文档库 最新最全的文档下载
当前位置:文档库 › LLC串联谐振全桥DC-DC变换器的研究硕士学位毕业论文

LLC串联谐振全桥DC-DC变换器的研究硕士学位毕业论文

LLC串联谐振全桥DC-DC变换器的研究硕士学位毕业论文
LLC串联谐振全桥DC-DC变换器的研究硕士学位毕业论文

分类号学号2003611310063 学校代码10487 密级

硕士学位论文

LLC串联谐振全桥DC/DC

变换器的研究

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering

Research on LLC Series Resonant Full-Bridge

DC/DC

Converter

Candidate :Gong Li

Major :Power Electronics and Electric Drive

Supervisor:Professor Li Xiaofan Huazhong University of Science and Technology Wuhan 430074, P.R.China

April, 2006

独创性声明

本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到,本声明的法律结果由本人承担。

学位论文作者签名:

日期:年月日

学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定,即:学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权华中科技大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

保密□,在_____年解密后适用本授权书。

本论文属于

不保密□。

(请在以上方框内打“√”)

学位论文作者签名:指导教师签名:

日期:年月日日期:年月日

摘要

高频化、高功率密度和高效率,是DC/DC变换器的发展趋势。传统的硬开关变换器限制了开关频率和功率密度的提高。移相全桥PWM ZVS DC/DC变换器可以实现主开关管的ZVS,但滞后桥臂实现ZVS的负载范围较小;整流二极管存在反向恢复问题,不利于效率的提高;输入电压较高时,变换器效率较低,不适合输入电压高和有掉电维持时间限制的高性能开关电源。LLC串联谐振DC/DC变换器是直流变换器研究领域的热点,可以较好的解决移相全桥PWM ZVS DC/DC变换器存在的缺点。但该变换器工作过程较为复杂,难于设计和控制,目前尚处于研究阶段。本文以LLC串联谐振全桥DC/DC变换器作为研究内容。以下是本文的主要研究工作:

对LLC串联谐振全桥DC/DC变换器的工作原理进行了详细研究,利用基频分量近似法建立了变换器的数学模型,确定了主开关管实现ZVS的条件,推导了边界负载条件和边界频率,确定了变换器的稳态工作区域,推导了输入,输出电压和开关频率以及负载的关系。仿真结果证明了理论分析的正确性。

采用扩展描述函数法建立了变换器在开关频率变化时的小信号模型,在小信号模型的基础上分析了系统的稳定性,根据动态性能的要求设计了控制器。仿真结果证明了理论分析的正确性。

讨论了一台500w实验样机的主电路和控制电路设计问题,给出了设计步骤,可以给实际装置的设计提供参考。最后给出了实验波形和实验数据。实验结果验证了理论分析的正确性。

关键词:直流-直流变换器软开关串联谐振小信号模型

Abstract

In DC/DC converter applications, high frequency, high power density and high efficiency is the development trend. Traditional hard-switched converters restrict the development of DC/DC converter.Phase-shift Full Bridge PWM ZVS DC/DC converter has been widely used owing to its ZVS condition of main switches. But it still has some disadvantages, for example: lagging-arm switches is hard to achieve ZVS in light load conditions; rectifier diode have unavoidable recovery problems and they not only cause great secondary loss, but also increase the voltage stress of the rectifier diodes; converter can achieve high efficiency in low input DC voltage conditions but low efficiency in high input DC voltage conditions, this kind of efficiency characteristic restricts its applications on high input DC voltage occasions and high-quality converters which have hold-up time requirements.Fortunately, as one focus in DC/DC converters research fields nowadays, LLC series resonant Full Bridge DC/DC converter can solve these problems successfully. But owing to its complexity caused by multi-resonant process, it’s hard to analyze, design and control. So LLC series resonant Full Bridge DC/DC converter has biggish research value.

In this paper, LLC series resonant Full Bridge DC/DC converter is analyzed in detail. Based on the fundermental element simplification method, the mathematics model of the converter is obtained, the conditions to achieve ZVS are given. Steady working region of LLC series resonant Full Bridge DC/DC is confirmed, the relations between input and output voltage depending on switching frequency and load conditions are given. Simulation results prove the correctness of the theory.

In order to design controller, small-signal model of the converter must be given. In this paper, the small-signal model of LLC series resonant Full Bridge DC/DC converters is deduced using Extended Desicribing Function Method. Also, stability of the converter is analysed and controller is designed to meet the requirments of dynamic process. Simulation results prove the correctness of theory.

Based on theory analysis, a 500w prototype circuit is designed, and the design steps is given. The experimental results prove the efficiency of the converter.

Keywords: DC/DC converter Soft-switching Series-resonant Small-signal model

目录

摘要.................................................................................................................... I ABSTRACT ........................................................................................................ II 1 绪论

1.1电力电子技术的概况 (1)

1.2开关电源和DC/DC变换器的发展趋势 (2)

1.3软开关技术 (4)

1.4本文研究的主要内容 (6)

2 LLC串联谐振全桥DC/DC变换器的基本原理

2.1移相全桥PWM ZVS变换器的基本拓扑结构和工作过程 (7)

2.2MOSFET和IGBT性能比较 (10)

2.3LLC串联谐振变换器工作原理分析和工作区域划分 (12)

2.4小结 (32)

3 LLC串联谐振全桥变换器小信号建模和控制系统设计

3.1开关电源小信号建模的方法概述 (33)

3.2扩展描述函数法建模的基本原理 (34)

3.3LLC串联谐振全桥DC/DC变换器的小信号建模 (38)

3.4LLC串联谐振变换器小信号模型和稳定性分析 (42)

3.5控制器的设计和实现 (44)

3.6小结 (47)

4 主电路和控制电路设计

4.1主电路参数设计 (48)

4.2控制电路设计 (57)

4.3小结 (61)

5 实验结果与分析

5.1实验波形分析 (62)

5.2实验结论 (65)

全文总结 (1)

致谢 (1)

参考文献 (2)

附录I 攻读硕士期间公开发表的论文 (5)

1 绪论

1.1电力电子技术的概况

电力电子技术是电工技术的分支之一,应用电力电子器件和以计算机为代表的控制技术对电能特别是大的电功率进行处理和变换是电力电子技术的主要内容[1][2]。

在现代工业、交通、国防、生活等领域中,除变比固定的交流变压器以外,大量需要其他各种类型的电力变换装置和变换系统,将一种频率、电压、波形的电能变换为另一种频率、电压、波形的电能,使用电设备处于各自理想的最佳工作情况,或满足用电负载的特殊工作情况要求,以获得最大的技术经济效益。经过变换处理后再供用户使用的电能占全国总发电量的百分比值的高低,已成为衡量一个国家技术进步的主要标志之一。2000年末,美国发电站生产的40%以上的电能都是经变换或处理后再提供负载使用,预计到21世纪二、三十年代,美国发电站生产的全部电能都将经变换或处理后再供负载使用。

当今世界环境保护问题日益严重,广泛采用电力电子技术后,可以节省大量的电力,这就可以节约大量资源和一次能源,从而改善人类的生活环境。此外,如果在电力系统的适当位置设置电力变换器或电力补偿器,能显著改善电力系统的运行特性。因此电力电子技术具有巨大的技术,经济意义[1]。

1.1.1 电力电子变换的基本原理

用电设备将电能转变为光能、热能、化学能和机械能。光、热、化学反应和机械能的调节和控制,可以通过改变通用设备电源电压的大小或频率方便地实现。电源可分为两类:一是直流电源;二是交流电源。电力变换包括电压电流的大小、波形及频率的变换。因此电力变换可划分为五类基本变换,相应地有五种电力变换电路或电力变换器[1][2]。

(1)整流:实现AC/DC 变换

AC/DC 变换是将交流变换为直流,其功率流向可以是双向的。功率由电源流向负载的称为整流;功率由负载返回电源的称为有源逆变。AC/DC 变换按电路的接线方式,可分为半波电路、全波电路;按电源相数,可分为单相、三相、多相;按电路工作象

限,又可分为一象限、二象限、三象限和四象限。

(2)逆变:实现DC/AC 变换

逆变就是实现直流到交流的功率变换。如不间断电源UPS,系统平时利用充电式电池储存电能,一旦交流电源中断,便可以把储存在电池中的直流电转换成交流电来维持正常供电。

(3)变频:实现AC/AC(AC/DC/AC)变换

变频器电源主电路均采用交流-直流-交流方案,工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出电源,输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

