文档库 最新最全的文档下载
当前位置:文档库 › 提高控制系统的鲁棒性与适应性

提高控制系统的鲁棒性与适应性

提高控制系统的鲁棒性与适应性
提高控制系统的鲁棒性与适应性

提高控制系统的鲁棒性与适应性

1、含义

鲁棒性:控制器参数变化而保持控制性能的性质。

适应性:控制器能适应不同控制对象的性质。

控制系统在其特性或参数发生摄动时仍可使品质指标保持不变的性能。鲁棒性是英文robustness一词的音译,也可意译为稳健性。鲁棒性原是统计学中的一个专门术语,70年代初开始在控制理论的研究中流行起来,用以表征控制系统对特性或参数摄动的不敏感性。在实际问题中,系统特性或参数的摄动常常是不可避免的。产生摄动的原因主要有两个方面,一个是由于量测的不精确使特性或参数的实际值会偏离它的设计值(标称值),另一个是系统运行过程中受环境因素的影响而引起特性或参数的缓慢漂移。因此,鲁棒性已成为控制理论中的一个重要的研究课题,也是一切类型的控制系统的设计中所必需考虑的一个基本问题。对鲁棒性的研究主要限于线性定常控制系统,所涉及的领域包括稳定性、无静差性、适应控制等。鲁棒性问题与控制系统的相对稳定性和不变性原理有着密切的联系,内模原理的建立则对鲁棒性问题的研究起了重要的推动作用。

2、控制系统设计要求(指标)

(1)、结构渐近稳定性

以渐近稳定为性能指标的一类鲁棒性。如果控制系统在其特性或参数的标称值处是渐近稳定的,并且对标称值的一个邻域内的每一种情况它也是渐近稳定的,则称此系统是结构渐近稳定的。结构渐近稳定的控制系统除了要满足一般控制系统设计的要求外,还必须满足另外一些附加的条件。这些条件称为结构渐近稳定性条件,可用代数的或几何的语言来表述,但都具有比较复杂的形式。结构渐近稳定性的一个常用的度量是稳定裕量,包括增益裕量和相角裕量,它们分别代表控制系统为渐近稳定的前提下其频率响应在增益和相角上所留有的储备。一个控制系统的稳定裕量越大,其特性或参数的允许摄动范围一般也越大,因此它的鲁棒性也越好。

(2)、结构无静差性

以准确地跟踪外部参考输入信号和完全消除扰动的影响为稳态性能指标的一类鲁棒性。如果控制系统在其特性或参数的标称值处是渐近稳定的且可实现无静差控制(又称输出调节,即系统输出对参考输入的稳态跟踪误差等于零),并且对标称值的一个邻域内的每一种情况它也是渐近稳定和可实现无静差控制的,那么称此控制系统是结构无静差的。使系统实现结构无静差的控制器通常称为鲁棒调节器。在采用其他形式的数学描述时,鲁棒调节器和结构无静差控制系统的这些条件的表述形式也不同。鲁棒调节器在结构上有两部分组成,一部分称为镇定补偿器,另一部分称为伺服补偿器。镇定补偿器的功能是使控制系统实现结构渐近稳定。伺服补偿器中包含有参考输入和扰动信号的一个共同的动力学模型,因此可实现对参考输入和扰动的无静差控制。对于呈阶跃变化的参考输入和扰动信号,它

们共同的动力学模型是一个积分器;对于呈斜坡直线变化的参考输入信号和呈阶跃变化的扰动信号,其共同的动力学模型是两个积分器的串接。

3、提高控制系统鲁棒性与自适应性的方法

我们总是假设已经知道了受控对象的模型,但由于实际中存在种种不确定因素,如:

(1)、参数变化;

(2)、未建模动态特性;

(3)、平衡点的变化;

(4)、传感器噪声;

(5)、不可预测的干扰输入;

等等,所以我们所建立的对象模型只能是实际物理系统的不精确的表示。鲁棒系统设计的目标就是要在模型不精确和存在其他变化因素的条件下,使系统仍能保持预期的性能。如果模型的变化和模型的不精确不影响系统的稳定性和其它动态性能,这样的系统我们称它为鲁棒控制系统。

所谓鲁棒性,是指标称系统所具有的某一种性能品质对于具有不确定性的系统集的所有成员均成立,如果所关心的是系统的稳定性,那么就称该系统具有鲁棒稳定性;如果所关心的是用干扰抑制性能或用其他性能准则来描述的品质,那么就称该系统具有鲁棒性能。

目前,为防止自适应系统失稳现象的发生,主要采取以下一些提高自适应控制系统鲁棒性的方法:

(1)、带有状态观测器的系统的鲁棒性一般而言,在控制系统中引入状态观测器会使它的鲁棒性变坏,因此应尽可能避免。对于必须采用状态观测器的控制系统,当受控系统为最小相位系统时,可通过合理地设计观测器而使控制系统保持较好的鲁棒性。其原则是把观测器的一部分极点设计成恰好与所观测系统的零点相对消,而观测器的其他极点在满足抗干扰性要求的前提下应使其尽可能地远离虚轴。

(2)、在自适应律中引人一定的死区,使得仅当辨识误差超过一定的阈值时,自适应控制才发生作用。死区的选择与干扰有密切的关系。

(3)、产生一持续激励信号,保证参数估计的收敛及自适应系统的稳定性。

(4)、使用一修正的自适应律,仅当被估计控制器参数的范围超过一定值时,自适应律再投入调节。

(5)、为了阻尼高频寄生于扰引起的不稳定性,可使用在自适应律中加入一定的衰减项,采用平均技术等方法。

(6)、Goodwin及其合作者认为,研究的基点应该是使鲁棒控制器自适应化,可能正是出于这个考虑,Goodwin又把自适应控制分为鲁棒估计器和鲁棒控制器两个方面。Song等也提出了自校正鲁棒控制器。.

