文档库 最新最全的文档下载
当前位置:文档库 › 控轧控冷条件下Q345中厚板的生产工艺研究

控轧控冷条件下Q345中厚板的生产工艺研究

控轧控冷条件下Q345中厚板的生产工艺研究
控轧控冷条件下Q345中厚板的生产工艺研究

 第40卷 第5期 2005年5月

钢铁

Iron and Steel

Vol.40,No.5

 May 2005

控轧控冷条件下Q 345中厚板的生产工艺研究

朱伏先1, 李艳梅1, 刘彦春1, 张苏渊2, 易 敏2, 刘晶志3

(1.轧制技术及连轧自动化国家重点实验室(东北大学),辽宁沈阳110004;

2.首钢集团总公司技术研究院,北京100041;

3.首钢集团总公司中板厂,北京100041)

摘 要:通过试验模拟和实机轧制试验,对传统Q345钢的静态再结晶行为、应变累积效应和晶粒细化机制等进行研究,分析了影响中厚钢板显微组织和力学性能的主要因素。结合首钢中板厂3500mm 机组的特点,确定出Q345中厚钢板的TMCP 生产工艺。实践表明该工艺可使钢板的平均组织晶粒度达到10~12级,带状组织降至1.5级以下。

关键词:Q345钢;中厚钢板;TMCP ;再结晶

中图分类号:T G335.5 文献标识码:A 文章编号:04492749X (2005)0520032206

Study on Production of Q 345Plate by

Controlled R olling and Cooling

ZHU Fu 2xian 1, L I Yan 2mei 1, L IU Yan 2chun 1,ZHAN G Su 2yuan 2, YI Min 2, L IU Jing 2zhi 3

(1.The State Key Laboratory of Rolling and Automation ,Northeastern University ,Shenyang 110004,China ;

2.Shougang Research Institute of Technology ,Beijing 100041,China ;

3.Shougang Plate Plant ,Beijing 100041,China )

Abstract :By simulation and rolling experiments in lab ,the static recrystallization ,strain accumulating effect and grain refining mechanism of Q345steel were studied.And the main factors which influence the structure and proper 2ties of plate steel were analyzed.The TMCP of Q345plate was established for 3500mm rolling mill at Shougang plate plant.The practice showed that the average grain size of the plate produced by this process can reach ASTM No.10212grade ,and the grade of band structure can decreased to below 1.5.K ey w ords :Q345;plate ;TMCP ;recrystallization

基金项目:国家重大科技攻关计划资助项目(ZZ0113A0101)

作者简介:朱伏先(19462),男,硕士,教授; E 2m ail :zhufuxian @https://www.wendangku.net/doc/0f8721263.html, ; 修订日期:2004211212

Q345系列钢用于中厚板生产已有近50年的历

史,在中厚板厂的产量中所占比例最大、涵盖的品种规格范围也最多,在新的装备条件下,如何合理应用TMCP 工艺,最大限度地挖掘其潜在性能,这是国内中厚板企业共同关心的技术问题。本文结合首钢3500mm 中厚板轧机的改造项目,就Q345中厚钢板的TMCP 工艺进行了试验研究。

1 试验材料和方法

试验钢化学成分如表1所示,试验材料取自80

mm 厚中间坯。热模拟试验在东北大学轧制技术及连轧自动化国家重点实验室的Gleeble1500试验机上进行,试样规格为<10mm ×16mm 和<8mm ×15mm ;热轧试验在配有水幕冷却装置的<300mm 多功能试验轧机上进行,采用KO10箱式电阻加热炉加热,试验过程采用日本产ICON 手提式红外线

测温仪测温;工业试验在首钢中板厂原3340mm 机组和改造后的3500mm 机组上进行;按G B228287、G B/T22921994标准采用Inst ron 拉伸试验机等测

定常规力学性能,采用Leica 图像分析仪等观测分析微观组织。

2 试验结果及分析

2.1 再结晶区变形量对力学性能和组织的影响

为把握Q345钢奥氏体再结晶区道次变形量对组织和力学性能的影响规律,将试验钢加工成宽70mm 的阶梯形试件,加热到1150℃保温1h 后在设

定的温度点充分均温,单道次轧制成厚14mm 钢

表1 试验钢的化学成分

T able 1 Chemical composition of test steel %

钢号

w (C )

w (Mn )

w (Si )

w (S )

w (P )

Q345B

0.17 1.480.350.0080.021

第5期朱伏先等:控轧控冷条件下Q345

中厚板的生产工艺研究

(a )屈服强度; (b )冲击功

图1 变形量对屈服强度和冲击功的影响

Fig.1 I nfluence of deform ation on yield strength and impact energy

板,每个台阶对应的变形量分别为10%、20%、30%

和40%,轧后空冷试样对应每种变形量分别沿横向加工成标准V 型缺口冲击试样和棒状拉伸试样,测定常规力学性能并选择典型试样进行微观组织观察。

图1是不同温度不同道次变形量对试验钢屈服强度、0℃横向冲击功的影响规律。从图1中可以看出:在1000℃以上的高温再结晶区轧制时,Q345钢的屈服强度和冲击功均比950℃以下的低温区轧制时低。以轧制温度同为1050℃而变形量不同的试样为例,当变形量由10%增加到40%时,屈服强度呈下降趋势,横向A KV 值很低且随变形量的增加无明显变化,而在950℃以下的低温区轧制时,不仅整体力学性能比高温区轧制时高,而且道次变形量对力学性能的影响比较显著,随变形量增加,屈服强度和A KV 值都呈上升趋势,轧制温度越低,上升的趋势越显著。

图2是1050℃不同变形量轧制试样的室温显微组织。由图2可见,变形量为1219%时,显微组织为较细的等轴状铁素体和珠光体,随着变形量的增大铁素体晶粒逐渐增大,变形量为2812%时开始出现魏氏组织,变形量达到3916%时铁素体晶粒粗大且呈片状分布,为典型的魏氏组织特征。这是因为1000℃以上的高温再结晶区轧制时,变形量越大,形变奥氏体的再结晶速率越大,再结晶结束后晶粒长大的速度也越快。当变形量达到一定的数值后,变形过程中还会发生动态再结晶,动态再结晶晶粒在高温缓慢冷却过程中,无需孕育并通过亚动态

再结晶方式迅速长大成粗大的奥氏体晶粒。粗大的奥氏体晶粒在相变过程中将遵循ⅠA 型相变规律转变为粗晶铁素体或魏氏组织,对钢材强度和韧性产生负面影响,这与图1所示力学性能规律非常一致

(a )ε=12.9%; (b )ε=28.2%; (c )ε=39.6%

图2 1050℃不同变形量轧制试样的显微组织

Fig.2 Microstructure of samples rolled with

different reductions at 1050

(a )ε=10.8%; (b )ε=18.9%; (c )ε=41%

图3 900℃不同变形量轧制试样的显微组织

Fig.3 Microstructure of samples rolled with

different reductions at 900℃

?

33?

钢 铁第40卷

由此可见,Q345钢在1000℃以上的高温再结晶区轧制阶段,变形量并不是越大越好,最好能将其控制在15%~20%,最大道次压下率不宜超过30%。

图3是900℃不同变形量轧制试样的显微组织。由图3可见,低温区轧制时的显微组织与图2恰好相反,变形量小的情况下,铁素体晶粒粗大、魏氏组织严重,随着变形量的增加铁素体晶粒变细、魏氏组织完全消失。在力学性能上表现为:随道次变形量增加,屈服强度和A KV值增加。这是因为,低温区轧制且变形量较小的情况下,形变奥氏体内所蓄积的应变能比较小,再结晶的形核率低,有限的再结晶核心只在原奥氏体的部分晶界上形成,再加上轧件温度低所具有的热能又比较小,形变奥氏体虽然也产生再结晶,但驱动再结晶或晶粒成长的能量严重不足,再结晶过程被延缓,处于这种状态下的不完全再结晶组织进入奥氏体/铁素体相变时,铁素体和珠光体只能沿着晶内位错密度高的区域有取向地成长,或以魏氏组织的形态析出[1]。