(4)斩波:实现DC/DC(AC/DC/DC)变换

DC/DC 变换是将固定的直流电压变换成可变的直流电压。当今软开关技术使直流变换器发生了质的飞跃。日本NemicLambda 公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为200~300kHz,功率密度已达到27w/cm3。采用同步整流器MOSFET,代替肖特基二极管使整个电路效率提高到90%以上。

(5)静止式固态断路器:实现无触点的开关、断路器的功能,控制电能的通断。

1.2开关电源和DC/DC变换器的发展趋势

从技术上看,几十年来推动电力电子技术水平不断提高的主要标志是[3][4][5][6][7]:

(1) 高频化

新型高频功率半导体器件如功率MOSFET和 IGBT的开发,使实现开关电源高频化有了可能。从而使中小型开关电源工作频率可达到400kHz(AC/DC)和1MHz(DC/DC)的水平。超快恢复功率二极管、MOSFET同步整流技术的开发也为高效、低电压输出(3V以下)开关电源的研制有了可能。现正探索研制耐高温的高性能碳化硅功率半导体器件。

(2) 软开关

软开关技术使高效率、高频开关变换器的实现有了可能。传统PWM开关电源按硬开关模式工作,开关损耗大。开关电源高频化可以缩小体积重量,但开关损耗却更大。为此必须研究开关电压/ 电流波形不交叠的技术,即所谓零电压/ 零电流开关技术,或称软开关技术。小功率软开关电源效率可提高到80-85% 。70年代谐振开关电

源奠定了软开关技术的基础。以后新的软开关技术不断涌现,如准谐振;移相全桥ZVS—PWM;恒频ZVS—PWM/ ZCS—PWM;ZVS—PWM有源箝位;ZVT—PWM/ ZCT—PWM;全桥移相ZVS—ZCS—PWM等。

(3) 功率因数校正技术(PFC)

目前PFC技术主要分为有源PFC技术和无源PFC技术两大类,采用PFC技术可以提高AC-DC变换器输入端功率因数,减少对电网的谐波污染。有源功率因数校正技术APFC的开发,提高了AC/DC开关电源功率因数。由于输入端有整流—电容元件,AC/DC开关电源及一大类整流电源供电的电子设备(如逆变器,UPS)等的电网侧功率因数仅为0.65,80年代用APFC技术后可提高到0.95~0.99,既治理了电网的谐波污染,又提高了开关电源的整体效率。单相APFC是DC/DC开关变换器拓扑和功率因数控制技术的具体应用,而三相APFC则是三相PWM整流开关拓扑和控制技术的结合。

(4) 磁性元件,新型磁材料和新型变压器的开发。如集成磁路,平面型磁心,超薄型变压器;以及新型变压器如压电式,无磁芯印制电路变压器等,使开关电源的尺寸重量都可减少许多。

(5) 电磁兼容(EMC)

在电力电子装置中,主功率开关管在很高的电压下,以高频开关方式工作,开关电压及开关电流均为方波,从频谱分析可知,方波信号含有丰富的高次谐波。同时,由于电源变压器的漏电感及分布电容,以及主功率开关器件的工作状态非理想,在高频开或关时,常常产生高频高压的尖峰谐波振荡,该谐波振荡产生的高次谐波,通过开关管与散热器间的分布电容传入内部电路或通过散热器及变压器向空间辐射。用于整流及续流的开关二极管,也是产生高频干扰的一个重要原因。整流及续流二极管工作在高频开关状态,由于二极管的引线寄生电感、结电容的存在以及反向恢复电流的影响,使之工作在很高的电压及电流变化率下,且产生高频振荡。因为整流及续流二极管一般离电源输出线较近,其产生的高频干扰最容易通过直流输出线传出。这些都是产生电磁干扰的来源。新电容器和EMI滤波器技术的进步,使电力电子装置小型化,并提高了EMC的性能。

(6) 模块化技术。

采用模块化技术可以满足分布式电源系统的需要,提高系统的可靠性。

(7) 低压大电流直流电源。

随着半导体制造技术的不断发展,微处理器和便携式电子设备的工作电压越来越

低,这就要求未来的DC/DC变换器能够提供低输出电压以适应微处理器和便携式电子设备的供电要求。

(8) 数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错技术的植入。

1.3软开关技术

传统硬开关有以下缺点[3]:(1)在一定条件下,开关管在每个开关周期中的开关损耗是恒定的。变换器总的开关损耗与开关频率成正比,开关频率越高,总的开关损耗越大,变换器效率越低。开关损耗的存在限制了开关频率的提高,从而限制了变换器的小型化轻量化;(2)开关管工作在硬开关时会产生高di/dt和dv/dt从而产生大的电磁干扰(EMI)。如果不改善开关管的开关条件,其开关轨迹可能会超出安全工作区,导致开关管的损坏。为了减小变换器的体积和重量,必须实现高频化,要提高开关频率,同时提高变换器的效率,就必须减小开关损耗,减小开关损耗的途径就是实现开关管的软开关,因此软开关技术应运而生。

1.3.1 DC/AC 逆变器中的软开关技术

在DC/AC逆变器,尤其是多相逆变器中,软开关技术的应用有很大困难[6]。通常逆变器中存在着多个开关,若每个开关都采用类似 DC/DC 变换器中的软开关工作方式,则构成软开关的谐振单元相互影响,使电路难以正常工作。1986年美国威斯康星大学的D. M. Divan 提出了谐振直流环逆变器RDCLI和谐振极逆变器(RPI)才较好地解决了这个问题,并立刻引起了广泛地重视。随后提出了许多改进电路和拓扑结构。直流谐振环节逆变器是在原先的PWM电压型逆变器与直流电源之间加入一个辅助谐振电路,令直流谐振环节产生谐振且使逆变桥直流母线上的电压周期回零,为逆变器中的开关创造零压开关的条件。谐振直流环节的最大进步在于用高频脉冲序列为逆变器供电,代替原来的恒压供电方式。谐振极逆变器是把辅助谐振回路移到桥臂的上下开关

联接点,利用谐振为逆变器创造零压开关的条件。

1.3.2 DC/DC直流变换器的软开关技术

变换器的软开关技术实际上是利用电感和电容来改善开关器件的开关轨迹,减小开关损耗。最早的方法是采用RLC缓冲电路来实现。从能量的角度来看,它是将开关损耗转移到缓冲电路中消耗掉,这种方法对变换器的变换效率没有提高甚至会使效率有所降低。目前所研究的软开关技术不再采用有损缓冲电路,而是真正减小开关损耗不是开关损耗的转移。直流电源的软开关技术一般可分为以下几类[1][3][6]:

(1)全谐振型变换器

一般称为谐振变换器Resonant converters,该类变换器实际上是负载谐振型变换器,按谐振元件的谐振方式分为串联谐振变换器和并联谐振变换器两类。按负载与谐振电路的连接关系,谐振变换器可分为两类:串联负载谐振变换器和并联负载谐振变换器。在全谐振变换器中谐振元件一直谐振工作参与能量变换的全过程,该变换器与负载关系很大,一般采用频率调制方法。

(2)准谐振变换器QRCs 和多谐振变换器MRCs

这是软开关技术的一次飞跃。这类变换器的特点是,谐振元件参与能量的某一个阶段,不是参与全过程。准谐振变换器分为零电流开关准谐振变换器和零电压开关准谐振变换器。多谐振变换器一般实现开关管的零电压开关,这类变换器通常需要采用调频控制的方法。

(3)零开关PWM变换器Zero switching PWM converters

它可分为零电压开关PWM变换器和零电流开关PWM变换器。该类变换器是在QRCs 的基础上加入一个辅助开关管,来控制谐振元件的谐振过程,实现恒定频率控制即实现PWM控制。这与QRCs不同的是谐振元件的谐振工作时间与开关周期相比很短,一般为开关周期的1/10,1/5。

(4)零转换PWM 变换器Zero transition converters

它可分为零电压转换PWM变换器和零电流转换PWM变换器.这类变换器是软开关技术的又一个飞跃。它的特点是变换器工作在PWM方式下,辅助谐振电路只是在主开关管开关时工作一段时间,实现开关管的软开关在其他时间则停止工作。这样辅助谐振电路的损耗很小。