(7)、Elliot提出间隔N(N>1)个采样周期调整一次控制器参数,而参数估计仍每一次进行一次。他证明了此系统的性能可以得到改善。

当系统存在未建模动态特性时,经试验证明,可以通过适当加大采样周期的方法来解决。从物理意义上,加大了采样周期,相当于放大了抽样系统数据的间

隔,也即减弱了自适应回路的非线性影响,因此也就降低了未建膜动态特性可能引起的不利影响。另一方面,一般未建模动态都具有高频特性,考虑这种情况,如果适当选择较大的采样周期,可以减弱或消除对高频特性的提取,相当于加滤波器,将高频信号过滤掉,这样自然使未建模高频特性部分的影响减小。

(8)、现阶段,神经网络在控制系统中运用也是更加的成熟,用于非线性系统辨识有其广阔的前景。神经网络的鲁棒性依赖于神经网络参数位置和它附近系统误差曲面的具体形态。神经网络参数设计在极值点附近而其附近的形态误差曲面又比较平缓时,网络的鲁棒性就好,否则鲁棒性就差。

算 法 的 鲁 棒 性

[论文笔记]集成方法提高神经网络的对抗鲁棒性 集成方法提高神经网络的对抗鲁棒性一、多个弱防御的集成不能形成强防御1.攻击者2.防御策略3.对抗样本生成方法4.干扰大小的度量5.实验6.结论二、简单集成神经网络1.攻击方法2.集成模型3.计算梯度4.实验5.结论三、 ensemble of specialists1.利用FGSM 方法得到模型的混淆矩阵:2.伪代码如下:3.实验考虑三种模型4.实验结果四、随机自集成1.思想2.taget攻击与untarget攻击3.网络设计4.伪代码如下:5.理论分析6.结论五、集成对抗训练1.前言 2.对抗训练 3.集成对抗训练六、对抗训练贝叶斯神经网络(adv-BNN)1.前言2.PGD攻击3.BNN4.adv-BNN 一、多个弱防御的集成不能形成强防御 1.攻击者 假设攻击者知道模型的各种信息,包括模型架构、参数、以及模型的防御策略(白盒攻击)。 考虑两种白盒攻击者: (1)静态 不知道模型的防御策略,因此静态攻击者可以利用现有的方法生成对抗样本,但不针对特定的防御策略。 (2)动态 知道模型的防御策略,可以自适应地制定攻击方法,比静态攻击者更强大。

2.防御策略 (1)feature squeezing 包括两个检测组件:reducing the color depth to fewer bits 和spatially smoothing the pixels with a median filter (2)specialist-1 ensemble method 根据对抗混淆矩阵将数据集分成K+1个子集,形成由K+1个分类器组成的一个集成分类器 (3)多个检测器集成 包括Gong、Metzen、Feinman三个人提出的对抗样本检测器; 3.对抗样本生成方法 利用优化方法生成对抗样本,最小化如下损失函数: loss(x′)=∣∣x′?x∣∣22+cJ(Fθ(x′),y)loss(x#x27;)=||x #x27;-x||_{2}^{2}+cJ(F_{theta}(x#x27;),y)loss(x′)=∣∣x′? x∣∣22?+cJ(Fθ?(x′),y) 其中c为超参数,该方法也称为CW攻击方法。 4.干扰大小的度量 用下式度量对抗样本与干净样本之间差异: d(x?,x)=∑i(x?x)2d(x^{*},x)=sqrt{sum_i(x^{*}-x)^{2}}d(x? ,x)=i∑?(x?x)2? 其中样本点都被归一化[0,1]之间。 5.1 攻击 feature squeezing 结论:feature squeezing 不是一种有效的防御方法。首先单独

提高控制系统的鲁棒性与适应性

提高控制系统的鲁棒性与适应性 1、含义 鲁棒性:控制器参数变化而保持控制性能的性质。 适应性:控制器能适应不同控制对象的性质。 控制系统在其特性或参数发生摄动时仍可使品质指标保持不变的性能。鲁棒性是英文robustness一词的音译,也可意译为稳健性。鲁棒性原是统计学中的一个专门术语,70年代初开始在控制理论的研究中流行起来,用以表征控制系统对特性或参数摄动的不敏感性。在实际问题中,系统特性或参数的摄动常常是不可避免的。产生摄动的原因主要有两个方面,一个是由于量测的不精确使特性或参数的实际值会偏离它的设计值(标称值),另一个是系统运行过程中受环境因素的影响而引起特性或参数的缓慢漂移。因此,鲁棒性已成为控制理论中的一个重要的研究课题,也是一切类型的控制系统的设计中所必需考虑的一个基本问题。对鲁棒性的研究主要限于线性定常控制系统,所涉及的领域包括稳定性、无静差性、适应控制等。鲁棒性问题与控制系统的相对稳定性和不变性原理有着密切的联系,内模原理的建立则对鲁棒性问题的研究起了重要的推动作用。 2、控制系统设计要求(指标) (1)、结构渐近稳定性 以渐近稳定为性能指标的一类鲁棒性。如果控制系统在其特性或参数的标称值处是渐近稳定的,并且对标称值的一个邻域内的每一种情况它也是渐近稳定的,则称此系统是结构渐近稳定的。结构渐近稳定的控制系统除了要满足一般控制系统设计的要求外,还必须满足另外一些附加的条件。这些条件称为结构渐近稳定性条件,可用代数的或几何的语言来表述,但都具有比较复杂的形式。结构渐近稳定性的一个常用的度量是稳定裕量,包括增益裕量和相角裕量,它们分别代表控制系统为渐近稳定的前提下其频率响应在增益和相角上所留有的储备。一个控制系统的稳定裕量越大,其特性或参数的允许摄动范围一般也越大,因此它的鲁棒性也越好。 (2)、结构无静差性 以准确地跟踪外部参考输入信号和完全消除扰动的影响为稳态性能指标的一类鲁棒性。如果控制系统在其特性或参数的标称值处是渐近稳定的且可实现无静差控制(又称输出调节,即系统输出对参考输入的稳态跟踪误差等于零),并且对标称值的一个邻域内的每一种情况它也是渐近稳定和可实现无静差控制的,那么称此控制系统是结构无静差的。使系统实现结构无静差的控制器通常称为鲁棒调节器。在采用其他形式的数学描述时,鲁棒调节器和结构无静差控制系统的这些条件的表述形式也不同。鲁棒调节器在结构上有两部分组成,一部分称为镇定补偿器,另一部分称为伺服补偿器。镇定补偿器的功能是使控制系统实现结构渐近稳定。伺服补偿器中包含有参考输入和扰动信号的一个共同的动力学模型,因此可实现对参考输入和扰动的无静差控制。对于呈阶跃变化的参考输入和扰动信号,它