因此,在Q345中厚钢板的低温再结晶区轧制阶段,必须保证道次压下率大于静态再结晶的临界变形量。实际操作时可随着轧制温度的自然降低,相应地增加后续道次的压下率,使每道次轧后都实现完全再结晶,达到反复轧制、反复再结晶,充分细化奥氏体晶粒的目的。

2.2 精轧工艺对组织和性能的影响

通过粗轧阶段的再结晶区轧制,获得均匀、细小的奥氏体晶粒将为精轧阶段提供理想的组织基础,而精轧阶段未再结晶奥氏体晶粒内应变累积的程度,即形变奥氏体内残余应变及晶内缺陷所诱发的奥氏体/铁素体相变细晶机制强弱,将对钢材最终的铁素体+珠光体组织细化起决定性作用。

利用Gleeble1500试验机,选定变形速率为10s-1,双道次压缩的真应变为0136,道次间隔时间分别为2、5、10、20、60s,测得Q345钢道次间静态再结晶软化曲线如图4所示。由图4可以看出,按常规的轧制节奏,Q345钢在950℃以上轧制时可以实现完全再结晶;800℃以下才是未再结晶温度区间。由于未再结晶温度区间非常狭窄,要想完全避开部分再结晶区,实现单纯的未再结晶区应变累积是比较困难的。为了提高精轧阶段奥氏体部分再结晶区及未再结晶区内应变累积的百分数,选择合适的精轧温度区间和精轧变形制度是确定TMCP工艺的关键

图4 试验钢道次间静态再结晶软化曲线

Fig.4 Static recrystallization of test steel

in pass2interval

精轧温度区间是指精轧开始温度至精轧结束时的温度间隔。生产现场通常以进精轧温度和终轧温度限定这一温度间隔。模拟生产实际,通过实验室轧制试验得到进精轧温度、终轧温度与力学性能的关系如图5所示。从图5中可以看出:进精轧温度变化、屈服强度和抗拉强度变化不大,但对室温冲击功的影响却比较显著,当进精轧温度低于860℃时纵向冲击功降低,当进精轧温度高于920℃时,纵、横向冲击功均显著降低,据此判定,Q345钢较好的进精轧温度应在860~920℃;终轧温度应在820~850℃。

以不同的进精轧温度和不同终轧温度组合成高、中、低3种不同的精轧温度区间,通过实验室轧制试验得到的力学性能如表2所示,由表中数值可以看出:精轧温度区间为880~822℃时,综合力学性能指标最好,室温下横向冲击功达到117J、纵向冲击功达到230J。此种情况下,进精轧温度和终轧温度恰好都进入了各自的最佳温度范围。

在880~820℃的精轧温度区间内,分别以7219%、66%、5516%和3815%的累积变形量轧制后空冷,试样的力学性能如图6所示,可以看出当精轧阶段累积变形量超过55%时,随累积变形量的增加屈服强度略有增加,当累积变形量达到70%时,屈服强度升高约30M Pa;而累积变形量对0℃冲击功的影响却十分显著,随累积变形量的增加冲击值几乎呈线性递增,可见增加精轧阶段的累积变形量对提高Q345钢的冲击韧性非常有效。图7为不同累积变形量试样的显微组织照片,其中(c)的累积形变量为73%,其铁素体晶粒尺寸相对较细,约为15μm左右,显然精轧阶段应变累积带来的晶粒细化

?

4

3

?

第5期朱伏先等:控轧控冷条件下Q345

中厚板的生产工艺研究

(a )进精轧温度; (b )终轧温度

图5 进精轧温度、终轧温度与力学性能的关系

Fig.5 R elationships betw een start ,end temperature in f inish rolling and mechanical properties

表2 试验钢不同精轧温度区间控轧时的力学性能

T able 2 Mechanical properties of test steel at

different rolling temperature

进精轧温度/℃

终轧温度/℃

屈服强度/MPa

抗拉强度/MPa

室温A K V /J

横向纵向

800756371

548106193880822396569117230950

884

390

544

58

117

效果显著,对冲击韧性的正面影响也显著。按此累

积变形量换算,则精轧待温厚度约为成品厚度的3倍,从加快生产节奏考虑,建议选择55%~

66%左右的累积变形量、即2~215倍的成品厚度,如图7(b )所示,这样反而可以获得等轴状晶较多且珠光体带状级别相对较低的室温组织。 根据本节的试验结果,确定Q345中厚钢板精

(a )强度; (b )冲击功

图6 精轧累积变形量与强度和冲击功的关系

Fig.6 R elationships betw een accumulated reduction in f inish rolling and strength ,impact energy

(a )ε=38%; (b )ε=55%; (c )ε=73%

图7 不同累积变形量试样的金相照片

Fig.7 Microstructure of samples with different

轧阶段的主要TMCP 工艺参数如下:进精轧温度(880±20)℃;终轧温度(820±10)℃;最佳精轧温度区间880~820℃;较好的待温厚度为2~215倍成品厚度。2.3 轧后冷却制度的确定

为了解轧后冷却制度对Q345钢力学性能的影响规律,在实验室<300mm 轧机上进行了控轧控冷综合试验。图8是冷却速度对Q345钢强度和冲击功的影响规律,由图可以看出,当冷却速度由14℃/s 提高到18℃/s 时,屈服强度从360M Pa 上升到400M Pa ,继续提高冷却速度,屈服强度基本保

?

53?

钢 铁第40

(a)强度; (b)横向0℃冲击功

图8 不同冷却速度下试验钢的力学性能

Fig.8 Mechanical properties of samples cooled at different rate

持在400M Pa左右;当冷却速度由10℃/s提高到18℃/s时,横向0℃冲击功提高25~35J,当冷却速度大于20℃/s时,横向0℃冲击功随冷却速度增大显著降低。

图9是进精轧温度880℃、终轧温度830℃、终冷温度650℃时,不同冷却速度下的试样金相组织。由图9可见,当冷却速度达到30℃/s时,得到的是贝氏体和马氏体的混合组织,对应的力学性能为: R eL=456M Pa、R m=618M Pa、A=2316%、0℃A KV=78J。当冷却速度为18℃/s左右时,得到的组织是均匀的铁素体和珠光体组织,其中珠光体组织没有形成明显带状;对应的力学性能为:R eL=390 M Pa、R m=540M Pa、A=3217%、0℃A KV=75J。当冷却速度为10℃/s时,其室温组织也是均匀的铁素体和珠光体,但珠光体的带状组织比较明显,对应的力学性能为:R eL=367M Pa、R m=533M Pa、A=35%、0℃A KV=40J。综合比较分析后确定,普通级别Q345钢板的轧后冷却速度范围为:15~18℃/s,不宜超过20℃/s。

在冷却速度15~18℃/s范围内,试验比较了终冷温度与强度指标的关系,发现当终冷温度大于700℃时,随终冷温度升高,屈服强度开始降低,降低的幅度为30~40M Pa,但所有示值都满足G B/T1591294标准要求;另外,从所测定的Q345钢动态CC T曲线上发现,Q345钢的贝氏体形成温度范围比较宽,当终冷温度处于400~600℃时,都有可能形成贝氏体,因此确定普通级别Q345钢板的终冷温度为650~700℃。同时,冷却过程中还应当控制钢材表面的瞬时温度尽量不低于550℃,以避免钢板上下表层形成过量的贝氏体,导致塑、

韧性指

(a)30℃/s; (b)20℃/s; (c)10℃/s

图9 不同冷却速度下试验钢的室温组织

Fig.9 Microstructure of samples

cooled at different rates

标下降。

214 TMCP工艺确定及工业应用效果

为了使实验室条件下得出的TMCP工艺参数能够更加切合工业生产实际,2002年1—8月在首钢中板厂3340mm机组上进行了多轮Q345中板TMCP工业试验[2]。通过大量工业试验数据与实验室研究结果的比较分析,结合首钢中板厂改造后的3500mm轧机特点,确定了控轧控冷条件下Q345中厚钢板的生产工艺要点:钢坯加热温度1050~1150℃,在炉时间3~315h;开轧温度1000~1100℃,粗轧道次压下率≥10%,最大压下量≤30mm;生产厚度≥12mm钢板时实行中间待温,待温厚度为成品钢板厚度的2~215倍;精轧开轧温度(880±20)℃,终轧温度(820±20)℃;轧后开冷温度≥760℃,冷却速度15~18℃/s,终冷温度650~700℃。

本研究所确定的生产工艺已于2003年1月在改造后的首钢中板厂3500mm机组上投入应用。

?