在直流电源的软开关技术中还有无源无损软开关技术。软开关技术的采用,提高

了变换器的工作频率,降低了开关损耗,减小了功率元件的电压电流应力,但其中仍有许多问题有待解决,如进一步扩大功率使用范围,完善控制技术,提高工作可靠性等。但软开关技术的应用已经给功率变换器的发展带来了深刻的变革,软开关技术的进一步完善和实用化,必将为实现高品质的功率变换系统提供有力的技术保障。

1.4本文研究的主要内容

软开关技术是当前电力电子技术研究的热点之一。在分析对比移相全桥直流变换器和LLC串联谐振全桥DC/DC变换器特点的基础上,本文对LLC串联谐振全桥直流变换器的工作原理做了详细分析研究,设计了实验样机,实验结果验证了理论分析的正确性。本文的主要内容如下:

1). LLC串联谐振全桥DC/DC变换器的稳态工作原理分析

在分析移相全桥PWM ZVS DC/DC变换器缺点和分析对比MOSFET和IGBT各自特点的基础上,确定了LLC串联谐振全桥DC/DC变换器的稳态工作区,建立了变换器的数学模型,详细分析研究了LLC串联谐振全桥DC/DC变换器的特点和电路的工作过程。

2). LLC串联谐振全桥DC/DC变换器小信号模型的建立和动态特性研究

本文首先对DC/DC变换器的小信号建模方法进行了归纳。然后利用扩展描述函数的方法,详细研究了LLC串联谐振全桥DC/DC变换器的小信号建模。在此基础上,分析了变换器的稳定性,研究了控制器的设计。仿真结果验证了理论分析的正确性。

3). 主电路和控制电路的设计

在理论分析的基础上,本文对一台LLC串联谐振全桥DC/DC变换器实验样机的主电路和控制电路设计过程进行了详细研究。设计中采用了集成磁设计方法。设计步骤和结论可以为实际装置的设计提供参考。

4). 实验结果和全文总结

为了验证理论分析的正确性,本文给出实验的波形和实验数据并对实验结果进行了详细分析,得出了实验结论。全文的最后,对全文的研究工作做了总结,并对该电路优缺点进行了分析和总结。

2 LLC串联谐振全桥DC/DC变换器的基本原理

近年来,移相全桥ZVS PWM变换器作为一种优秀的变换器拓扑结构,能够实现主开关管的零电压开通,成为电力电子技术领域的研究热点之一。但是该变换器也有一些缺点,不适合对电源性能有特殊要求的场合,如有输入掉电维持时间[8](Hold-up time)要求的通信用二次电源。而LLC串联谐振变换器能够有效地克服移相全PWM ZVS 变换器的缺点。由于这种谐振变换器工作在高频条件下,主开关管使用MOSFET,本文首先分析了MOSFET的特点,为LLC串联谐振全桥变换器工作区域的选择提供了依据,然后从分析比较以上两种电路特点的角度,详细分析了LLC串联谐振全桥变换器的基本原理和工作过程,确定了其稳态工作区。

2.1移相全桥PWM ZVS变换器的基本拓扑结构和工作过程

2.1.1 移相全桥PWM ZVS变换器的基本原理

移相全桥PWM ZVS变换器的基本拓扑结构如图2.1所示。其电路结构与普通双极

性PWM变换器类似,T

1和T

2

组成超前桥臂,T

3

和T

4

组成滞后桥臂。C

1

~C

4

分别是T

1

T 4的谐振电容,包括寄生电容和外接电容。L

r

是谐振电感,包括变压器的漏感。T

1

T 2分别超前T

4

和T

3

一个相位,即移相角,通过调节移相角的大小,调节输出电压。

D 5、D

6

是整流二极管,L

f

、C

f

构成二阶滤波器(L

f

足够大,I

f

近似恒定)[1][3][9]。

D6

D5

图2.1 移相全桥PWM ZVS DC/DC变换器基本电路

移相全桥PWM ZVS变换器的主要工作波形如图2.2所示。半个开关周期内电路工

作过程分为六个阶段,图中t

δ为移相角、t d为死区,i p为变压器原边电流。

阶段1[t

0-t

1

]:

在t

0时刻关断T

1

,电流i

p

从T

1

转移到C

1

和C

2

支路中,给C

1

充电,同时C

2

被放电。

在此期间,谐振电感L

r 和滤波电感L

f

是串联的,而且L

f

很大,可以认为i

p

近似不变,

类似于一个恒流源。电容C

1的电压从零开始线性上升,电容C

2

的电压从V

in

开始线性

下降,在t

1时刻,C

2

的电压下降到零,T

2

的反并二极管D

2

自然导通,将T

2

的电压箝

在零电位。

V AB

V gs

i

i

V r

0123456789t1011

图2.2 移相全桥变换器主要工作波形

阶段2[t

1-t

2

]:

t 1时刻T

2

的电压已被箝在零电位,T

4

导通。V

AB

=0,此后i

p

将经T

4

,D

2

和L

r

续流,i

p

减小,其感应电压使变压器副方二极管D

5导通,续流I

f

。在此续流阶段,D

2

导通,只

要满足t

01=t

1

-t

d

,就可保证T

2

是零电压开通,无开通损耗。虽然T

2

被开通,但T

2

并没有电流流过,原边电流由D

2

流通。

阶段3[t

2-t

3

]:

在t

2时刻,关断T

4

,原边电流i

p

转移到C

3

和C

4

中,一方面抽走C

3

上的电荷,V

c3

从V

in 下降;另一方面同时又给C

4

充电,V

c4

从零逐渐上升,T

4

软关断。此阶段内,变

压器副边二极管D

6导通。由于滤波电感电流I

f

近似为恒流,此时变压器副边整流二

极管D 5、D 6之间进行换流,由于D 5,D 6同时导通,变压器副边被短路。

阶段4[t 3

-t 4

]:

t 3时刻,C 4电压充至V in ,C 3电压放为零,二极管D 3自然导通V c3=0。只要t 23=t 3-t 2

就可保证T 3是零电压开通,无开通损耗。虽然T 3被开通,但T 3并没有电流流过,原边电流由D 3流通。

阶段5[t 4-t 5]:

t 4时刻i p 过零反向增加,由于I D6仍然不足以提供I f ,故D 5、D 6仍然同时导通,副边电压为零。

阶段6[t 5-t 6]:

t 5时刻,变压器原边电流i p 增加至I f /K(K 为变压器变比),D 5、D 6换流过程结束,I f 由二极管D 6单独提供。t 6时刻T 2关断。后半个周期与前半个周期工作情况类似。 2.1.2 移相全桥ZVS PWM 变换器存在的缺点

1). 轻载时难于实现ZVS

超前桥臂和滞后桥臂开关管实现ZVS 的条件不同。两个桥臂上的开关管实现ZVS 都需要相应的并联谐振电容能量释放为零,二极管自然导通。对于超前桥臂,T 2开通前的t 01期间,放电电流i p 较大且恒定不变(i p =I f );另一方面由于变压器原副方有能量传递,原方等效电路中电感L=L r +K 2L f 很大,故用于实现超前桥臂开关管ZVS 的能量很大。而滞后桥臂T 3开通前的t 23期间,一方面i p 逐渐变小(i p

22

2412

r in L I C V (2-1)

其中I 2为t 2时刻原边电流值。当轻载时电流I 2较小,故滞后桥臂难于实现ZVS 。 2). 副边整流二极管存在反向恢复问题

反向恢复现象是二极管使用时必须注意的问题[1]。移相全桥PWM ZVS DC/DC 变换器由于占空比丢失的原因,谐振电感L r 不可能较大,因此为使输出电压交流分量较小,副边滤波电路必须有一定滤波电感L f 的存在。这样原边电压V AB 反向时,整流二极管D 5(D 6)电流不能立即降为零,必然存在D 5、D 6同时导通续流的过程(t 2~t 5、t 8~

t 11)。此时D 5、D 6存在反向恢复问题,整流电压V r 出现振荡,二极管反向电压出现尖峰。这种由整流二极管反向恢复问题而引起的损耗严重限制了直流电源效率的提高。整流二极管反向恢复问题如图2.3所示。

i v V D5t

t

t

图2.3 移相全桥变换器整流二极管的反向恢复问题

3). 输入电压和变换器转换效率的矛盾

在输入电压保证能输出满载电压的前提下,当输入电压V in 较低时,占空比大,原边环流能量较小,变换器效率较高;当输入电压V in 较高时,占空比小,原边环流能量较大,变换器效率较低[3]。为取得较高的效率,移相全桥PWM ZVS DC/DC 变换器通常设计在输入电压较低,占空比较大时工作。出现输入电压掉电时,负载能量只能由直流母线电容提供,短时间内输入电压很快降低。这时要维持输出电压恒定,要求占空比更大,电路失去超调能力,使输出电压很快降低。因此输入电压和变换效率的这种关系,对于有掉电维持时间限制的开关电源是不适合的。