对鲁棒控制的认识

对鲁棒控制的认识 姓名:_______________ 赵呈涛_______________ 学号:092030071 专业: 鲁棒控制(RobustControl )方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。所谓“鲁棒性”,是指控制系统在一定(结构、大小)的参数摄动下,维持某些性能的特性。根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。如果所关心的是系统的稳定性,那么就称该系统具有鲁棒稳定性;如果所关心的是用干扰抑制性能或用其他性能准则来描述的品质,那么就称该系统具有鲁棒性能。以闭环系统的鲁棒性作为目标设计得到的固 定控制器称为鲁棒控制器。 鲁棒控制的早期研究,主要针对单变量系统(SIS0)的在微小摄动下的不确 定性,具有代表性的是Zames提出的微分灵敏度分析。然而,实际工业过程中故

障导致系统中参数的变化,这种变化是有界摄动而不是无穷小摄动,因此产生了 以讨论参数在有界摄动下系统性能保持和控制为内容的现代鲁棒控制。现代鲁棒 控制是一个着重控制算法可靠性研究的控制器设计方法,际环其设计目标是找到在实境中为保证安全要求控制系统最小必须满足的要求。一旦设计好这个控制器,它的参数不能改变而且控制性能能够保证。 鲁棒控制方法,是对时间域或频率域来说,一般要假设过程动态特性的信息和它的变化范围,一些算法不需要精确的过程模型,但需要一些离线辨识。鲁棒控制理论是分析和处理具有不确定性系统的控制理论,包括两大类问题:鲁棒性分析及鲁棒性综合问题。鲁棒性分析是根据给定的标称系统和不确定性集合,找出保证系统鲁棒性所需的条件;而鲁棒性综合(鲁棒控制器设计问题)就是根据给定的标称模型和不确定性集合,基于鲁棒性分析得到的结果来设计一个控制器,使得闭环系统满足期望的性能要求。主要的鲁棒控制理论有: 1)Kharitonov 区间理论; 2)H控制理论; 3)结构奇异值理论理论。 面就这三种理论做简单的介绍。 1 Kharitonov区间理论1.1参数不确定性系统的研究概况 对参数不确定性系统的研究源于20世纪20年代。Black采用大回路增益的反馈控制技术来抑制真空管放大器中存在的严重不确定性,由于采用大回路增益,所以设计的系 统常常不稳定;1932年,Nyquist给出了判断系统稳定性的频域判据,在控制系统设计时,用来在系统稳定性和回路增益之间进行折衷;1945年,Bode首次提出灵敏度函数的概念,对系统的参数不确定性进行定量的描述。在此基础上,Horowitz在1962年提出一种参数不灵敏系统的频域设计方法,此后,基于灵敏度分析的方法成为控制理论中对付系统参数不确定性的主要工具。不过,这种方法是基于无穷小分析的,在实际系统的设计中并不总是能收到良好效果。因为系统的参数不确定性通并不能看作无穷小扰动;另外灵敏度分析法一般要求知道对象的标称值,这在实际中往往也难以做到。于是,人们开始研究用有界扰动来刻画参数的不确定性,出现了鲁棒辨识方法。此法给出的辨识结果不是一个确定值,而是参数空间中的一个域(如超矩形、凸多面体、椭球等)。相应地, 不确定系统的参数空间设计方法也得到广泛而深入的研究。1984年,Barmish将前苏联 学者Kharitonov的区间多项式鲁棒稳定性的著名结果一一四多项式定理。引入控制界,掀起了在参数空间中研究系统鲁棒性的热潮。 1.2关于区间多项式的几个重要定理 参数摄动通常表现为独立摄动、线性相关摄动和多线性相关摄动3种模式。判断在相应的参数摄动模式下系统鲁棒稳定性的主要定理分别是:四多项式定理、棱边定理和映射定理。 2结构奇异值理论(理论) 2. 1结构奇异值理论的产生和L定义