6

3

?

第5期朱伏先等:控轧控冷条件下Q345中厚板的生产工艺研究

表3 首钢3500mm机组生产Q345钢板的力学性能

T able3 Mechanical properties of Q345steel produced on3500mm mill in Shougang

序号成品厚度/

mm

R eL/MPa R m/MPa A/%

室温纵向冲

击功A K V/J

冷弯试验

d=2a,180°

11241055530.0136152150合格21240555029.0140138136合格31241054526.5128132122合格42040554528.5124140128合格52040553526.0176180162合格62040055526.0154144150合格

表3是Q345B级坯料按上述工艺生产的12mm和20mm钢板的力学性能抽验结果,图10是表3中4号试样的显微组织,铁素体平均晶粒尺寸约为10μm,由于铁素体晶粒得到有效细化,珠光体也同时得到细化、带状组织减弱,有效地提高了钢材的综合使用性能。

据首钢中板厂科技科的统计资料,3500mm机组投产后,在正常生产条件下,Q345B级钢板的强韧性指标可稳定达到Q390C、D级水平;Q345D级钢板的各项力学性能都超过了高强船板D36、E36的水平,达到了D40、E40的要求;Q345系列钢板的组织晶粒度比改造前平均提高了3~4级,由改造前的7~8级提高到现在的10~12级;带状组织由改造前的3~5级降低至目前的1.5级以下;使高性能厚板的规格范围不断扩大,由改造前的30mm以下提高到现在的60mm,这说明TMCP技术在首钢3500mm机组上的应用已获得显著效果。

3 结论

(1)采用再结晶方法细化奥氏体晶粒时,道次变形量宜控制在15%~20%,最大道次变形量≤30%。这有利于避免混晶形成,减少相变后生成魏氏组织的几率。

(2)降低进精轧温度或增加待温厚度,有利于提高有效应变累积的百分数,促进铁素体形核、增强相变驱动力,获得均匀细小的铁素体+珠光体组织

,

图10 工业生产Q345钢板的显微组织

Fig.10 Microstructure of Q345steel of

m ass production

推荐的较好精轧温度区间为820~880℃,待温厚度为2~215倍成品厚度。

(3)采用加速冷却促进铁素体相变时,推荐的冷却速度为15~18℃/s,终冷温度为650~700℃,以避免过量的脆性相形成而导致钢材塑、韧性降低。

参考文献:

[1] 吉江淳. 間加工 - ? の再結晶粒の成長速度に

及ぼす未再結晶部の転位密度の影響[J].鉄と鋼,1994,80

(12):50255.

[2] 范建文.细晶强化Q345中板的控轧控冷工艺研究[J].轧钢,

2003,20(1):11214.(FAN Jian2wen.Research of Controlled

Rolling and Accelerated Cooling Process of Q345Plate for

Grain Refinement Strengt hening[J].Steel Rolling,2003,20

(1):11214.)

包钢结束了无冷轧薄板的历史

2005年3月27日,包钢冷轧薄板生产线酸轧机组成功轧出第一个冷轧卷,从此结束了内蒙古不产冷轧薄板的历史,同时标志着效益潜力巨大的包钢板材精品线得到进一步完善,标志着包钢的产品深加工能力正在实现质的飞跃。

包钢冷轧薄板项目是国家和内蒙古自治区“十五”期间的重点项目。该项目总投资281696亿元,以包钢目前生产的热轧薄板为原料,产品除冷轧板外,还将延伸至镀锌板,年生产能力140万t。产品中有冷轧商品卷60万t,镀锌卷41万t,冷硬卷34万t等。可用在建筑、轻工、家电、汽车等行业中。该生产线主体设备从德国、意大利、奥地利等国引进,工艺设备达当今世界一流水平。

包钢冷轧薄板工程自2003年8月31日破土动工到成功轧出第一个冷轧卷仅用了18个月。预计在今年第3季度前,热镀锌机组投产,将生产出镀锌薄板。

驿 路

?

7

3

?

中厚板综述分析

综述(中厚板) 西安建筑科技大学材料成型及控制工程0902 XX 2013,0401 1.中厚板简介 中厚钢板大约有200 年的生产历史,它是国家现代化不可缺少的一项钢材品种,被广泛用于大直径输送管、压力容器、锅炉、桥梁、海洋平台、各类舰艇、坦克装甲、车辆、建筑构件、机器结构等领域。具品种繁多,使用温度要求较广(-200~600),使用环境要求复杂(耐候性、耐蚀性等),使用强度要求高(强韧性、焊接性能好等)。 一个国家的中厚板轧机水平也是一个国家钢铁工业装备水平的标志之一,进而在一定程度上也是一个国家工业水平的反映。随着我国工业的发展,对中厚钢板产品,无论从数量上还是从品种质量上都已提出厂更高的要求。板是平板状、矩形的,可直接轧制或由宽钢带剪切而成,与钢带合称板带钢。 2.中厚板生产的总体概况 根据《2011中国钢铁工业年鉴》,中国现有中厚板轧机总生产能力为9331万t/a,2012年共生产中厚板7221万t,其中特厚板708万t、厚板2432万t、中板4081万t。 近年来,国内中厚板不仅在产量上增长迅速,而且在品种开发方面也取得了很大成绩。目前已经开发出了屈服强度高于960Mpa级的高强工程机械用钢,高强韧耐磨钢NM360,NM400,NM500,NM550也已经能生产,并分别制定了国家标准。低温压力容器钢方面,已经开发出确保-196℃低温韧性的LNG储罐用9Ni钢,中温抗氢钢15CrMoR、14Cr1MoR、12Cr2Mo1VR;开发出的抗拉强度610MPa级的Q420qE钢板已经成功应用于南京大胜关高铁大桥;屈服强度级别为420、460MPa 的高建钢也已应用于水立方、鸟巢等重大工程项目中。并已能生产460、550MPa级超高强船板、海洋平台用钢及690MP A级齿条钢;X80级管线用钢已经成功大批量应用于西气东输二线,并具备了X100及X120超高强韧管线钢的生产能力;用于第3代核技术建造反应堆安全壳用钢板SA738GRB也已国产化。

控轧控冷工艺的技术研究及应用

控轧控冷工艺的技术研究及应用 学校:沈阳工业大学 院系: 专业:材料成型及控制工程 姓名:李文华 学号:

控轧控冷工艺的技术研究及应用 李文华 【摘要】介绍了控轧控冷的机理,控制轧制的优缺点。控制轧制与传统轧制的比较;由于各种钢种以及用户对产品性能的要求越来越高,使得控制轧制应用的必要性逐渐增大。高速线材轧制中应用的主要是控制冷却工艺,该技术的核心是通过对加热温度控制、轧前水冷、精轧机内水冷、精轧机组后水冷、风冷线温控等参数实现控制轧制。由于线材的轧制速度相比其它都较高,在生产中产生的变形热也相对较高,实现控制冷却尤为重要,控制加热温度,在轧制的道次间使用间断冷却,保证产品的综合性能(抗拉强度,硬度等等)。在板带材中应用的控制轧制技术的核心是在轧制过程中通过控制加热温度、轧制过程、冷却条件等工艺参数, 改善钢材的强度、韧性、焊接性能。 【关键词】控轧控冷;机理;特点;必要性;工艺参数;扩展应用高速线材;加热温度;控轧控冷 Abstract:Describes the mechanism of controlled rolling and cooling to control the rolling of the advantages and disadvantages. Controlled rolling compared with the traditional rolling; because of various steel and users are increasingly demanding high performance, making the need for the application of controlled rolling increases. Application of high-speed wire rod rolling is mainly controlled cooling process, the technology is the core temperature control by heating, cooling before rolling and finishing mill in water-cooled, water cooled after finishing mill, cooling line temperature and other parameters to achieve controlled rolling .As compared to the other wire of the rolling speed is high,the deformation generated in the pooduction of heat is relatively high,the cooling is particularly important to achieve control,control heating temperature,the rolling is particularly important to achieve control,control heating temperture,the rolling of the use of intermittent cooling between passes,to ensure that the intergrated product properties (tensile strength, hardness, etc.). In the application of plate and strip rolling technology is the core of the control during rolling by controlling the heating temperature, the rolling process, the cooling conditions, process parameters, to improve the steel's strength, toughness, weldability. Keywords: mechanism,characteristics,necessity,process parameters,extension using the high speed wire rod, heating temperature,controlled rolling and cooling 引言 控制轧制(C-R)和控制冷却(C-C)技术的研究始于1890年二次世界大战的德国,当时科研人员对钢铁产品的加热工条件、材质及显微金相组织之间的关系进行了非系统的零散研究。 1.控制轧制的概述