2.2 MOSFET 和IGBT 性能比较

为适应电力电子装置高频化的要求,电压驱动型开关器件IGBT 、MOSFET 被广泛应用。这两种器件都是多子器件,无电荷存储效应,开关速度快,工作频率高,输入阻抗高,驱动功率小。MOSFET 较IGBT 的开关速度更快,更适合高频工作场合。谐振

型开关电源一般都采用MOSFET 。本节分析对比了IGBT 和MOSFET 的开关损耗产生机理,为LLC 谐振变换器工作区域的确定提供了依据。

MOSFET 和IGBT 的等效电路如图2.4所示,两者结构上的主要差异是IGBT 比MOSFET 增加了一个漏注入区P +层,它直接通向集电极[10][11]。这种结构差异决定了MOSFET 和IGBT 的特性有所不同。MOSFET 和IGBT 等效电容可以表示为式(2-2)。在开关过程中,等效电容大小随时间变化。器件的输出电容主要是由密勒效应引起的密勒电容,而密勒效应的强弱与反馈电容C rss 的大小和器件的放大倍数有关,在放大倍数一定的条件下,C rss 越大,密勒效应越强烈,输出电容也越大。

i

gs gd o

ds gd r

gd

C C C C

C C C C =+=+=??

???

i

ge gc

o

ce gc r

gc

C C C C

C C C C =+=+=??

???

(2-2)

C ds

C ce

图2.4 MOSFET 和IGBT 等效电路

MOSFET 的反馈电容C rss 仅由与MOSFET 结构有关的MOS 电容C gd 决定,而IGBT 在MOSFET 结构的基础上增加了P +层,P +层和N -层之间会形成PN 结电容C PN (由势垒电容C B 和扩散电容C D 组成),IGBT 的反馈电容相当于C gc 与C PN 串联后的电容,故其反馈电容C rss 较MOSFET 的小的多。IXYS 公司的MOSFET 和IGBT 等效电容[10]比较如表2.1 (测试条件均为V ds =V ce =25V ,V gs =V ge =0V ,开关频率f s =1MHz):

表2.1 MOSFET 和IGBT 等效电容对比

比较结果显示,对于同样电压等级的器件,MOSFET 的输出电容是IGBT 的10多倍。对IGBT 来说,流经N -漂移区的电子在进入P +区时,会导致正电荷载流子(空穴)

由P+区注入N-区。这些被注入的空穴既从漂移区流向发射极端的P区,也经由MOS 沟道及N井区横向流入发射极。因此在N-漂移区内,构成主电流(集电极电流)的载流子出现过盈现象。与MOSFET不同,IGBT的N-区并没有外引电极,因此器件关断过程中不能采用抽流的方法来降低N-区的过剩载流子,这些空穴只能依靠自然复合,集电极电流i

c

存在一个拖尾电流[11]。通过以上分析,可以得出结论:MOSFET的输出电容较大,IGBT存在拖尾电流现象。

硬开关的条件下MOSFET和IGBT开关损耗分析:

1).开通损耗方面:由于MOSFET的输出电容大,器件处于断态时,输入电压加在输出电容上,输出电容储存较大能量。在相继开通时这些能量全部消耗在器件内,开通损耗大。器件的开通损耗和输出电容成正比,和频率成正比和输入电压的平方成正比[12]。而IGBT的输出电容比MOSFET小得多,断态时电容上储存的能量较小,故开通损耗较小。

2).关断损耗方面:MOSFET属单极型器件,可以通过在施加栅极反偏电压的方法,迅速抽走输入电容上的电荷,加速关断,使MOSFET关断时电流会迅速下降至零,不存在拖尾电流,故关断损耗小[10];而IGBT由于拖尾电流不可避免,且持续时间长(可达数微秒),故关断损耗大。

综合以上分析,硬开关条件下MOSFET的开关损耗主要是由开通损耗引起,而IGBT 则主要是由关断损耗引起。因此使用MOSFET作为主开关器件的电路,应该工作于ZVS 条件下,这样在器件开通前,漏极和源极之间的电压先降为零,输出电容上储存能量很小,可以大大降低MOSFET的开通损耗;而使用IGBT作为主开关器件的电路,应该工作于ZCS条件下,这样在器件关断前,流过器件的电流先降为零,可以大大降低因拖尾电流造成的关断损耗。

2.3LLC串联谐振变换器工作原理分析和工作区域划分

LLC串联谐振全桥DC/DC变换器主电路如图2.5。MOS管T

1-T

4

构成全桥逆变电路,

T 1、T

4

采用同一驱动信号,T

2

、T

3

采用同一驱动信号,占空比均为50%。T

1

(T

4

)和T

2

(T

3

)

驱动信号之间存在一定死区。D

1-D

4

为MOS管的寄生二极管,电感L

r

、L

m

和C

r

组成串

联谐振网络,D

5-D

6

构成全波整流电路,C

f

为滤波电容[13][14][15]。对比图2.1可知,LLC

串联谐振全桥DC/DC变换器与移相全桥PWM ZVS DC/DC变换器的主要区别有三点:

1). 在谐振网络中增加了一个谐振电容C r,由于C r串联在变压器的原边,实际

上也起到隔直作用,使变压器不容易饱和。

r

r

V o

图2.5 LLC 串联谐振全桥DC/DC 变换器主电路图

2). 变压器T 原边增加了电感L m ,这是LLC 串联谐振变换器与传统串联谐振变换器的主要区别。

3).副方滤波网络没有滤波电感L f 。由于变压器原方电感L m 较大,可以起到滤波作用,故可以省略L f ,以减小变换器体积和重量。 2.3.1 LLC 串联谐振变换器的等效电路和数学模型建立

LLC 串联谐振网络等效电路和输入电压波形如图2.6所示(T s 为开关周期,w s 为开关角频率,w 0为谐振角频率)。

r r

R

V s

V -V o e R e

图2.6 LLC 串联谐振网络等效电路

其中L e 、R e 为等效谐振电感和负载电阻:

22

22

s m

e r s m

R w L L L R w L =++ (2-3) 22

2

22

s m e s m

Rw L R R w L =+ (2-4)

浅谈电子整流器工作原理

浅谈电子整流器工作原理 前言 整流器(什么是整流器)是一个简单的将交流(AC)转化为直流(DC)的整流装置,它作为工业应用不可或缺的电子器件已越来越受到人们的亲睐。面对纷繁复杂的电子整流器件,怎样才能判别它的好坏呢?对于有用到电子整流器(整流器的作用)的人来说,了解其基础知识是必不可少的。小编通过搜集各种资料简要的对电子整流器的基础知识进行了以下总结。 电子整流器的工作原理(整流器原理) 电子整流器的基本工作原理如下图所示: 正常情况下,电子整流器通电后逆变器连同电感L、灯丝1、电容、灯丝2组成串联谐振电路,在一定时间内电容两端产生高压,这一高电压引起荧光灯弧光放电使荧光灯启动,然后谐振电路失谐,日光灯进入稳定的点燃状态。当出现灯管老化或者灯管漏气等异常状态时,荧光灯不能正常启动,上面的电路一直

处于谐振状态(除非灯丝烧断或电子整流器损坏),逆变器输出的电流不断增大,通常这个电流会升高到正常电流的3到5倍。如果这时不采取有效的保护措施,会造成极大危害。首先,过大的电流会导致逆变器中作为开关的三极管或场效应管及其它外围部件因过载而烧毁,甚至引起冒烟、爆裂等事故。同时,灯脚对地线或中线会形成长时间的极高电压,对于20W、36W、40W及其它大部分国标/非标灯的电子整流器,这一电压往往会达到一千伏或更高,这不仅为国标GB15143所严格禁止,而且也会危及人身、财产安全。GB15143-94“11、14”及GB15144-94“5.13”部分对电子整流器的异常状态试验包括:灯开路、阴极损坏、去激活、整流效应等,同时规定电子整流器在经过上述试验后不得发生安全性故障并能够正常工作。 电子整流器满足的两大功能要求 荧光灯的工作性能在很大程度上与相配套工作的电子整流器性能有关,在使用中应使荧光灯的工作性能和电子整流器的工作性能相匹配(如灯阻抗和灯的工作特性),以使荧光灯能工作在最佳状态, 使用中电子整流器应满足以下功能要求: ①能够限制和稳定荧光灯的工作电流。 ②在交流市电过零时,也能正常工作。