鲁棒控制

鲁棒控制理论中的H∞控制理论 (浙江大学宁波理工学院信息科学与工程分院自动化) 【摘要】首先简要的介绍了鲁棒控制中的H∞控制理论,并把其发展分为两个阶段,而后就上当已存在的H∞控制的主要成果进行了讨论和归纳,还指出了H∞控制理论尚未解决的问题。 【关键词】H∞控制理论;非线性系统;时滞;范数 1.概述 鲁棒控制(Robust Control)方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。所谓鲁棒性,是指标称系统所具有的某一种性能品质对于具有不确定性的系统集的所有成员均成立,如果所关心的是系统的稳定性,那么就称该系统具有鲁棒稳定性;如果所关心的是用干扰抑制性能或用其他性能准则来描述的品质,那么就称该系统具有鲁棒性能。主要的鲁棒控制理论有:Kharitonov区间理论;H∞控制理论;结构奇异值理论u理论; 鲁棒控制理论是分析和处理具有不确定性系统的控制理论,包括两大类问题:鲁棒性分析及鲁棒性综合问题。鲁棒性分析是根据给定的标称系统和不确定性集合,找出保证系统鲁棒性所需的条件;而鲁棒性综合(鲁棒控制器设计问题)就是根据给定的标称模型和不确定性集合,基于鲁棒性分析得到的结果来设计一个控制器,使得闭环系统满足期望的性能要求。 2.H∞控制理论出现的背景及意义 1981年,加拿大著名学者Zames在其论文中引入了H∞范数作为目标函数进行优化设计,标志着H∞控制理论的诞生。Zames考虑了这样一个单入单出( SISO)系统的设计问题: 假设干扰信号属于某一有限能量的已知信号集,要求设计一个反馈控制器,使闭环系统稳定,且干扰对系统的影响最小。要解决这样的问题就必须在能够使闭环系统稳定的所有控制器中选出一个控制器使之相应的灵敏度函数的H∞范数最小。 虽然Zames 首先提出了H∞最优化问题,但是他没能给出行之有效的解法。

对鲁棒控制的认识

对鲁棒控制的认识 姓名:赵呈涛 学号: 092030071 专业:双控

鲁棒控制(RobustControl)方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。所谓“鲁棒性”,是指控制系统在一定(结构、大小)的参数摄动下,维持某些性能的特性。根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。如果所关心的是系统的稳定性,那么就称该系统具有鲁棒稳定性;如果所关心的是用干扰抑制性能或用其他性能准则来描述的品质,那么就称该系统具有鲁棒性能。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。 鲁棒控制的早期研究,主要针对单变量系统(SISO)的在微小摄动下的不确定性,具有代表性的是Zames提出的微分灵敏度分析。然而,实际工业过程中故障导致系统中参数的变化,这种变化是有界摄动而不是无穷小摄动,因此产生了以讨论参数在有界摄动下系统性能保持和控制为内容的现代鲁棒控制。现代鲁棒控制是一个着重控制算法可靠性研究的控制器设计方法,其设计目标是找到在实际环境中为保证安全要求控制系统最小必须满足的要求。一旦设计好这个控制器,它的参数不能改变而且控制性能能够保证。 鲁棒控制方法,是对时间域或频率域来说,一般要假设过程动态特性的信息和它的变化范围,一些算法不需要精确的过程模型,但需要一些离线辨识。鲁棒控制理论是分析和处理具有不确定性系统的控制理论,包括两大类问题:鲁棒性分析及鲁棒性综合问题。鲁棒性分析是根据给定的标称系统和不确定性集合,找出保证系统鲁棒性所需的条件;而鲁棒性综合(鲁棒控制器设计问题)就是根据给定的标称模型和不确定性集合,基于鲁棒性分析得到的结果来设计一个控制器,使得闭环系统满足期望的性能要求。主要的鲁棒控制理论有: (1)Kharitonov区间理论; 控制理论; (2)H ∞ (3)结构奇异值理论μ理论。 下面就这三种理论做简单的介绍。 1 Kharitonov区间理论 1.1参数不确定性系统的研究概况 对参数不确定性系统的研究源于20世纪20年代。Black采用大回路增益的反馈控制技术来抑制真空管放大器中存在的严重不确定性,由于采用大回路增益,所以设计的系

鲁棒控制综述

鲁棒控制综述 课程目标 1.了解鲁棒控制研究的基本问题 2.掌握鲁棒控制的基础知识和基本概念 3.明确鲁棒控制问题及其形式化描述 4.掌握几种鲁棒稳定性分析与设计方法 5.掌握状态空间H∞控制理论 6.了解鲁棒控制系统的μ分析与μ综合方法 7.初步了解非线性系统鲁棒控制方法 8.掌握时滞系统的鲁棒控制稳定性分析 控制系统就是使控制对象按照预期目标运行的系统。 大部分的控制系统是基于反馈原理来进行设计的 反馈控制已经广泛地应用于工业控制、航空航天和经济管理等各个领域。 不确定性 在实际控制问题中,不确定性是普遍存在的 所描述的控制对象的模型化误差 可能来自外界扰动 因此,控制系统设计必须考虑不确定性带来的影响。 控制系统设计的任务 对于给定的控制对象和传感器,寻找一个控制器,使反馈控制系统能够在实际工作环境中按预期目标运行 ●实际控制对象就是具体的装置、设备或生产过程 ●通过各种建模方法,可以建立实际控制对象的模型 ●针对控制对象的模型,应用控制理论提供的设计方法设计出控制器,对实际控制对 象实施控制 ●控制系统的控制效果在很大程度上取决于实际控制对象模型的准确性 ●在控制系统设计中采用的模型与实际控制对象存在着一定的差异,即存在着模型不 确定性 ●控制系统的运行也受到周围环境和有关条件的制约 ●例如,在图1-1中,传感器噪声n和外部扰动d分别来自控制系统本身和控制系统 所处的环境,它们往往是一类未知的扰动信号 ●这种扰动不确定性对控制系统的运动将产生的影响 控制系统设计中需要考虑的不确定性 (1)来自控制对象的模型化误差; (2)来自控制系统本身和外部的扰动信号 ●需要一种能克服不确定性影响的控制系统设计理论 ●这就是鲁棒控制所要研究的课题 1.1.2 控制系统设计的基本要求 在控制系统设计中,往往把图1-1所示的反馈控制系统更一般化,考虑如图1-3所示的单位反馈控制系统,其中P是控制对象,C是控制器。