年产150万吨中厚板车间工艺设计.docx

.................大学 本科生毕业设计开题报告 题目:年产150万吨中厚板车间工艺设计 学院:冶金与能源学院 专业:材料成型及控制工程 班级: 姓名: 学号: 指导教师: 2015年11 月15 日 一.选题背景 1.1题目来源 冶金行业经过了近8年的高速发展,行业的钢材产能已经达到近6亿吨/年。已有和在建的中厚板生产线近70条,中厚板生产能力达到接近7000万吨/年。但是国际金融危机的影响和国内经济周期的调整,钢铁产品市场成了典型的买方市场。冶金企业如何在这一轮经济调整中,实现技术和产品的转型成了决定企业生存的关键。各中厚板生产厂纷纷根据自身的技术装备特点、技术研发能力、市场客户需求确定自己的产品战略定位。综合实力强的企业,全力体现出产品的差异化战略,坚持不懈地开发生产其他企业无法生产或难于生产的市场短线、高档产品。高档次产品开发离不开性能控制技术,性能控制的新技术不仅提高钢板的性能,还可以带来生产成本的降低。 1.2项目概述: 经过对国内外中厚板市场现状的分析以及前景预测,综合对当地各种物料供应、能源等其它资源的分析,我们选择区域与资源优势居一体的唐山曹妃甸地区作为建厂厂址,设计一座年产量150万吨4300热轧中厚板车间,并且能够生产规格齐全、性能优良,能满足市场需求的产品。 1.3中厚板简介 中厚钢板:厚度大于4mm的钢板属于中厚钢板。其中,厚度4.0-20.0mm的钢板称为中厚板,厚度20.0-60.0mm的称为厚板,厚度超过60.0mm的为特厚板。 中厚板的用途: 中厚板主要用于建筑工程、机械制造、容器制造、造船、桥梁等行业,并且随着国民经济建设其需求量非常之大,范围也十分广。 (1)造船钢板:用于制造海洋及内河船舶船体。要求强度高、塑性、韧性、冷弯性能、焊接性能、耐蚀性能都好。 (2)桥梁用钢板用于大型铁路桥梁。要求承受动载荷、冲击、震动、耐蚀等。 (3)锅炉钢板:用于制造各种锅炉及重要附件,由于锅炉钢板处于中温(350℃以下)高压状态下工作,除承受较高压力外,还受到冲击,疲劳载荷及水和气腐蚀,要求保证一定强度,还要有良好的焊接及冷弯性能。 (4)压力容器用钢板:主要用于制造石油、化工气体分离和气体储运的压力容器或其

纤维板生产工艺流程图

纤维板生产工艺流程 20 [标签:纤维板,工艺流程] 纤维板生产工艺详细操作流程 特意为您推荐的相关内容 ??什么是工艺流程?2回答2009-12-17 ??哇哈哈是哪里生产的1回答2011-03-15 ??关于生产前1回答2011-03-14 更多纤维板工艺流程相关知识>> ?陶瓷纤维板 ?高密度纤维板 ?中密度纤维板 ?硬质纤维板 ?中密度纤维板生产厂家 ?高密度纤维板生产工艺 ?中密度纤维板价格 ?中密度纤维板国家标准 答案 生产工艺流程简述 1,削片—筛选 生产中厚板时原木不要求剥皮,但树皮允许体积分数小于8%%。原木装载机将小径木、枝桠材等木材原料放在储木台上,通过皮带运输机送入削片 机,削片机前装有金属探测器,避免带有金属的木材进入削片机。进入削片机 的木材被削成规格木片,经由螺旋运输机和斗式提升机送人木片储仓储存。 由于软材硬材要按比例混合,所以采用两个储仓,分别储存软材和硬材木片。 储仓下部的出料装置能控制出料速度,根据工艺配比,由出料装置控制出料 量,使软硬木片按要求的比例均匀混合。软硬木片之比为3:7或4:6。混合木片的PH值最好能相对稳定在5,0---5,5之间。 然后,木片经皮带运输机送至振动筛进行筛分,筛选机一般有两层。在除 去过大的和过小的木片和杂物后,将合格木片送至清洗设备除去泥沙、小碎 石、污物及金属块等。木片清洗可分为水洗和干洗两种方式。根据我国原料 的现状,采用水洗较合适。但木片水洗耗水量大,又有污水处理问题,且造价 较高,虽然木片清洗的质量好,效率高,有利于纤维分离和板的质量,但生产中厚板的中小生产规模厂有不少还是采用了木片干洗方式。净化后的木片经螺 旋运输机和斗式提升机送往热磨间。 2,热磨—施胶—干燥

中厚板生产现状与工艺变化研究

中厚板生产现状与工艺变化研究 摘要:我国的中厚板生产技术将伴随钢铁工业的迅猛发展及下游产业的需求变化而快速发展。中厚板生产产品的发展趋势是以高强、专用特殊板为主,生产技术的发展趋势是以TMCP和微合金化为主,辅之以满足下游用户特殊需要的探伤、喷丸和热处理等工艺。在供求关系上,目前的中低档产品供大于求,通过3~5年时间将达到供求的动态平衡,逐步实现高档次、高质量产品100%国产化。 关键词:中厚板;轧机工艺;装备发展 近几年,我国的中厚板轧机发展较快,产品和工艺装备的升级也如雨后春笋。但要真正生产高档次的钢板,仍有一些差距。目前,国内外石油、天然气系统需求的高强、高压、耐候、耐蚀和抗裂等特殊要求的管线、石油储罐和石油平台用钢等,仍不能满足需求。所以我国的中厚板生产也同我国的钢铁工业一样,需要有一个从量到质、从大到强的转变。 1、我国中厚板轧机生产线现状 1.1中厚板轧机现状 就中厚板轧机而言,目前可以分为三类:即4300mm和5000mm的主轧机为A 类。近两年建成投产的生产线具有轧制压力大(80MN~100MN)、板幅宽、前后工序配套能力强等优势,瞄准的是中厚板的高端产品。厂家主要以大型国有企业和技术实力较雄厚的企业为主,如宝钢、鞍钢和沙钢等;B类主要是以3.5m轧机为代表的中档水平轧机,其轧制压力居中偏高(50MN~70MN),前后工序的配套正在逐步完善,主要被技术实力雄厚、目前还不能生产高端产品的企业拥有,如首钢和济钢等;C 类轧机以生产传统的中低档产品为主,主要由一些老企业和部分新兴的民营企业所拥有,如营口和文丰等。目前各大钢铁企业和具备一定实力的企业在扩张规模的同时,也在工装水平上和配套工序上对中厚板工艺进行新一轮的升级和技术改造,甚至是异地建设全新的中厚板厂,这些升级改造后和新建的装备将全面提升我国中厚板产品的品质和档次。可以预计,在2008年之前,对于我国国民经济需要的高档中厚板产品国内即可具备一定的生产能力。就像欧洲一位钢铁专家断言,目前中国已具有世界上最先进的钢铁装备,不出3年,中国就会成为世界钢铁强国。根据钢协的统计,近几年我国中厚板轧机的规格、数量。 1.2中厚板轧钢生产线工艺装备的现状 中厚板轧钢生产线的工艺装备是在钢坯质量一定的前提下保证最终产品质量的重要环节。以往的轧钢厂是以轧机为中心,其余的装备往往是因陋就简,尤其是在以普材为主的生产厂更是如此。轧制中厚板时尽管在加热和精整工序上采取了一些保护措施,如不产生划伤、提高剪切质量等,但是随着产品质量、品种规格、产品档次和用途等市场因素的变化,各生产厂已开始逐步重视并对整个工艺线进行分析、升级和改造。由于历史原因,我国中厚板轧机生产线的总体装备水平与国外先进厂家还存在一定的差距。主要体现在: (1)规模小,装备水平低; (2)加热炉大部分为推钢式,加热能力和质量保证能力差; (3)轧机能力差距大,一是3m以下的轧机占总量的80%左右;二是轧制压力大部分为30MN~50MN; (4)后部精整能力不足,因陋就简。如矫直机能力不足,几乎没有冷矫;纵剪能力