LLC串联谐振全桥DC-DC变换器的研究硕士学位毕业论文

分类号学号2003611310063 学校代码10487 密级 硕士学位论文 LLC串联谐振全桥DC/DC 变换器的研究

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Research on LLC Series Resonant Full-Bridge DC/DC Converter Candidate :Gong Li Major :Power Electronics and Electric Drive Supervisor:Professor Li Xiaofan Huazhong University of Science and Technology Wuhan 430074, P.R.China April, 2006

独创性声明 本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到,本声明的法律结果由本人承担。 学位论文作者签名: 日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,即:学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权华中科技大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在_____年解密后适用本授权书。 本论文属于 不保密□。 (请在以上方框内打“√”) 学位论文作者签名:指导教师签名: 日期:年月日日期:年月日

(串联谐振电路分析)

《电子设计与制作》 课 程 设 计 报 告

目录 一:题目………………………………………………………..二:原理………………………………………………………….三:电路图……………………………………………………….四:实验内容…………………………………………………….五:实验分析……………………………………………………六:心得体会…………………………………………………….

一、题目:串联谐振电路分析 二、原理 1.串联谐振的定义和条件 在电阻、电感、电容串联电路中,当电路端电 压和电流同相时,电路呈电阻性,电路的这种状态叫做串联谐振。 可以先做一个简单的实验,如图所示,将:三个元件R 、L 和C 与一个小灯泡串联,接在频率可调的正弦交流电源上,并保持电源电压不变。 实验时,将电源频率逐渐由小调大,发现小灯泡也慢慢由 暗变亮。当达到某一频率时,小灯泡最亮,当频率继续增加时, 又会发现小灯泡又慢慢由亮变暗。小灯泡亮度随频率改变而变 化,意味着电路中的电流随频率而变化。怎么解释这个现象呢? 在电路两端加上正弦电压U ,根据欧姆定律有 || U I Z = 式中 2 2 2 2 1 ||()()L C Z R X X R L C ωω= +-= +- L ω和 1 C ω部是频率的函数。但当频率较低时,容抗大而感抗小, 阻抗|Z|较大,电流较小;当频率较高时,感抗大而容抗小,阻抗|Z|也较大,电流也较小。在这两个频率之间,总会有某一频率,在这个

频率时,容抗与感抗恰好相等。这时阻抗最小且为纯电阻,所以,电流最大,且与端电压同相,这就发生了串联谐振。 根据上述分析,串联谐振的条件为 L C X X = 即 001 L C ωω= 或 01LC ω= 01 2f LC π= 0f 称为谐振频率。可见,当电路的参数 L 和C 一定时,谐振频率 也就确定了。如果电源的频率一定,可以通过调节L 或C 的参数大小来实现谐振。 2、串联谐振的特点 (1)因为串联谐振时,L C X X =,故谐振时电路阻抗为 0||Z R = (2)串联谐振时,阻抗最小,在电压U 一定时,电流最大,其值 为 00|| U U I Z R = = 由于电路呈纯电阻,故电流与电源电压同相,0? = (3)电阻两端电压等于总电压。电感和电容的电压相等,其大小

移相全桥ZVZCSDCDC变换器综述

移相全桥ZVZCSDC/DC变换器综述 河北秦皇岛燕山大学朱艳萍电源技术应用 摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。 关键词:移相控制;零电压零电流开关;全桥变换器 1概述 所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。即当原边电流减小到零后,不允许其继续反方向增长。原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件; 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。 2 电路拓扑 根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC 拓扑结构,以供大家参考。 1)NhoE.C.电路如图1所示[1]。该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高。变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大。该电路可以工作在电流临界连续状态,但必须采用频率控制,不利于滤波器的优化设计。

实验一 RLC串联谐振电路的研究

2 1实验一 RLC 串联谐振电路的研究 一、实验目的 1、学习用实验方法绘制R 、L 、C 串联电路的幅频特性曲线; 2、加深理解电路发生谐振的条件、特点、掌握电路品质因数(电路Q 值)的物理意义及 其测定方法。 二、实验设备和器材 函数信号发生器1只 交流毫伏表1只(0~600V) 电路原理实验箱1只 三、实验原理与说明 1.在图1.1所示的R 、L 、C 串联电路中,当正弦交流信号源的频率f 改变时,电路中的 感抗、容抗随之而变,电路中的电流也随f 而变。取电阻电路电流I 作为响应,当输入电压U i 维持不变时,在不同信号频率的激励下,测出电阻R 两端的电压U 0之值,则I=U 0/R 。然后以f 为横坐标,以I 为纵坐标,绘出光滑的曲线,此即为幅频特性,亦称电流谐振曲线,如图1.2所示。 2. 在 处(X L =X C )即幅频特性曲线尖峰所在的频率点,该频率称为 谐振频率,此时电路呈纯阻性,电路阻抗的模为最小,在输入电压U i 为定值时,电路中的电流达I 达到最大值,且与输入电压U i 同相位,从理论上讲,此时,U i =U R =U 0, U L =U C =QU i ,式中的Q 称为电路的品质因数。 3. 电路品质因数Q 值的两种测量方法 一是根据公式 测定,U C 与U L 分别为谐振时电容器C 和电感线圈L 上的电压;另一方法是通过测量谐 振曲线的通频带宽度 再根据 求出Q 值,式中f 0为谐振频率,f 1和f 2是失谐时,幅度下降到最大值的 倍时的上、 下频率点。 Q 值越大,曲线越尖锐,通频带越窄,电路的选择性越好,在恒压源供电时,电路的品 质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。 四、实验内容 1.按图1.3接线,取C=0.1μF ,R=200Ω,调节信号源输出电压为V P-P = 2.83V ,有效值约 U i =1V 正弦信号,并在整个实验过程中保持不变。(本实验的电感L 约30mH) 2.找出电路的谐振频率f 0,其方法是,将交流毫伏表接在R (200Ω)两端,令信号源的 频率由小逐渐变大(注意要维持信号源的输出幅度不变),当U 0的读数为最大时,读得频率表上的频率值即为电路的谐振频率f 0,并测量U 0、U C 、U L 之值(注意及时更换毫伏表的量限),记入表格中。 3. 在谐振点两侧,先测出下限频率f 1和上限频率f 2及相对应的U R 值,然后按频率递增 或递减500H Z 或1KH Z ,依次各取8个测量点,逐点测出U R ,U L ,U C 之值,记入数据表格。 LC f f π21 0==O C O L U U U U Q ==1 2f f f -=?1 2f f f Q o -=

浅谈有源晶振sin的输出那些事

浅谈有源晶振sin的输出那些事 晶振输出串电阻就来自于最小化设计,对于数字电路里最重要的时钟源部分,应该特别注意保证信号完整性,最小化设计中晶振外围电路除了电阻还要有一些其他器件。 ?无源晶振输出波形为正弦波,有源晶振输出波形为正弦波(sin)或方波。有源晶振自身输出是正弦波,在其内部加了整形电路,所以输出是方波,正弦波通常用的很少,遍及用的都是方波输出(许多时候在示波器上看到的还是波形不太好的正弦波,这是由于示波器的带宽不行。例如:有源晶振 20MHz,假如用40MHz或60MHz的示波器测量,显现的是正弦波,这是由于方波的傅里叶分解为基频和奇次谐波的叠加,带宽不行的话,就只剩下基频20MHz和60MHz的谐波,所以显现正弦波。完美的再现方波需求最少10倍的带宽,5倍的带宽只能算是牵强,所以需求最少100M的示波器)。 ?无源晶振有2个引脚,需要借助于外部的时钟电路(接到主IC内部的震荡电路)才能产生振荡信号,自身无法振荡. ?有源晶振有4个引脚,是一个完整的振荡器,其中除了石英晶体外,还有晶体管和阻容元件.只需要电源,就可输出比较好的波形一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。 ?晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络。电工学上这个网络有两个谐振点,以频率的高低分,其中较低的频率是串联谐振;较高的频率是并联谐振。由于晶体自