算 法 的 鲁 棒 性

[机器学习]Lasso,L1范数,及其鲁棒性 前言:本文包括以下几个方面,1. 介绍Lasso,从最初提出Lasso的论文出发,注重动机; 2. L1和L2范数的比较,注重L1的稀疏性及鲁棒性; 3. 从误差建模的角度理解L1范数 最早提出Lasso的文章,文献[1],已被引用n多次。 注:对于不晓得怎么翻译的英文,直接搬来。 1) 文献[1]的动机: 在监督学习中,ordinary least squares(OLS) estimates 最小化所有数据的平方残差(即只是让经验误差最小化),存在2个问题:1是预测误差(prediction accuracy):OLS estimates总是偏差小,方差大; 2是可解释性(interpretation):我们希望选出一些有代表性的子集就ok了。 【Lasso还有个缺点,ref8:当pn时,(如医学样本,基因和样本数目),Lasso却最多只能选择n个特征】 为了解决上面2个问题,2种技术应运而生: 1是subset selection:其可解释性强,但预测精度可能会很差; 2是岭回归(ridge regression):其比较稳定(毕竟是添加了正则化项,把经验风险升级为结构风险), 但可解释性差(只是让所有coefficients都很小,没让任何

coefficients等于0)。 看来这2种技术对于2大问题总是顾此失彼,Lasso就被提出啦!其英文全称是'least absolute shrinkage and selection operator' lasso的目的是:shrink? some coefficients and sets others to 0,保留subset selection可解释性强的优点和 ridge regression稳定性强的优点。 2)为什么Lasso相比ridge regression稀疏? 直观的理解[1] (plus a constant). (a)图:椭圆形是函数的图像,lasso的约束图像是菱形。 最优解是第一次椭圆线触碰到菱形的点。最优解容易出现在角落,如图所示,触碰点坐标是(0,c),等同于一个coefficient=0; (b)图:岭回归的约束图像是圆形。 因为圆形没有角落,所以椭圆线与圆形的第一次触碰很难是在坐标为(0,c)的点,也就不存在稀疏了。 2.? L1,L2范数误差的增长速度(ref2,ref3) L1范数误差的线性增长速度使其对大噪音不敏感,从而对不良作用形成一种抑制作用。 而L2范数误差的二次增长速度显著放大了大噪声负面作用。 3. 从误差建模的角度理解 1)孟德宇老师从误差建模的角度分析L1如何比L2鲁棒。(ref3) 1:看图1,由于L1范数的线性增长速度使其对大噪音不敏感,从而对

算 法 的 鲁 棒 性

【架构设计】【程序指标】鲁棒性与健壮性的细节区别 一、健壮性 健壮性是指软件对于规范要求以外的输入情况的处理能力。 所谓健壮的系统是指对于规范要求以外的输入能够判断出这个输入不符合规范要求,并能有合理的处理方式。 另外健壮性有时也和容错性,可移植性,正确性有交叉的地方。 比如,一个软件可以从错误的输入推断出正确合理的输入,这属于容错性量度标准,但是也可以认为这个软件是健壮的。 一个软件可以正确地运行在不同环境下,则认为软件可移植性高,也可以叫,软件在不同平台下是健壮的。 一个软件能够检测自己内部的设计或者编码错误,并得到正确的执行结果,这是软件的正确性标准,但是也可以说,软件有内部的保护机制,是模块级健壮的。 软件健壮性是一个比较模糊的概念,但是却是非常重要的软件外部量度标准。软件设计的健壮与否直接反应了分析设计和编码人员的水平。即所谓的高手写的程序不容易死。 (不是硅谷,印度才是全球软件精英向往之地) 为什么印度人的软件业在国际上要比中国的好,除了印度人母语是英语的原因外,更重要的是因为印度人严谨,他们的程序更有健壮性。印度的一个老程序员,月代码量在一千行左右,这一千行代码,算法平实,但都是经过仔细推敲,实战检验的代码,不会轻易崩溃的代码。我们的程序

员,一天就可以写出一千行代码,写的代码简短精干,算法非常有技巧性,但往往是不安全的,不完善的。印度人的程序被称作:傻壮。但程序就得这样。写一段功能性的代码,可能需要一百行代码,但是写一段健壮的程序,至少需要300行代码。例如:房贷计算器的代码,算法异常简单,十多行就完成了,但是,这段程序完全不具备健壮性,很简单,我的输入是不受限制的,这个程序要求从用户界面读取利率,年限,贷款额三个数据,一般同学的写法很简单,一句doubleNum = Double.parseDouble(JOptionPane.showInputDialog(null,"请输入"+StrChars)) ;就万事OK了。但是,真的有这么简单么,开玩笑,这么简单就好了,列举以下事例1,我输入了负数2,我的输入超出了double类型所能涵盖的范围3,我输入了标点符号4,我输入了中文5,我没输入6,我选择了取消或者点了右上角的关闭这一切都是有可能发生的事件,而且超出了你程序的处理范围,这种事情本不该发生,但是程序使用时,一切输入都是有可能的,怎么办,你只能在程序中限制输入。作为一个程序员,你如何让你的代码在执行的时候响应这些事件呢,我用了四十行代码编写了一个方法,用来限定我的输入只能为正实数,否则就报错,用户点击取消或者关闭按钮,则返回一个特殊数值,然后在主方法增加一个循环,在调用输入方法的时候检查返回值,如果为特殊值,就返回上层菜单或者关闭程序。 二、鲁棒性 鲁棒是Robust的音译,也就是健壮和强壮的意思。 鲁棒性(robustness)就是系统的健壮性。它是指一个程序中对可能