控轧控冷技术在无缝钢管生产中的应用

控轧控冷技术在无缝钢管生产中的应用 发表时间:2019-04-04T11:51:51.913Z 来源:《防护工程》2018年第36期作者:任晓锋[导读] 本文首先对控轧控冷技术的特点进行了概述,详细探讨了控轧控冷技术在无缝钢管生产中的应用,旨在促进控轧控冷技术的发展。 天津钢管集团股份有限公司天津 300301 摘要:随着我国经济的发展,控轧控冷技术得到了快速的发展。控轧控冷技术是钢材生产中十分重要的工艺技术,因此,探讨控轧控冷技术在无缝钢管生产中的应用具有重要的作用。本文首先对控轧控冷技术的特点进行了概述,详细探讨了控轧控冷技术在无缝钢管生产中的应用,旨在促进控轧控冷技术的发展。 关键词:控轧控冷技术;无缝钢管生产;应用 Abstract:With the development of China's economy, the technology of controlled rolling and controlled cooling has been rapidly developed. Controlled rolling and controlled cooling technology is an important process technology in steel production. Therefore, it is important to discuss the application of controlled rolling and controlled cooling technology in the production of seamless steel tubes. This paper firstly summarizes the characteristics of controlled rolling and controlled cooling technology, and discusses in detail the application of controlled rolling and controlled cooling technology in the production of seamless steel tubes, aiming to promote the development of controlled rolling and controlled cooling technology. Key words: controlled rolling and controlled cooling technology; seamless steel pipe production; application 随着国家产业发展战略对资源节约和可持续发展要求的提高,以及市场竞争的加剧,无缝钢管生产企业越来越需要高性能、节约能源、成本低的无缝钢管生产技术。因此,控制轧制和控制冷却(简称控轧控冷,英文缩写TMCP)技术在无缝钢管生产中越来越受重视。 1 控轧控冷技术的特点 在研究控轧控冷技术的应用之前,首先要全方位的了解该技术的特点以及其发展由来。该技术分为两个部分,第一个部分是控制轧制,第二个部分是控制冷却。在控轧控冷技术的发展历史上,首先出现的是控制轧制。由于其局限性,科研人员又在控制轧制的技术上研究出了控制冷却的方法。 1.1控制冷却 由于控制轧制在轧制过程中得保持相对的低温,所以控制轧制对钢材性能的提高效果不大。为了进一步提高钢材的韧性与强度,基于控制轧制的工艺上,控制冷却技术应运而生。控制冷却的技术特点是对奥氏体的相变过程进行精确控制,并得到更细的奥氏晶粒。在与控制轧制相结合后,再与微合金元素的一起使用,对于整个轧制过程的控制以及质量有了质的提高。 1.2控制轧制 控制轧制技术原理是使用预先设定好的控制程序来控制一些热轧过程中的可调因素,例如变形温度、变形量、变形间隙等等,在终轧后进行快速冷却,以得到所要求的钢铁形变以及韧性性能。 2 控轧控冷技术在无缝钢管生产中的应用 2.1在线常化工艺 在线常化工艺是一种热处理工艺,通常也被称之为在线正火技术。在线正火工艺是针对无缝钢管生产而产生的一种技术,主要以热轧技术和热处理工序为基础,从而保证节能减耗。在生产过程中,该工艺的核心是两次相变过程。一是奥氏体转化成珠光体和铁素体;二是珠光体与铁素体再一次转化成奥氏体组织。通过整个在线正火工艺,生产出来的无缝钢管组织饱满,韧性较好,强度较高,最终提升无缝钢管的综合性能。随着市场对无缝钢管的需求不断加大,该技术已经得到一定的普及。在线常化工艺相对于传统的无缝钢管生产工艺,还有一个明显的优势就是大大降低了对能源的消耗。 2.2在线淬火工艺 在线淬火工艺也是控轧控冷技术在无缝钢管中生产中的重要应用。具体可以分为两种情况,一种是奥氏体不锈钢钢管在线固溶热处理,另一种是碳钢、低合金钢钢管 在线淬火热处理。 (1)奥氏体不锈钢钢管在线固溶热处理奥氏体不锈钢是一种铬镍合金,通常可以通过添加其他金属元素完成对钢材功能的改变,从而根据市场需求生产出符合要求的产品。奥氏体不锈钢在线固溶热处理本身采用的是一种淬火工艺,通过高温加热,将碳元素固溶在奥氏体组织中,形成单一的奥氏体组织。之后进行冷却处理,通常根据实际情况可以采用水冷、油冷、喷冷以及空冷等方式。为进一步提高冷却效率,目前国内已经开始使用相关的机器设备完成相关操作。 (2)碳钢、低合金钢钢管在线淬火热处理对无缝钢管进行在线淬火热处理指的是利用轧制后的余热进行水淬,接着使用回火热处理完成整个生产过程。在线淬火工艺可以有效节约能源。就目前而言,受到生产设备和生产技术的限制,我国跟国外相比还存在较大的差距。随着市场对无缝钢管需求的增加以及能源紧缺的情况,在线淬火工艺生产无缝钢管对于整个工业发展都具有重要的意义。 2.3在线快速冷却工艺 无缝钢管在线快速冷却工艺是基于超快速冷却技术为核心的新一代控轧控冷技术在无缝钢管生产中的新生产工艺。超快速冷却技术是指在精轧机后利用轧制后余热直接进行热处理的工艺,其控制原理是对轧制后的奥氏体施以强化冷却,使金属在很短时间内迅速冷却到铁素体相变温度附近,从而抑制奥氏体晶粒长大,尽量保持奥氏体的硬化状态。该工艺在板带和钢筋生产中已成功应用。无缝钢管在线快速冷却工艺主要受到无缝钢管沿长度方向冷却均匀性和内外表面性能一致性的限制,国内某些厂家已进行了相关研究。 2.4无缝钢管控轧控冷技术应用提高