LLC谐振全桥DCDC变换器设计修改

LLC谐振全桥DC/DC变换器设计 摘要:电力电子变压器(PET)作为一种新型变压器除了拥有传统变压器的功能外,还具备解决传统变压器价格高、体积庞大、空载损耗严重、控制不灵活等问 题的能力,值得深入研究。PET的DC-DC变换器是影响工作效率和装置体积重量 的重要部分,本文以PET中DC-DC变换器为主要研究对象,根据给出的指标,对 全桥LLC谐振变换器的主电路进行了详细的设计,主要有谐振参数的设计,利用 磁集成思想,设计磁集成变压器,可以大大减小变换器的体积和重量,并在参数设 计的基础上完成器件的选型。此外,根据给出的参数,计算出各部分损耗,进而计 算出效率,结果满足设计效率的要求。利用PEmag和Maxwell仿真软件设计磁集 成变压器,验证磁集成变压器参数。运用Matlab/simulink对PET中的DC-DC变换 器模型进行仿真分析,并在实验样机上进行实验研究,实验结果验证了DC-DC变 换器的理论研究和设计方法的正确性及有效性。 关键词:电力电子变压器;LLC谐振变换器;损耗分析;磁集成变压器 中图分类号:TD62 文献标识码:A 文章编号: Design of LLC resonant full bridge DC / DC converter Abstract: The Power Electronic Transformer (PET) as a new power transformer,not only has the functions of traditional transformers, but also has the ability to solve the problems of traditional power transformers that the high price, huge volume, prodigious no-load loss and inflexible control, and it is worth in-depth study.The DC-DC converter of PET is an important part of affecting work efficiency, volume and weight of the device. This paper studies the DC-DC converter mainly, then,according to given indexes, main circuit of full-bridge LLC resonant converter is designed in detail, including the design of resonant parameters. And the magnetic integrated transformer is designed with the idea of magnetic integration, which greatly reduces the converter volume, and the selection of devices is completed on the basis of parameters design.In addition, according to the given parameters, losses of each part and the efficiency are calculated. The results meet the efficiency requirements of design. PEmag and Maxwell simulation software are used to design magnetic integrated transformer, and verified the magnetic integrated transformer parameters.Matlab/simulink is used to simulate and analyze the DC-DC converter performance of PET. A prototype of full-bridge LLC resonant converter is developed and system test platform is built according to the theoretical research and simulation results. The correctness and effectiveness of theoretical research and design methods of the DC-DC converter are verified by analyzing the waveforms of the test. Key words:power electronic transformer; LLC resonant converter; loss analysis; magnetic integrated transformer 煤矿井下存在着各种电压等级的电源以及电气设备,供电系统十分复杂。为了满足不同电压等级的要求[1],目前井下常用传统电力变压器来进行变压和能量传递。这种变压器制作工艺简单、可靠性高,但是其价格高、体积庞大、空载损耗严重、控制不灵活,而且,如果出现电压不平衡、谐波、闪变等现象,无法维护电力设备的正常工作[2]。所以,现在亟待解决的问题是如何保证电气设备在安全工作的情况下,给用户供应可靠稳定的电能[3]。电力电子变压器(PET)应运而生,它除了拥有传统变压器的功能外,还具备解决上述难题的能力,作为一种新型变压器,近年来成为国内外学者研究的热门问题[4-9]。LLC拓扑,作为一种双端谐振拓扑,已经在许多DC/DC功率变换方案中得到应用,但在PET上的应用尚未广泛。本研究将依据LLC全桥DC/DC变换器的原理设计一款PET,利用LLC谐振变换器本身的诸多优势达到提高PET效率的目的。

RLC串联谐振电路的实验报告

RLC串联谐振电路的实验报告 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.测定RLC串联谐振电路的频率特性曲线。 (2)实验原理: RLC串联电路如图所示,改变电路参数L、C或电源频率时,都可能使电路发生谐振。该电路的阻抗是电源角频率ω的函数:Z=R+j(ωL-1/ωC)当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率ω0 =1/LC,谐振频率f =1/2πLC。谐振频率仅与原件L、C的数值有关,而与电阻R 和激励电源的角频率ω无关,当ω<ω 0时,电路呈容性,阻抗角φ<0;当ω>ω 时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗Z 0=R,| Z |为最小值,整个回路相当于一个纯电阻电路。 (2)、回路电流I 0的数值最大,I =U S /R。 (3)、电阻上的电压U R 的数值最大,U R =U S 。 (4)、电感上的电压U L 与电容上的电压U C 数值相等,相位相差180°,U L =U C =QU S 。 2、电路的品质因数Q 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q,即: Q=U L (ω )/ U S = U C (ω )/ U S =ω L/R=1/R* (3)谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲线,也称谐振曲线。 在U S 、R、L、C固定的条件下,有

I=U S / U R =RI=RU S / U C =I/ωC=U S /ωC U L =ωLI=ωLU S / 改变电源角频率ω,可得到响应电压随电源角频率ω变化的谐振曲线,回路 电流与电阻电压成正比。从图中可以看到,U R 的最大值在谐振角频率ω 处,此 时,U L =U C =QU S 。U C 的最大值在ω<ω 处,U L 的最大值在ω>ω 处。 图表示经过归一化处理后不同Q值时的电流频率特性曲线。从图中(Q 11/2时,U C 和U L 曲线才出现最大值,否则U C 将单调下降趋于0,U L 将单调上升趋于U S 。 仿真RLC电路响应的谐振曲线的测量 五、结论

谐振电路和品质因数Q值的物理意义及教学思路

收稿日期:2012-11-27 作者简介:雷志坤(1966~),广西机电职业技术学院讲师,研究方向:电子技术、实验实训教学。浅谈谐振电路和品质因数Q 值的 物理意义及教学思路 雷志坤 (广西机电职业技术学院,广西南宁 530007) 摘 要:谐振是电路在运行过程中的一个特殊状态,处于谐振状态的电路具有明显而独特的特征;电路品质因数Q 值的物理意义在于揭示了电路谐振程度的强弱,体现了电路对信号源频率的选择性以及电路中无功功率对有功功率的比例。充分理解谐振和品质因数的物理含义对掌握和应用其原理起到事半功倍的效果。本文从实用角度出发,通过对常见应用实例分析引出谐振的概念及其学习重点,并通过对比方法讨论了两种典型谐振的特点及品质因数Q 值物理意义区别,给电路分析相关内容的教学提供了一些有效的参考方法。 关键词:谐振;品质因数Q 值;物理意义;讨论 中图分类号:G642 文献标识码:A 文章编号:1008-7508(2013)01-0123-03 引言 谐振是电路在运行过程中出现的一种特殊物理现象, 其重要性从无线电通信等技术中的应用中可见一斑。具有 电感和电容元件的不含独立激励源二端电路网络,当网络 的输入阻抗等效为纯电阻时,该电路发生了谐振现象,谐 振时电感感抗大小等于电容容抗,网络端口的电压和电流 同相位,在电感或电容上将获得比端口信号大得多的信号 响应量。Q 值的物理意义体现了一个电路发生谐振的强弱 程度和电路对输入信号选频性的好坏。然而,在电路分析 教学中,我们常常发现学生(尤其是高、中职学校的学生) 对谐振其品质因数Q 这些重要概念的物理含义理解不清或 一知半解,究其原因主要是因为其概念较为抽象,教材中 又多采用复杂而繁琐的数学公式推导,直观性不强,造成 学生对这些概念的理解出现一定程度的困难,将影响到他 们后续课程的学习效果。 如何才能便捷有效地理解电路中的谐振和品质因数等 概念呢?笔者在多年的教学实践中总结出一些较为理想的 教学方法,现归纳为以下几点供同行们探讨。 一、举例说明谐振概念及其品质因数Q 值的物理意义 1、谐振的概念及典型应用举例 现以最常见的收音机输入回路(即调台电路)为例。 如图1为简单的收音机信号输入等效电路,由天线和电阻 R 、电感L 及电容C 组成,其中,R 、L 、C 构一个串联谐振回路。 Journal of Jilin Radio and TV University No.1,2013(Total No.133) 吉林广播电视大学学报 2013年第1期(总第133期) 学术论坛