稳健性调查分析

附件:3-1-1 各项资产减值准备计提方法3-1-1-1 访谈记录

3-1-2-1 问卷调查反馈意见 1、公司是否按规定计提各项准备金(包括但不限于应收账款坏账准备、其他应收款坏账准备、存货跌价准备、固定资产减值准备、无形资产减值准备等)。资产减值准备的计提、冲销和转回所履行的审批程序,列示计提方法和比例变更情况,是否不存在利用资产减值准备调节利润的情形? 2、本年度全额计提坏账准备,或集体坏账准备的比例较大的(计提比例一般不超过40%及以上的),说明计提的比例以及理由? 3、以前年度已全额计提坏账准备,或计提坏账准备的比例较大的,但在本年度又全额或部分收回的,或通过重组等其他方式收回的,说明其原因、原估计计提比例的理由、以及原估计计提比例的合理性? 4、对某些金额较大的应收款项不计提,或计提比例较低(一般为5%或低于5%)时,请说明理由? 5、请说明本年度实际冲销的应收款项及其理由,对实际冲销的关联交易产生的应收款项是否已单独披露? 6、公司是否存在以应收债券融资或出售应收债权? 7、说明存货跌价准备的核算方法,是否按规定提取存货跌价准备。存货是否已分项列示期末余额?存货跌价准备是否已分项列示计提的存货跌价准备金额及其增减变动情况?是否已披露各类存货可变现净值的确定方法? 8、公司除应收账款外的金融资产和长期股权投资减值准备的的计提情况?

9、固定资产减值准备计提情况? 10、公司无形资产减值准备的情况?

附件:3-1-3 各项资产减值准备实际计提、冲销与转回明细 3-1-3-1 2015年1-11月各项资产减值准备实际计提、冲销与转回明细 单位:元

结构抗震的鲁棒性

第38卷第6期建 筑 结 构2008年6月 论结构抗震的鲁棒性 3 叶列平 1,2 , 程光煜 1,2 , 陆新征 1,2 , 冯 鹏 1,2 (1清华大学土木工程系;2结构工程与振动教育部重点实验室,北京100084) [摘要] 介绍了结构鲁棒性的概念及提高结构鲁棒性对避免结构在罕遇地震下垮塌的重要意义。分别从抗 震结构体系、结构承载力与延性、结构破坏模式以及赘余构件等几方面讨论了提高结构抗震鲁棒性的措施,给出了相应的设计建议。 [关键词] 结构抗震;鲁棒性;结构体系;整体性;破坏模式;结构承载力;结构延性;赘余构件 I ntroduction of robustness for seismic structures Y e Lieping 1,2 ,Cheng G uangyu 1,2 ,Lu X inzheng 1,2 ,Feng Peng 1,2 (1Civil Engineering C ollege ;2K ey Lab of S tructural Engineering and Vibration of China Education Ministry ,Tsinghua University ,Beijing 100084,China ) Abstract :The concept of robustness of structures and its importance for preventing collapse against strong earthquake are firstly introduced.Then the in fluence aspects to the robustness of seismic structures ,including structural systems ,failure m odes ,strength and ductility of structure ,and redundancy elements ,are discussed.The approaches to increase the robustness of seismic structures are suggested. K eyw ords :seismic structure ;robustness ;structure system ;integrity ;failure m ode ;strength ;ductility ;redundancy elements 3长江学者和创新团队发展计划资助。 作者简介:叶列平,工学博士,教授,博士生导师,Email :ylp @https://www.wendangku.net/doc/077838539.html, 。 1 结构鲁棒性的概念和意义 结构的鲁棒性(R obustness )是以避免结构垮塌为目标的整体结构安全性。目前常说的安全性是以结构构件不超过最大承载力为目标,即所谓的“承载力极限状态”来考虑的。由于目前各种结构设计规范对于结构安全性的具体计算,最终都是着落于具体的结构构件,这显然没有能够使得结构工程师更多地考虑整体结构的安全性,这是导致某些工程结构鲁棒性不够的重要原因,也是目前我国工程教育中所存在的一个重要缺失。因此,研究结构的鲁棒性,首先要从整体结构的安全性着手,使得结构工程师在满足每个具体构件安全性要求的前提下,更多地关注整体结构的安全性。 对于抗震结构来说,目前我国《建筑抗震设计规 范》(G B50011—2001)(简称《规范》)规定了“小震不坏、 中震可修、大震不倒”的抗震设防目标。虽然规范对保证结构实现“大震不倒”的抗震目标规定了一系列措施,但由于地震具有极大的随机性,未来遭遇超过抗震设防“罕遇地震”的可能性依然存在,同时对地震作用和结构抗震知识的认识至今还不充分。因此当遭遇规范规定的“大震”或超过规范规定的罕遇地震时,结构能否经受得住而不产生垮塌,需要结构具有较高的鲁棒性。这样的事例已在多次大地震中得到验证,如 1976年中国的唐山大地震、1994年日本的阪神大地震、1999年中国台湾的大地震,以及最近巴基斯坦发生的 大地震。在这些大地震中,一些建筑完全垮塌,而一些 建筑尽管产生一定程度的破坏,但没有倒塌。这些建筑中有些是依据同一抗震标准进行设计的,但由于结构鲁棒性的差别,在地震中表现出截然不同的结果。因此,只有在设计中充分考虑结构的鲁棒性,才能做到真正意义上的“大震不倒”。 抗震结构的鲁棒性所说的意外荷载和作用,是指可能超过设防烈度所规定的“大震”的强烈地震。当然,关于抗震结构鲁棒性的研究和提高结构鲁棒性的措施,对于提高结构在其它意外荷载和作用下的鲁棒性也具有参考意义。 关于结构鲁棒性的表达以及如何实现结构鲁棒性设计,目前还没有建立普遍可以接受的理论和方法,主要还是依靠工程经验,尤其是依靠结构工程师对结构整体性能的把握和判断。2 结构破坏的定义 鲁棒性是研究结构在意外荷载和作用下产生灾害性后果的破坏,如垮塌、连续破坏、倾覆等。根据现有的资料,对于抗震结构的破坏定义有以下几种: 1)以构件的破坏定义:结构中任一个构件的破坏即导致结构垮塌,如对于纯框支结构,框支柱的破坏即 1 1