中厚板开题报告

燕山大学 本科毕业设计(论文)开题报告 课题名称:中厚板轧机压下规程及滚系结构设计 学院(系):机械学院 年级专业: 09级轧钢 学生姓名: 指导教师: 完成日期: 2013-03-22 一、国内外中厚板轧机国内外研究动态,选题的依据和意义 中厚板轧机是用于轧制中厚度钢板的轧钢设备。在国民经济的各个部门中广泛的采用, 它主要用于制造交通运输工具(如汽车、拖拉机、传播、铁路车辆及航空机械等)、钢机构件 (如各种贮存容器、锅炉、桥梁及其他工业结构件)、焊管及一般机械制品等。习惯于将厚度 在4~20毫米范围内的钢板成为中板,将厚度为20~60毫米的钢板称为厚板。 1、世界中厚板轧机发展状况[1] 1864牛美国创建了世界上第一套三辊劳特式中板轧机,推广于世界。到了1891年,美 国钢铁公司霍姆斯特德厂,为了提高钢板厚度的精度,投产了世界上第一套四辊可逆式厚板 轧机。1918午卢肯斯钢铁公司科茨维尔厂,建成了—套5230mm四辊式轧机,这是世界上第 一套5m以上的特宽的厚板轧机。 1907年美国钢铁公司南厂为了轧边,首次创建了万能式厚板轧机,在当时还是十分新奇 的。南厂在1931年还建成了世界上第一套连续式中厚板轧机,在精轧机组后设精整作业线, 用于大量生产厚度为10mm左右的中板。欧洲国家中厚钢板生产也是比较早的。1910年,捷 克斯洛伐克投产了一套4500mm二辊式厚板轧机。1913年,西班牙建成一套二辊式厚板轧机。 1937年英国投产了一套3810mm中厚板轧机。1940年,德国建成了一套5000mm四辊式厚板轧 机。1939年,法国建成了一套4700mm四辊式厚板轧机。1940年,意大利投产了一安4600mm 二辊式厚板轧机。这些轧机都是用于生产机器和兵器用的钢板,多数是为了满足二战备战的 需要。第二次世界大战期间,美、苏、英、法、德、意、日、加等八国制造了军舰和坦克等 武器,先后投产一批厚板轧机。20世纪50~60年代宽厚板轧机建设较多的是美国,当时以 4064mm式厚板轧机为主,此期间美国建有3米级及3米以下轧机8台,4064mm厚板轧机7 台,特宽轧机(≥5000mm)1台。 60年代后期至70年代初期厚板轧机的领先地位转向日本,这时期日本建有4724mm双机 架四辊式厚板轧机5套。1976年~1977年间日本建设3套5500mm特宽厚板轧机,1974年住 友鹿岛厂将5335mm粗轧机改造为5450mm轧机。建设这种特级厚板轧机主要是为生产φ1626mm 大直径uoe钢管用宽钢板和20~30万吨级油轮用钢板。 1984年底,法国东北钢铁联营公司敦刻尔克厂在4300mm轧机后增加一架5000mm厚板轧 机,增加了产量,并扩大了品种。1984年底,苏联伊尔诺斯克厂新建了一套5000mm宽厚板 轧机,年产量达10万吨,以满足大直径焊管和舰艇用宽幅厚板的需求。1985年德国迪林根 冶金公司迪林根厂将4320mm轧机换成4800mm轧机,并在前面增加一架特宽的5500mm轧机, 以满足1625mm大直径doe焊管用板需求。1985年12月日本钢管公司福山厂新制一套 4700mmhcw型轧机,替换原来的轧机,更有效地控制板形,以提高钢板产量。 近来电子计算机的应用使轧机提高了自动化控制程度。中厚板轧机普遍采用了液压 agc(钢板厚度自动控制系统)。中厚板的精度和生产效率大幅度提高。神经网络和遗传算法相 结合的方法对中厚板轧制过程的轧制参数进行预测,进一步提高了轧制参数控制模型的预测 精度和泛化能力[2-4]。 国外中厚板轧机发展主要有这几个特点:(1)从扩大产量型转向提高尺寸精度及表面质

纤维板生产工艺流程图教学内容

纤维板生产工艺流程 20 [ 标签:纤维板,工艺流程] 纤维板生产工艺详细操作流程 特意为您推荐的相关内容 ??什么是工艺流程?2回答2009-12-17 ??哇哈哈是哪里生产的1回答2011-03-15 ??关于生产前1回答2011-03-14 更多纤维板工艺流程相关知识>> ?陶瓷纤维板 ?高密度纤维板 ?中密度纤维板 ?硬质纤维板 ?中密度纤维板生产厂家 ?高密度纤维板生产工艺 ?中密度纤维板价格 ?中密度纤维板国家标准 答案 生产工艺流程简述 1,削片—筛选 生产中厚板时原木不要求剥皮,但树皮允许体积分数小于8%%。原木装载机将小径木、枝桠材等木材原料放在储木台上,通过皮带运输机送入削片 机,削片机前装有金属探测器,避免带有金属的木材进入削片机。进入削片机 的木材被削成规格木片,经由螺旋运输机和斗式提升机送人木片储仓储存。 由于软材硬材要按比例混合,所以采用两个储仓,分别储存软材和硬材木片。 储仓下部的出料装置能控制出料速度,根据工艺配比,由出料装置控制出料 量,使软硬木片按要求的比例均匀混合。软硬木片之比为3:7 或4:6。混合木片的PH值最好能相对稳定在5,0---5,5之间。 然后,木片经皮带运输机送至振动筛进行筛分,筛选机一般有两层。在除 去过大的和过小的木片和杂物后,将合格木片送至清洗设备除去泥沙、小碎 石、污物及金属块等。木片清洗可分为水洗和干洗两种方式。根据我国原料 的现状,采用水洗较合适。但木片水洗耗水量大,又有污水处理问题,且造价 较高,虽然木片清洗的质量好,效率高,有利于纤维分离和板的质量,但生产中厚板的中小生产规模厂有不少还是采用了木片干洗方式。净化后的木片经螺 旋运输机和斗式提升机送往热磨间。 2,热磨—施胶—干燥

控轧控冷工艺在盘螺降锰中的应用

控轧控冷工艺在盘螺降锰中的应用 发表时间:2018-05-21T16:52:35.757Z 来源:《基层建设》2018年第4期作者:宣文娟 [导读] 摘要:通过对控轧控冷工艺的应用,能够促进其组织细化和晶粒细化,进而增加盘螺的韧性和强度,保证其抗拉强度和屈服强度较高。 中天钢铁集团有限公司江苏常州 213011 摘要:通过对控轧控冷工艺的应用,能够促进其组织细化和晶粒细化,进而增加盘螺的韧性和强度,保证其抗拉强度和屈服强度较高?通过实际应用可以得出,在盘螺降锰中应用控轧控冷工艺,效果显著,其屈服度和强度的比例能够很好的满足抗震钢筋的需求,有效的减少了资源消耗,且合金使用成本也明显降低,进而企业的经济效益得到明显增加? 关键词:盘螺;控轧控冷;工艺改进 一、控轧控冷工艺概述 控轧控冷工艺属于一种板材生产技术,其技术核心主要就是在板材轧制的过程中,通过对冷却条件?轧制过程中?加热温度等工艺参数进行合理控制,进而改变板材的焊接?韧性以及强度性能?随着科学技术的快速发展,控轧控冷工艺已经逐渐巩固和完善。轧控冷可以简单的理解为控制轧制和冷却过程,在Ti?v?Nb等复合低碳微合金钢中得到良好的应用?控制轧制的基础是对钢材的化学成分进行调节,进而控制变形制度?轧制温度?加热温度等工艺参数,对相变产物组织形式和奥氏体状态进行合理控制,进而有效的提升钢材组织性能;控制冷却指的是对钢材轧制后的冷却条件进行控制,通过控制相变条件?奥氏体组织状态以及碳化物析出行为,来改变其性能?通过对控轧控冷工艺的使用,能够显著的提高钢材的综合性能和强韧性,并降低其中的碳元素含量和合金元素含量,通过对贵重合金元素的节约,生产钢材的成本大大降低?相较于普通生产工艺来说,在应用控轧控冷工艺之后,钢板的屈服强度和抗拉强度大约能提升60Mpa左右,在板形保持?冷却均匀性?合金元素节省?碳元素含量降低等多个方面都具有明显优势? 二、生产螺纹钢盘条的工艺流程 盘螺的生产工艺流程为:第一步热装和冷装连铸钢坯,第二步是在加热炉中进行加热,第三步是出钢机出炉,第四步是通过出炉辊道进行运输,第五步是6架粗轧机组,第六步是切头?事故碎断1群剪,第七步是4架预精轧机组,第八步是预水冷箱,第九步是切头?事故碎断2飞剪,第十步是10架精轧机组,第十一步是3组水冷箱及均温段,第十二步是夹送辊,第十二步是吐丝机,第十三步是延迟型斯太尔摩运输线,第十四步是集卷站集卷,第十五步是P/F钩式悬挂运输机,第十六步是打包,第十七步是称重,第十八步是挂标签,最后是入成品库? 三、在盘螺降锰中对控轧控冷工艺的应用 (一)常规轧制 在相关制作规范中要求,盘螺的抗拉强度需要≥540Mpa,屈服强度需要≥400Mpa,根据实验步骤的不同可以生产出成分不同的两批方坯,主要是坯料中锰成分含量不同?通过常规轧制可以得出,高猛成分盘螺的强度平均是438Mpa,平均锰含量为1.32%;低锰成分盘螺的强度平均是423Mpa,平均锰含量为1.06%? (二)轧后控冷工艺轧制 轧后控冷工艺指的是对钢材轧后的余热进行利用,给予相应的冷却速度,对其相变过程进行合理控制,其中不需要对其进行热处理,在其冷却过程进行控制的目的是为了模拟出铅浴淬火过程,进而保证线材能够具有一定的索氏体组织,该组织的综合机械性能比较好? 对于线材轧后冷却控制来说,可以将其分为空冷段相变冷却和水冷段强制冷却两个阶段?空冷区和水冷区两个部分共同构成控制冷却工艺,经过水冷控制线材达到相应温度之后,就能够进行吐丝,在风冷线上直条线材呈散圈状分布,实现风冷处理?在本次研究过程中,在常规工艺轧制之后,小批量的低锰成分盘螺通过控轧控冷工艺进行试制,通过传统高猛盘螺比较可以得出以下几个结论:(一)控制加热温度 加热炉中的加热时间和加热温度,会在很大程度上对钢坯的性能的组织产生直接影响?虽然终轧温度对钢坯组织性能所产生的影响比较大,但是加热温度的不同会对冷却过程中线材的组织机理转变形成影响?一般来说,根据盘螺性质的独特性,其加热温度需要控制在(1100±5O)℃的范围内,并将开轧温度控制在970~C左右? (二)控制轧制温度 在盘螺塑性变形过程中,精轧是最后一个环节,而对于精轧环节来说,实质上也是奥氏体形成再结晶的重要阶段,而且轧制的温度会直接影响到奥氏体再结晶形核的具体个数,随着轧制温度的升高,再结晶形核的个数就会逐渐减少,但是如果想实现盘螺最终珠光体或组织索氏体出现细化,提高其强度和韧性的话,其再结晶形核的个数则是越多越好,这也就表示应该降低轧制温度?因此,在满足工艺条件的基础上,应该尽可能的降低入精轧的温度,一般可以将其控制在830℃左右? (三)控轧控冷系统 在精轧之前,需要1组预水冷水箱,长度和恢复段长度分别为8m?12m,水箱的降温能力为100℃?在精轧之后,需要3组控冷水箱,每组长度和恢复段长度都是8m,水箱的降温能力为100℃?另外还需要佳灵?风门?保温罩?大风量风机(10台)?斯太尔摩控制冷却线等装置? (四)控制吐丝温度 控制吐丝温度是开始相变温度控制的重要方面?冷却段数量的多少会对吐丝温度的大小产生直接影响,并对奥氏体晶粒的具体尺寸产生间接影响?当轧件在经过精轧处理之后,奥氏体就会逐渐转变为其他相,但是在转变之前,奥氏体还存在着晶粒长大?再结品?恢复等过程,而在这一过程中会受到时间?温度等多种因素的影响,这也就是所谓的吐丝温度控制?在一般情况下,时间越长?温度越高,所形成的奥氏体晶粒也会之间增大?这也就表示,盘螺在出现相变之前,吐丝温度会影响着奥氏体品粒的尺寸大小?在相关调查研究结果中显示,随着逐渐增加的吐丝温度,盘螺的强度指标会增加;随着逐渐降低的吐丝温度,盘螺的塑性指标会增加,最佳的吐丝温度在810℃一850℃范围内? (五)控制冷却速度 对冷却速度进行控制,实质上就是控制辊道和冷却风机的速度,其中辊道速度会在很大程度上受到轧件速度?直径?线还间距等因素的影响,其中最关键的是需要对线还间距进行有效控制,而盘螺直径与线还间距密切相关,这也就表示最终的冷却效果实质上是由线还间距距离决定的?在生产实践中可以得出,当辊道冷却速度使不同盘螺环距离>40mm的话,在快速冷却时候的速度就是获得细珠光体的最佳速