移相全桥PWM DC-DC变换器的数学建模

移相全桥 移相全桥ZVS 变换器由于其充分利用了电路本身的寄生参数,使开关管工作在软开关状态,降低了开关管的开关噪声和开关损耗,提高了变换器的效率,近年来在中大功率场合得到广泛应用。随着微处理器价格的不断下降和计算能力的不断提高,采用数字控制已经成为中大功率开关电源的发展趋势,许多数字控制方法相继提出。但对于DC/ DC 变换器这种强非线性系统,传统的基于线性系统理论的控制方法并不能获得理想的动态特性。 该文在建立移相全桥变换器模型的基础上,提出一种新的模糊PID 预测控制策略,将传统控制方法与智能控制方法相结合,通过模糊控制对传统PID 控制器进行增益调节,同时采用预测控制以补偿数字控制系统中的时延。这种控制策略比较简单,易于数字控制器的实现,该文采用MA TLAB 方法进行了仿真研究。 2 移相全桥变换器小信号模型的建立 一般建立DC/ DC 变换器的小信号模型的方法是状态空间平均法,但对于移相全桥ZVS 变换器来说,用状态空间平均法建模是一项十分复杂的工作。因为这种变换器具有12种开关状态,因此列写状态空间方程式是一个非常复杂的工作。 根据移相全桥ZVS PWM 变换器源于BUCK 变换器的事实,从电路工作的描述中可以 看出变压器副边的有效占空比^ off off off d D d =-,变压器原边电压的占空比d 而且依靠输出滤波电感电流L i ,漏感lk L ,输入电压in V 和开关频率s f ,所以移相全桥变换器小信号传递 函数也将取决于漏感lk L ,开关频率s f ,滤波电感电流扰动^ L i ,输入电压扰动^in V ,和变压 器原边占空比扰动^ d 等因素。为了精确地建立移相全桥变换器的动态特性模型,找出lk L , s f ,^ L i ,^in V 和^ d 对^ off d 的影响是必要的。这些影响可以加入到PWM BUCK 变换器的小 信号电路模型中(图1),从而获得移相全桥PWM 变换器的小信号模型(图2)。 我们知道由于谐振电感lk L 和变压器副边整流二级管的影响,移相全桥变换器存在占空比丢失的现象,副边有占空比为:off D D D =-? 即()()221/21lk off L o in nL D D I D V T L V T =- --???? 移相全桥变换器输出电压增益为: ()()2 221/22o lk off L o in in V n L nD nD I D V T L V V T ==- --???? 其中,n 为变压器副边匝数与原边匝数的比值;L I 为电感电流平均值。 下面通过式(l )来分析对off D 产生影响的因素。 l )占空比扰动^ d 对off D 的影响^ d d 由式(l )可得

lc串联谐振变换器

https://www.wendangku.net/doc/0718567675.html, lc串联谐振变换器 谐振变换器是依靠改变开关网络的工作频率实现对输出量的控制的,因此它是一种变 频控制的开关调节系统。谐振变换器的开关动作被设定在零电流或零电压时刻发生,大大 减小了开关损耗;正弦谐振波还能降低高频谐波噪声;由于电路是利用LC谐振,电路中 的寄生电感和电容能够得到应用。基于这些优点,谐振变换器得到了广泛的应用。小信号 建模是分析和控制变换器的有力工具。 谐振变换器建模方法有扩展描述函数法、DQ等效法、注入?吸收电流法等。扩展描述函数法也是一种适用于谐振类变换器建模方法,根据描述函数理论非线性环节的稳态输出 可看成一个与输入信号同频的正弦函数,只是幅值与相位不同。把输出信号和输入信号的 复数比定义为非线性环节的描述函数,但是其前提是将输入端开关动作等效成一个统一的 函数。DQ等效法将电路中的矢量,从静止的直角坐标系变换到与电路中矢量相同角速度 旋转的DQ坐标系中。扩展描述函数法和DQ等效法都是以基波等效法为基础所建的模型,适用于电流连续模式,并不适用于电流不连续模式。注入?吸收电流法是一种电流连续模式和电流不连续模式下都可用的建模方法。本文采用注入?吸收电流法对工作于电流断续模式下的串联谐振变换器的建模展开研究,并在此基础上设计了满足要求的补偿器。 传递函数推导 根据电感电流的连续与否,变换器工作模式分为两种:连续导电模式(CCM)和不连续导电模式(DCM)。当开关频率大于 1 2 的谐振频率时,串联谐振变换器是工作在电流连续模式下的;当开关频率小于1 2 的谐振频率时,串联谐振变换器是工作在电 流断续模式下的,这样开关工作在零电流(ZCS)条件下,可以降低开关损耗,提高电源 的效率。断续工作模式的半个开关周期包含a,b,c三种工作状态。假设负载电容值远远大于谐振电容的电容,因此在一个谐振周期内,负载电容的电压上升非常小,在分析过程 中将其看成一个恒压源。根据以上分析;a,b工作模式的等效电路如图2所示。c表示谐振电流为零时的工作模式(其状态电路图省去)。 仿真实验结果

实验报告 R、L、C串联谐振电路的研究

实验报告 祝金华 PB15050984 实验题目:R 、L 、C 串联谐振电路的研究 实验目的: 1. 学习用实验方法绘制R 、L 、C 串联电路的幅频特性曲线。 2. 加深理解电路发生谐振的条件、特点,掌握电路品质因数(电路Q 值)的物理意义及其测定方法。 实验原理 1. 在图1所示的R 、L 、C 串联电路中,当正弦交流信号源U i 的频率 f 改变时,电路中的感抗、容抗随之而变,电路中的电流也随f 而变。 取电阻R 上的电压U O 作为响应,当输入电压U i 的幅值维持不变时, 在不同频率的信号激励下,测出U O 之值,然后以f 为横坐标,以U O 为纵坐标,绘出光滑的曲线,此即为幅频特性曲线,亦称谐振曲线,如图2所示。 2. 在f =fo = LC 21处,即幅频特性曲线尖峰所在的频率点称为谐振频率。此时X L =Xc ,电路呈纯阻性,电路阻抗的模为最小。在输入电压U i 为定值时,电路中的电流达到最大值,且与输入电压U i 同相位。从理论上讲,此时 U i =U R =U O ,U L =U c =QU i ,式中的Q 称为电路的品质因数。 3. 电路品质因数Q 值的两种测量方法 一是根据公式Q = o C U U 测定,U c 为谐振时电容器C 上的电压(电感上的电压无法测量,故不考虑Q= o L U U 测定) 。另一方法是通过测量谐振曲线的通频带宽度△f =f2-f1,再根据Q U m ax 02 U max 0U 0 102 L C R o i 图 1

= 1 2f f f O -求出Q 值。式中f o 为谐振频率,f 2和f 1是失谐时, 亦即输出电压的幅度下降到最 大值的2/1 (=0.707)倍时的上、下频率点。Q 值越大,曲线越尖锐,通频带越窄,电路的选择性越好。 在恒压源供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。 预习思考题 1. 根据实验线路板给出的元件参数值,估算电路的谐振频率。 L=30mH fo =LC π21=1/(2×π6 31001.01030--???)=9188.81Hz 2. 改变电路的哪些参数可以使电路发生谐振,电路中R 的数值是否影响谐振频率值? 改变频率f,电感L ,电容C 可以使电路发生谐振,电路中R 的数值不会影响谐振频率值。 3. 如何判别电路是否发生谐振?测试谐振点的方案有哪些? 判断:电容与电感的电压相等时,电路此时发生谐振;U i 与U 0相位相同时此时发生谐振;U i 与U 0大小相等时电路发生谐振。 测量:理论计算,f=1/(2π√LC ); 仪表测量此时电流频率。 4. 电路发生串联谐振时,为什么输入电压不能太大, 如果信号源给出3V 的电压,电路谐振时,用交流毫伏表测U L 和U C ,应该选择用多大的量限? 输入电压过大,L 、C 器件两端的电压远高于信号源电压;应该选用最大量程 。 4. 要提高R 、L 、C 串联电路的品质因数,电路参数应如何改变? 减小R,增大L ,同时等比例缩小C 。 5. 本实验在谐振时,对应的U L 与U C 是否相等?如有差异,原因何在? U L ,U C 大小相等,方向相反,因为在谐振点L,C 的阻抗相等,二者阻抗方向相反。 实验设备 低频函数信号发生器,交流毫伏表,双踪示波器,频率计,谐振电路实验电路板 实验内容 1. 利用HE-15实验箱上的“R 、L 、C 串联谐振电路”,按图3组成监视、测量电路。选C 1=0.01μF 。用交流毫伏表测电压, 用示波器监视信号源输出。令信号源输出电压U i =3V ,并