鲁棒控制讲义-第1-2章

第一章概述 §1.1 不确定系统和鲁棒控制(Uncertain System and Robust Control) 1.1.1 名义系统和实际系统(nominal system) 控制系统设计过程中,常常要先获得被控制对象的数学模型。在建立数学模型的过程中,往往要忽略许多因素:比如对同步轨道卫星的姿态进行控制时不考虑轨道运动的影响,对一个振动系统的控制过程中,不考虑高阶模态的影响,等等。这样处理后得到的数学模型仍嫌太复杂,于是要经过降阶处理,有时还要把非线性环节进行线性化处理,时变参数进行定常化处理,最后得到一个适合控制系统设计使用的数学模型。经过以上处理后得到的数学模型已经不能完全描述原来的物理系统,而仅仅是原系统的一种近似,因此称这样的数学模型为“名义系统”,而称真实的物理系统为“实际系统”,而名义系统与实际系统的差别称为模型误差。 1.1.2不确定性和摄动(Uncertainty and Perturbation) 如立足于名义系统,可认为名义系统经摄动后,变成实际系统,这时模型误差可视为对名义系统的摄动。如果立足于实际系统,那么可视实际系统由两部分组成:即已知的模型和未知的模型(模型误差),如果模型的未知部分并非完全不知道,而是不确切地知道,比如只知道某种形式的界限(如:范数或模界限等),则称这部分模型为实际模型的不确定部分,也说实际系统中存在着不确定性,称含有不确定部分的系统为不确定系统。模型不确定性包括:参数、结构及干扰不确定性等。 1.1.3 不确定系统的控制 经典的控制系统设计方法要求有一个确定的数学模型(可能是常规的,也可能是统计的)。以往,由于对一般的控制系统要求不太高,所以系统中普遍存在的不确定性问题往往被忽略。事实上,对许多要求不高的系统,在名义系统的基础上进行分析与设计已经能够满足工程要求,而对一些精度和可靠性要求较高的系统,也只是在名义系统基础上进行分析和设计,然后考虑模型的误差,用仿真的方法来检验实际系统的性能(如稳定性、暂态性能等)。例如早期导弹控制系统设计时就是这样:首先按名义模型设计一个控制系统,然后反复调整设计参数,这样的结果是浪费了大量的人力物力;一种导弹从设计到定型要反复计算数百条弹道,对大小回路控制器参数要进行数十次调整,还要经过反复试射,这类参数的调整往往没有一个理论可以遵循,而依据设计者的经验。

简论结构抗震的鲁棒性

简论结构抗震的鲁棒性 叶列平1,2,程光煜1,2,陆新征1,2,冯鹏1,2 (1.清华大学土木工程系,北京,100084;2.结构工程与振动教育部重点实验室,北京,100084)建筑结构/Building Structures, 2008, 38(6): 11-15. 摘要:本文首先介绍了结构鲁棒性的概念,及其提高结构鲁棒性对避免结构在罕遇地震下垮塌的重要意义。然后,分别从抗震结构体系、结构承载力与延性、结构破坏模式,以及赘余构件等几方面讨论了提高结构抗震鲁棒性的措施。 关键词:结构抗震,鲁棒性,结构体系,整体性,破坏模式,结构承载力,结构延性,赘余构件Download PDF version Introduction of Robustness for Seismic Structures Ye Lieping, Cheng Guangyu, Lu Xinzheng, Feng Peng Abstract:The concept of robustness of structures is firstly introduced in this paper. And importance with enough robustness for seismic structures in preventing collapse of the structures under strong intensity earthquake attack is discussed. Then the approaches to increase the robustness of seismic structures, including structural systems, strength and ductility of structure, failure modes and redundancy, are suggested. Keywords: seismic structure; robustness; structural systems; integrity; failure mode; strength; ductility; redundancy elements. 1. 结构鲁棒性的概念和意义 工程结构设计通常需要满足安全性、适用性和耐久性的要求,这些都是在正常使用荷载和作用情况下结构所应具备的功能。而结构的鲁棒性(Robustness)是针对在意外荷载和作用情况下所应具备的一种功能,也即在意外荷载和作用情况下,结构不应产生与其原因不相称的垮塌,造成不可接受的重大人员伤亡和财产损失。 鲁棒性与安全性既有联系,又有区别。首先,两者关心的都是工程结构安全问题,但结构的鲁棒性是以避免结构垮塌为目标的,可以认为是结构安全性的上限。而目前通常所说的安全性是以结构的不超过最大承载力为目标的,即按所谓?quot;承载力极限状态"来考虑的安全性。事实上,结构达到最大承载力(极限状态)并不意味着结构的垮塌。另一方面,安全性是针对正常使用荷载和作用来考虑的,而鲁棒性是针对意外荷载和作用来考虑的,两者所考虑的荷载和作用的特征不同。正常荷载与作用在设计阶段能够给予