中厚板生产工艺介绍

目录: 一、中厚板概述 二、热轧总厂中厚板分厂概况 三、中厚板分厂轧钢生产工艺 四、中厚板性能 一、中厚板概述 1、中厚板是国家现代化不可缺少的一项钢材品种,被广泛用于大直径输送管、压入容器、锅炉、桥梁、海洋平台、各类船舰、坦克装甲、车辆、建筑构件、机器结构等领域,其品种繁多,使用温度要求广泛(-20℃——600℃),使用环境要求复杂(耐候性、耐蚀性等),使用强度要求高(强韧性、焊接性能好等)。一般厚度在4mm以上的为中厚板(4——20mm的为中板,20——60mm为厚板,60mm以上的为特厚板)。 2、中厚板一般有较高的综合机械性能。力学性能要求有:强度、塑性、硬度、冲击韧性、刚度等。工艺性能要求有:焊接性能、淬透性、加工性、耐候性、耐蚀性、耐磨性、耐疲劳性、高温特性、低温特性等。 二、热轧总厂中厚板分厂概述: 1、热轧总厂中厚板分厂是我国中厚板行业的重要的基地,年产量向80万吨迈进。主要产品有:造船用结构钢板、桥梁用钢板、锅炉用钢板、压力容器用钢板、优质碳素结构钢板、普通碳素结构钢板、低合金高强度结构钢板、工程机械用钢板、耐火耐候高层建筑用钢板、特殊用途钢板等。先后为三峡工程、芜湖长江大桥、武汉军山长江大桥、武汉阳逻长江大桥、天兴洲公铁两用长江大桥、国家大剧院、北京电视塔、国家体育场、国家图书馆、北京奥运工程、国家石油战略储备工程、青藏铁路等国家重点工程提供了大量的优质钢板,许多产品都取代了进口的产品,成为“双高”产品中的佼佼者。 2、中厚板分厂主要的设备有:板坯修磨机、二座推钢式加热炉和一座步进式加热炉,立辊轧机、二辊轧机、四辊轧机各一座,控轧控冷系统,矫直、剪切、精整设备齐全,并有国内先进的热处理设备(三座常化炉) 三、热轧总厂中厚板分厂生产工艺 热轧总厂中厚板分厂生产工艺流程框图如下:

控轧控冷技术在轴承钢生产中的应用

控轧控冷技术在轴承钢生产中的应用 关键词:控制轧制控制冷却轴承钢细化晶粒 一引言 随着现代科学技术的发展,滚动轴承的使用量日益增加。轴承的主要损坏形式是接触疲劳破坏,因此要求轴承钢具有高的接触疲劳强度,同时具有高的耐磨性和良好的工艺性能。GCr15 具有良好的综合性能,因而成为轴承行业中应用最为广泛的钢种之一。控轧控冷是在轧制过程中通过控制加热温度、轧制过程、冷却条件等工艺参数,改善钢材的强度、韧性、焊接性能。该项技术问世20年来,经过不断地完善和巩固,已经逐步扩展到海洋结构用钢、管线、型材等各个领域。将控轧控冷技术应用于轴承钢能使得钢材的综合性能得到大幅提高,取得巨大的经济效益。 二控制轧制 控制轧制(Controlled rolling):热轧过程中通过对金属加热制度、变形制度和温度制度的合理控制,使热塑性变形与固态相变结合,获得细小晶粒组织,使钢材具有优异的综合力学性能的轧制新工艺。 1 控制轧制的类型 控制轧制方式示意图 (a) 奥氏体再结晶区控轧;(b) 奥氏体未再结晶区控轧;(c) (γ+α)两相区控轧 (1)奥氏体再结晶区控制轧制(又称I型控制轧制) 奥氏体再结晶区控制轧制的主要目的是通过对加热时粗化的初始奥氏体晶粒反复进行轧制再结晶使之细化,并从而使奥氏体到铁素体相变后得到细小的铁素体晶粒。并且,相变前的奥氏体晶粒越细,相变后的铁素体晶粒也变的越细。把钢相变前的奥氏体晶粒直径和相变后的奥氏体晶粒直径之比成为γ/α变换比。

