市场需求大于市场供给,具有很好的市场前景,高倍率磷酸铁锂将成为未来的一个重要研究方向。 [关键词]磷酸铁锂;正极材料;倍率性能 [中图分类号]TM912 [文献标识码]A [文章编号]1007-1865(2010)07-0059-02 Research Progress of LiFePO4 Cathode Materials for Power Lithium-ion Battery Hou Xianhua, Hu Shejun, Peng Wei (School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China) Abstract: The research progress in LiFePO4 Cathode materials for lithium ion battery was reviewed. The emphasis was expressed preparation method of industrialization, market analysis and cathode materials progress for the past few years. The result suggested that the industrialized method have solid state reaction and hydrothermal synthesis, market requirement is more than supply, this product has excellent market prospects, high rate property will become one of the research fields in the future. Keywords: LiFePO4;cathode material;rate property 锂离子电池因具有电压高、比能量高、工作温度范围广、 环境友好等优点,而被广泛应用于各种便携式电子产品[1-2], 如手机、数码相机、笔记本电脑和电动工具等,并有望成为未 来混合动力汽车和纯动力汽车的能源供给之一[3]。正极材料是 决定锂离子电池综合性能优劣的关键因素之一,目前商业化正 极材料主要是LiCoO2,因钴为战略资源,由此导致电池的成 本较高(目前在整个电池成本中,正极材料成本占35 %),且 LiCoO2安全性较差,因而限制了其使用范围。LiFePO4具有稳 定的橄榄石结构,理论容量约为170 mAh/g,原材料价格低廉 丰富,工作电压适中、电容量大、高放电功率、可快速充电且 循环寿命长、稳定性高,是一种理想的动力电池用正极材料。 1 磷铁铁锂晶体结构 LiFePO4晶体是有序的橄榄石型结构,属于正交晶系,空间群为Pnma,晶胞参数a = 1.0329 nm,b = 0.60072 nm,c= 0. 46905 nm。在LiFePO4晶体中氧原子呈微变形的六方密堆积,磷原子占据四面体空隙,锂原子和铁原子占据八面体空隙。八面体结构的FeO6在晶体的bc面上相互连接,在b轴方向上八面体结构的LiO6相互连接成链状结构。1个FeO6与2个LiO6共边,1个PO4和FeO6共用一条边,与LiO6共用两条边。 充放电反应是在LiFePO4和FePO4两相之间进行,如图1所示。在充电过程中,LiFePO4逐渐脱出锂离子形成FePO4,在放电过程中锂离子插入FePO4形成LiFePO4。在锂离子反复嵌入与脱出的过程中,当晶格结构由LiFePO4转变为Li1-x FePO4时,磷酸根离子(FePO4-)可稳定整个材料的晶格结构。由于在这2种物相互变过程中铁氧配位关系变化很小,故此电极材料虽然存在物相的变化,但是没有影响电化学效应的体积效应产生。当磷酸铁锂进行充电时,材料本身的体积约减少6.5 %,这也是材料具有良好循环性能的主要原因。LiFePO4的电化学曲线非常平坦,具有较高的理论容量,约为170 mAh/g。 2 磷酸铁锂产业化制备方法 目前产业化制备LiFePO4材料最常用的方法是固相法,此法工艺简单,制备条件容易控制和规模化,缺点是球磨的均匀程度以及强度同样制约了产物的性能,产物颗粒不均匀,晶形无规则,粒径分布范围广,实验周期长。S.A.Anna等测试了LiFePO4在不同温度下的充放电性能,发现即使在85 ℃下,它仍然能稳定工作,而且经过20次循环以后,60 ℃下测试的样品比23 ℃下测试的样品中的Fe3+含量低了14 % ,说明在较低温度下,锂离子的嵌入比较困难。 图1 充放电前后LiFePO4和FePO4两相图 Fig.1 The structural modes of LiFePO4 and FePO4 before and after charge/discharge 水热法也是制备磷酸铁锂的另一种常见方法,具有操作简单、物相均匀、粒径小的优点。在密闭体系中,以水为溶剂,在一定温度下,在水的自生压强下,溶液内部的金属盐具有较高的活性,在溶液中进行结晶反应。S.Yang等对水热法合成LiFePO4晶体进行了大量研究。他们发现pH值对实验结果的影响不大,而且水热法比高温固相法合成的晶体颗粒要小,Fe2+含量高。A.K.Padhi等发现用水热法在还原性条件下可得LiFePO4晶体,在氧化性条件下则得LiFePO4(OH) 晶体。当锂盐的量很少时,则会有多孔的FePO4·2H2O生成,它在高温时失水生成电化学非活性的FePO4。在用水热法合成LiFePO4晶体时要保证锂盐的量,以防止电化学非活性的FePO4晶体的生成。 除了固相法和水热法两种产业化方法外,在研究过程中还有各种各样的合成方法涌现出来,包括共沉淀法,乳化干燥法,机械化学激活法,微波炉加热法等。 3 磷酸铁锂的市场状况 采用磷酸铁锂作为锂离子电池正极材料的电池被称为磷酸铁锂电池(简称铁电池),由于铁电池的众多优点被广泛使用于各个领域。其中主要应用领域有: (1)储能设备:风力发电系统的储能设备,太阳能电池的储能设备,如太阳能LED路灯(比亚迪已经生产出该类电池); (2)电动工具:高功率电动工具、电钻、除草机等;(3)电动车辆:电动摩托车、电动自行车、电动婴儿车、电动轮椅和电动 [收稿日期] 2010-4-19 [基金项目] 国家自然科学基金资助项目(50771046) [作者简介] 侯贤华(1977-),男,湖北恩施人,博士后,主要研究方向为清洁能源材料。LiFePO4 FePO4 充电 放电