串联谐振:如何谐振及其原理解析

串联谐振:如何谐振及其原理解析 谐振电路是在具有电阻R、电感L、电容C的交流电路中;一般电路的电压与电流电路中的相位是不同的。如果我们调整电路元件(L或C)或电源频率的参数,它们可以具有相同的相位,整个电路呈现纯电阻。当电路达到这种状态时,称为共振。研究共振现象的目的是了解这一客观现象,充分利用科学技术中共振的特点,同时预防产生的危害。根据电路连接的不同,可分为串联谐振和并联谐振。 在HTXZ串联谐振情况下,电感电压和电容电压是等价的,即电感电容吸收不同数目的等效无功率,使电路吸收的无功率为0;电场能量和磁场能量不断变化,但这部分能量在电场和磁场之间振荡,整个电路的电磁场能量之和保持不变;励磁电源电路的能量转化为电阻加热。为了维持振荡,励磁必须不断地提供能量来补偿电阻的热消耗。与电路中的电磁场总能量相比,每个振荡电路消耗的能量越少,电路的质量越好。 首先,谐振是在一定条件下由R、L和C元件组成的电路的特殊现象。首先,当C系列电路发生谐振时,首先要分析电路的特性,如图1、C系列电路的复阻抗如下:在正弦电压作用下:电路的复阻抗如下:

公式中,电抗x=x1 xc是角频率w的函数,x随w的变化如图2所示。当w从0变为如图2所示时,x从-变为+如W所示,当w 0,当x是电容性的,当w 0,当x是电感性的,当w=w0,当阻抗z(w0)=r是纯电阻、电压和无穷大时。电流同相,我们称之为此时电路谐振的工作状态。由于这种共振发生在RLC串联电路中,我们也可以称之为串联谐振、串联谐振电路等。式1是串联电路的谐振条件,从中可以得到谐振角频率w。如图:

谐振频率为 由此可见,串联电路的谐振频率是由其自身的参数L和C决定的,这与外界条件无关。当电源固定时,可以调节L和C,使电路的固有频率与电源频率产生共振。 4.变频串联谐振的计算方法 变频串联谐振主要是指所研究的串联电路的电压和电流达到同一相位,即电路中电感的电感电抗和电容电抗的值和时间相等,使所研究的电路呈现出纯的电阻特性。在给定的端电压下,所研究的电路中会出现最大电流。电路中消耗的是最大的有功功率。 变频串联谐振计算方法 z=r+jx,x=0,z=r,i=u/z=u/r。 (1)谐振定义:在电路中,当两个元件的能量由电路中的一个电抗模块释放,而另一个电抗模块必须吸收相同的能量时,两个元件的能量相等,即两个电抗元件之间会有能量脉动。 (2)为了产生共振,电路必须有电感L和电容C。 (3)相应的共振频率是以fr表示的共振频率或共振频率。 串联谐振电路之条件如下: 当q=qi2xl=i2xc或xl=xc时,得到了r-l-c串联电路的谐振条件。

移相全桥ZVZCS主电路综述

移相全桥ZVZCS DC/DC变换器综述 [导读]移相全桥ZVZCS DC/DC变换器综述摘要:概述了9种移相全桥ZVZCSDC/DC 变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺 关键词:变换器 移相全桥ZVZCS DC/DC变换器综述 摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。 关键词:移相控制;零电压零电流开关;全桥变换器 1 概述 所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。即当原边电流减小到零后,不允许其继续反方向增长。原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件; 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。 2 电路拓扑 根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCS PWM DC/DC拓扑结构,以供大家参考。 1)Nho E.C.电路如图1所示[1]。该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。这种拓扑结构的缺陷是L1k要折衷选择,L1k 太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了i L1k的变化速度,从而限制了变换器开关频率的提高。变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,

LLC串联谐振全桥变换器的研究分析

分 类 号 学 号2003611310063 学码校代 10487 密 级 硕学论士位文 LLC 联谐桥串振全DC/DC 变换研器的究 学请位申人: 宫 力 学专业科: 电电与电传动力子力 导教师指: 晓李帆 教 授 辩答日期: 2006年4月28日

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Research on LLC Series Resonant Full-Bridge DC/DC Converter Candidate : Gong Li Major :Power Electronics and Electric Drive Supervisor:Professor Li Xiaofan Huazhong University of Science and Technology Wuhan 430074, P.R.China

April, 2006

独创性声明 本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到,本声明的法律结果由本人承担。 学位论文作者签名: 日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,即:学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权华中科技大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在_____年解密后适用本授权书。 本论文属于 不保密□。 (请在以上方框内打“√”) 学位论文作者签名:指导教师签名: 日期:年月日日期:年月日

RLC串联谐振频率及其计算公式

R L C串联谐振频率及其计算公式 2009-04-21 09:51 串联谐振是指所研究的串联电路部分的电压和电流达到同相位,即电路中电感的感抗和电容的容抗在数值上时相等的,从而使所研究电路呈现纯电阻特性,在给定端电压的情况下,所研究的电路中将出现最大电流,电路中消耗的有功功率也最大. 1. 谐振定义:电路中L、C 两组件之能量相等,当能量由电路中某一电抗组件释 出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C 两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q I2X L = I2 X C也就是 X L =X C 时,为R-L-C 串联电路产生谐振之条件。 图1 串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即Z =R+jX L jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C Q T=Q L Q C=0 6. 串联谐振电路之频率: (1) 公式:

(2) R - L -C 串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r ,而与电阻R完全无关。 7. 串联谐振电路之质量因子: (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率 之比,称为谐振时之品质因子。 (2) 公式: (3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100 之间。 8. 串联谐振电路阻抗与频率之关系如图(2)所示: (1) 电阻R 与频率无关,系一常数,故为一横线。 (2) 电感抗X L=2 π fL ,与频率成正比,故为一斜线。 (3) 电容抗与频率成反比,故为一曲线。 (4) 阻抗Z = R+ j(X L X C) 当 f = f r时,Z = R 为最小值,电路为电阻性。 当f >f r时,X L>X C,电路为电感性。

移相控制全桥ZVS—PWM变换器的分析与设计

移相控制全桥ZVS—PWM变换器的分析与设计 摘要:阐述了零电压开关技术(ZVS)在移相全桥变换器电路中的应用。分析了电路原理和各工作模态,给出了实验结果。着重分析了主开关管和辅助开关管的零电压开通和关断的过程厦实现条件。并且提出了相关的应用领域和今后的发展方向。关键词:零电压开关技术;移相控制;谐振变换器 0 引言 上世纪60年代开始起步的DC/DC PWM功率变换技术出现了很大的发展。但由于其通常采用调频稳压控制方式,使得软开关的范围受到限制,且其设计复杂,不利于输出滤波器的优化设计。因此,在上世纪80年代初,文献提出了移相控制和谐振变换器相结合的思想,开关频率固定,仅调节开关之间的相角,就可以实现稳压,这样很好地解决了单纯谐振变换器调频控制的缺点。本文选择了全桥移相控制ZVS-PWM谐振电路拓扑,在分析了电路原理和各工作模态的基础上,设计了输出功率为200W的DC/DC变换器。 1 电路原理和各工作模态分析 1.1 电路原理 图1所示为移相控制全桥ZVS—PWM谐振变换器电路拓扑。Vin为输入直流电压。Si(i=1.2.3,4)为第i个参数相同的功率MOS开关管。Di和Gi(i=l,2,3,4)为相应的体二极管和输出结电容,功率开关管的输出结电容和输出变压器的漏电感Lr作为谐振元件,使4个开关管依次在零电压下导通,实现恒频软开关。S1和S3构成超前臂,S2和S4构成滞后臂。为了防止桥臂直通短路,S1和S3,S2和S4之间人为地加入了死区时间△t,它是根据开通延时和关断不延时原则来设置同一桥臂死区时间。S1和S4,S2和S3之间的驱动信号存在移相角α,通过调节α角的大小,可调节输出电压的大小,实现稳压控制。Lf和Cf构成倒L型低通滤波电路。 图2为全桥零电压开关PWM变换器在一个开关周期内4个主开关管的驱动信号、两桥臂中点电压VAB、变压器副边电压V0以及变压器原边下面对电路各工作模态进行分析,分析时时假设:

相关文档