当奥氏体晶粒粗大时此比值远远大于1,即由一个奥氏体晶粒可以产生几个铁素体晶粒。当相变前的奥氏体晶粒细小时,该γ/α变换比接近于1,所以,在仅仅由于再结晶奥氏体晶粒微细化而引起的奥氏体的晶粒细化方面存在一个极限。奥氏体再结晶区轧制是通过再结晶使奥氏体晶粒细化,从这种意义上说,它实际上是控制轧制的准备阶段。奥氏体再结晶区域通常是在约950℃以上的温度范围。 (2)奥氏体未再结晶区控制轧制(又称Ⅱ型控制轧制) 在奥氏体未再结晶区进行控制轧制时,γ晶粒沿轧制方向伸长,γ晶粒内部产生形变带。此时不仅由于晶界面积增加,提高了α的形核密度,而且也在形变带上出现大量的铁素体晶核。这样就进一步促进了α晶粒的细化。相变后的铁素体晶粒随着未再结晶区总压下率的增加变细。如果刚相变前的奥氏体晶粒度和未再结晶奥氏体晶粒的伸长程度相同,则γ/α相变温度越低,相变后的铁素体晶粒越细。奥氏体未再结晶的温度区间一般为950?C~Ar3。 (3)(γ+α)两相区轧制 在Ar3点以下的(γ+α)两相区轧制时,未相变γ晶粒更加伸长,在晶内形成形变带。另一方面,已相变后的铁素体晶粒在受到压下时,于晶粒内形成亚结构。在轧后的冷却过程中前者发生相变形成微细的多边形晶粒而后者因回复变成内部含有亚晶粒的铁素体晶粒。因此两相区轧制得到的组织为大倾角晶粒和亚晶粒的混晶组织。 在控制轧制实践中常常把这三种轧制方式联系在一起而进行连续轧制。并称之为控制轧制的三阶段。 2 控制轧制工艺特点 (1)控制加热温度 加热温度决定轧制前奥氏体晶粒的大小,温度越低晶粒越细。 (2)控制轧制温度 在控制轧制中所采用的轧制温度是依所采用的控制轧制类型而异。在奥氏体区轧制时,终轧温度越高,奥氏体晶粒越粗大,转变后的铁素体晶粒也越粗大,并易出现魏氏组织,对钢的性能不利,因此要求最后几道次的轧制温度要低。 (3)控制变形程度 为了保证钢材的强度和韧性,要求在低温范围内要有一定大小的变形程度。在奥氏体区轧制时,道次压下量必须要大于临界压下量,尤其在动态再结晶区间,否则将产生混晶。 (4)控制轧制后冷却速度 钢材于轧后冷却除采用空冷外,还可以采用吹风,喷水,穿水等冷却方式。由于冷却速度的不同,钢材可以得到不同的组织和性能。

最新对高速线材生产中控轧控冷的分析

对高速线材生产中控轧控冷的分析

对高速线材生产中控轧控冷的分析 高速线材厂焦银 摘要:阐述了控冷控轧的原理,分析了高速线材轧制中的加热温度控制、轧前水冷、精轧机内水冷、精轧机组后水冷、风冷线温控等参数的确定依据。 关键词:高速线材;加热温度;控轧控冷 ANALYSIS OF CONTROLLED ROLLING AND CONTROLLED COOLING IN HIGH一SPEED W1RE PRODUCTION Abstract: The principle of controlled rolling and controlled cooling is stated. It is analyzed how to determine the parameters in high--speed wire rolling such as heating temperature control water cooling before rolling water cooling in finishing rolling mill water cooling behind finishing rolling set and temperature control on wind cooling line. Keywords: high--speed wire production heating temperature control rolling and control cooling. 1.前言 自21世纪80年代以来,高速线材的轧制速度己突破100m/s,由于轧制速度的提高,导致轧件的温升增加,使终轧温度高于1000℃,线材成品表面的氧化铁皮增多、晶粒粗大、钢材的显微组织和机械性能极不均匀。控制轧制中水冷和轧后的散卷冷却,以便得到组织性能良好的线材;保证轧件的轧制温度,控冷控轧就显得至

控轧控冷习题答案

一、名词解释: 钢的强化方式 固溶强化、形变强化、析出(沉淀)强化与弥散强化、细晶强化、亚晶强化、相变强化、韧性概念 韧性(又名韧度)是材料塑形变形和断裂(裂纹形成和扩展)全过程中吸收能量的能力。固溶强化 采用添加溶质元素使固溶体强度升高的现象称为固溶强化 柯式气团 在过饱和的固溶体中,由于C、N原子有很好的扩散能力,可以直接在位错附近和位错中心聚集,形成柯式气团。 柯式气团作用:对运动的位错起着钉孔作用,使屈服强度、抗拉强度提高。 形变强化 随着变形程度的增加,材料的强度、硬度升高,韧性和塑性下降的现象叫做形变强化或加工硬化。形变强化决定于位错运动受阻。 沉淀强化 细小的沉淀物分散于基体之中,阻碍位错运动,而产生强化作用,这就是沉淀强化。 细晶强化 通过细化晶粒而使金属材料的力学性能提高的方法。晶粒愈小,晶界愈多,晶界阻力愈大,材料的屈服强度提高。 亚晶强化 亚晶强化的原因是位错密度提高。 相变强化 通过相变而产生的强化效应称为相变强化。 10、冲击韧性 工程上常用一次摆锤冲击弯曲试验来测定材料抵抗冲击载荷的能力,即测定冲击载荷试样被折断而消耗的冲击功Ak,单位为焦耳(J)。材料的冲击韧性指标主要是冲击功,即缺口冲击韧性Ak(J)或ak(J)值,和韧脆转变温度Tc 11、断裂韧性 指材料阻止宏观裂纹失稳扩展能力的度量,也是材料抵抗脆性破坏的韧性参数。断裂韧性是材料的一种性能,它取决于材料的组织结构 二、简答题: 1、奥氏体形变的真应力—真应变每个阶段的特点? 第一阶段:当塑性变形量小时,随着变形量的增加变形抗力增加,直到达到最大值。发生了加工硬化,动态回复和动态多边形化,随着变形量的增加,位错消失速度加快,也就是软化加快,但是总的趋势,在这一阶段加工硬化还是超过动态软化。反映在真阴历—真应变曲线上随着变形量加大变形应力还是不断增大的,只是增加速度逐渐减慢,直至为零。 第二阶段:在这一阶段动态软化速度将大于加工硬化速度,并且随着位错的大量消失,动态软化速度减慢,直至软化速度与硬化速度达到平衡,反应在真应力—真应变曲线上,随着变形量加大变形应力开始下降,直至一轮再结晶全部完成并与加工硬化相平衡,变形应力不再下降为止,形成了真应力—真应变曲线第二阶段。 第三阶段:(1)一种是变形量不断增加而应力值基本不变,呈稳定变形,这种情况称为连续动态再结晶。(2)另一种是应力随变形量增加出现波浪式的变化呈非稳定态变形,这种情况

中密度纤维板生产线工艺标准经过流程

1,削片—筛选 生产中厚板时原木不要求剥皮,但树皮允许体积分数小于8%%。原木装 载机将小径木、枝桠材等木材原料放在储木台上,通过皮带运输机送入削片 机,削片机前装有金属探测器,避免带有金属的木材进入削片机。进入削片机 的木材被削成规格木片,经由螺旋运输机和斗式提升机送人木片储仓储存。 由于软材硬材要按比例混合,所以采用两个储仓,分别储存软材和硬材木片。 储仓下部的出料装置能控制出料速度,根据工艺配比,由出料装置控制出料 量,使软硬木片按要求的比例均匀混合。软硬木片之比为3:7 或4:6。混合木 片的PH值最好能相对稳定在5,0---5,5之间。 然后,木片经皮带运输机送至振动筛进行筛分,筛选机一般有两层。在除 去过大的和过小的木片和杂物后,将合格木片送至清洗设备除去泥沙、小碎 石、污物及金属块等。木片清洗可分为水洗和干洗两种方式。根据我

国原料 的现状,采用水洗较合适。但木片水洗耗水量大,又有污水处理问题,且造价 较高,虽然木片清洗的质量好,效率高,有利于纤维分离和板的质量,但生产中 厚板的中小生产规模厂有不少还是采用了木片干洗方式。净化后的木片经螺 旋运输机和斗式提升机送往热磨间。 2,热磨—施胶—干燥 木片经过磁鼓除去切片当中的铁块,进入热磨机前的预蒸料仓临时储存, 预蒸料仓的有效容积为6M3,装有料位指示器,可观测木片的过满或空缺。木 片经振动给料器,木塞螺旋进入垂直蒸煮器进行蒸煮软化,增加含水率,蒸煮 器配有!射线料位计,用来控制料位和预置蒸煮时间。木片在蒸煮软化后由 运输螺旋送人热磨机进行纤维分离。在热磨系统中配有起动分离器,热磨机 起动时,通常开始热磨的纤维质量不符合生产要求,这些不合格纤维通过排料

相关文档