国内外动力蓄电池发展情况

电动汽车用动力蓄电池
节能与新能源汽车重大项目总体专家组 肖成伟 2009年4月28日

报告内容
① 总体概况 ② 国外研发现状 ③ 国内研发现状 ④ 成本情况 ⑤ 关注问题及标准建设 ⑥ 市场预测 ⑦ 伙伴情况

各种电池技术的对比图
1000
6 4 2
IC E i Engine 内燃机 燃料电池 Li-ion 锂离子 镍氢 Ni-MH 铅酸 Lead-Acid HEV 目标 Capacitors 超级电容器 EV目标 PHEV-40 目标
100
比能量 (Wh/kg) (
6 4 2
10
6 4 2
里 里程
EV – 纯电动汽车 HEV – 混合电动汽车 PHEV–插电式混合电动汽车
1 0 10 加速
10
1
比功率 (W/kg)
10
2
10
3
10
4

电动汽车对动力蓄电池要求
PC 关键性能要求 高能量 寿命要求 电压 1‐3年 8‐12V 8 12V 手机 高能量 1‐3年 4V 电子产品 高 高 HEV 高功率 PHEV EV 高能量 8年以上 >250V 汽车零部件 产品 最高 更高 锂离子 TBD
生产控制要求 电子产品 安全性要求 成本要求 化学体系 电池形状 高 高
钴酸锂为主 钴酸锂为主 1865 方型
适中的功 率及能量 8年以上 8年以上 >100V >200V 汽车零部件产 汽 车 零 部 品 件产品 最高 最高 更高 更高 镍氢、锂离子、 锂离子 超级电容器 TBD TBD

锂离子动力电池冷却技术研究进展

Sustainable Energy 可持续能源, 2016, 6(6), 122-129 Published Online December 2016 in Hans. https://www.wendangku.net/doc/0714235666.html,/journal/se https://www.wendangku.net/doc/0714235666.html,/10.12677/se.2016.66013 文章引用: 郭江荣, 吴峰. 锂离子动力电池冷却技术研究进展[J]. 可持续能源, 2016, 6(6): 122-129. Research on Cooling Technology of Lithium-Ion Power Battery Jiangrong Guo, Feng Wu Maritime College of Ningbo University, Ningbo Zhejiang Received: Dec. 9th , 2016; accepted: Dec. 27th , 2016; published: Dec. 30th , 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/0714235666.html,/licenses/by/4.0/ Abstract Lithium-ion power battery can be safe and efficient in 25?C to 40?C , which needs to be equipped with an efficient thermal management system to ensure its safe operation. Aiming at the heat dis-sipation characteristics of lithium-ion power battery, a comparative analysis including the advan-tages, disadvantages and applicable conditions of cooling by air, liquid and phase change material of lithium-ion battery was proposed. At last, the cooling technology of lithium-ion battery in the future was prospected. Keywords Lithium-Ion Power Battery, Cooling, Phase Change 锂离子动力电池冷却技术研究进展 郭江荣,吴 峰 宁波大学海运学院,浙江 宁波 收稿日期:2016年12月9日;录用日期:2016年12月27日;发布日期:2016年12月30日 摘 要 锂离子动力电池在25℃~40℃内可高效安全运行,这需要配备高效的热管理系统保证锂离子动力电池组Open Access

相关文档