复杂网络拓扑结构的鲁棒性与动力学过程研究

复杂网络拓扑结构的鲁棒性与动力学过程研究近年来发展起来的复杂网络理论是研究复杂系统的一套有效方法。采用复杂网络理论,将现实生活中的复杂系统抽象为节点和边组成的网络,对这些网络的拓扑结构以及网络上的各种动力学过程的分析,极大地提高了人类对现实世界复杂性的认识,也因此复杂网络成为了国内外研究的热点。 网络拓扑结构决定网络功能,而网络功能则是由网络结构上的动力学过程实现的,因此网络结构影响动力学过程的行为。可见,对网络拓扑结构特征的研究,是复杂网络一切研究的基础所在。 当网络拓扑遭到破坏时,网络所能承担的功能会有所变化,功能变化越小的网络具有越高的鲁棒性。对鲁棒性的研究能够指导构建健壮的网络,因此具有重要现实意义。 此外,网络中的节点往往能够根据自身所处的条件,自适应地调整拓扑结构,以恰当地应对(促进或抑制)网络上的动力学过程对节点所产生的影响。网络拓扑结构自适应变化与网络上的动力学过程之间的相互影响被称为共同演化,如何精确地描述共同演化是近年来的研究难点所在。 本文针对复杂网络拓扑结构特征、鲁棒性以及动力学过程与网络结构的共同演化现象进行了研究。本文的创新点包括以下几个方面:(1)本文第三章对一种重要的表征拓扑结构特征的统计量——边介数及其性质进行研究。 基于生成函数理论,提出了服从任意度分布的随机网络中有限集团(即,有限大小的类树连通子图)内任意边的介数的期望值的解析表达式,并分别以泊松度分布和幂率度分布随机网络为例验证了该表达式。此外,发现了边介数与边所在有限集团的大小之间存在渐进的幂率关系。

以往欠缺对边介数的解析研究,而本文所提出的解析表达式填补了理论空白而且能够精确衡量任意边的负载程度及其发生拥塞的危险性。(2)本文第四章研究网络在遭受结构上的随机故障后,其结构和功能的变化。 解析地分析了随机网络在遭受随机边删除后,平均最短路径长度的变化,提出了较为精确的估计公式来刻画这种变化,还分别以泊松度分布、幂率度分布和指数度分布随机网络为例验证了所提公式。所提公式为研究各种随机网络的鲁棒性提供了一个通用的框架,对构建抗随机故障的网络结构具有重要指导意义。 (3)本文第五章研究有限大小网络上的一种共同演化现象:复杂网络上的病毒传播以及网络中节点为应对病毒传播而改变拓扑结构的自适应行为。提出了一种自适应SIS模型(简称ASIS模型),该模型以精确的马尔科夫过程刻画了有限大小网络上的此种共同演化现象,分析了该过程稳态时的行为,得到了平均亚稳态染病节点比例以及传播临界值的表达式。 此外,发现了传播临界值与拓扑结构自适应变化的速率之间具有线性关系,即拓扑结构自适应变化能够抑制病毒传播且抑制效果是线性的。通过计算机模拟实验研究发现,在病毒传播的网络上,节点的自适应行为使得网络拓扑变得具有同配性和社团结构,处于健康态的全部节点组成内部紧密连接的一个社团,而染病态的所有节点被孤立起来组成另一个社团,两社团之间连接松散。 在理论上,本文提出的精确描述有限大小网络上共同演化现象的方法,克服了传统的平均场近似法因为忽略拓扑结构等细节信息而产生的理论上的不严谨性;在实践上,本文的研究有助于更精确地理解网络中个体行为对病毒传播过程的影响,对于预测防治病毒传播有重要意义。

第七章 PID控制与鲁棒控制

第七章 PID 控制与鲁棒控制 7.1 引言 一、PID 控制概述 目前,基于PID 控制而发展起来的各类控制策略不下几十种,如经典的Ziegler-Nichols 算法和它的精调算法、预测PID 算法、最优PID 算法、控制PID 算法、增益裕量/相位裕量PID 设计、极点配置PID 算法、鲁棒PID 等。本节主要介绍PID 控制器的基本工作原理及几个典型设计方法。 1、三种控制规律 P 控制: p K G = ()∞↑?e K p ↓↓,但稳定性; I 控制: s T G i 1 = ; D 控制: ,s T G d =; 2、PID 的控制作用 (1) PD 控制: ()()() dt t du T K t u K t u d p p 112+= ()() ()s K K s T K s U s U G D p d p +=+== 112 PD 有助于增加系统的稳定性. PD 增加了一个零点D p K K z -=,提高了系统的阻尼,可改善暂态性能. (2) PI 控制:

()()()dt t u T K t u K t u t i p p ?+ =0 1 12 ()s K K s T K s G I p i p +=???? ??+=11 PI 提高了系统按稳态误差划分的型. (3)PID 控制 ()()()dt t du T K dt t u T K u K t u d p t i p p 10 112++ =? ()s K d K K s G D I p ++ = 7.2 PID 控制器及其参数的调整 一、PID 控制概述 1、PID 控制器的工作原理 下图为它的控制结构框图,典型PID 为滞后-超前校正装置。 由图可见,PID 控制器是通加对误差信号e(t)进行比例、积分和微分运算,其结果的加权,得到控制器的输出u(t),该值就是控制对象的控制值。PID 控制器的数学描述为:

鲁棒性

1鲁棒性的基本概念 “鲁棒”是一个音译词,其英文为robust ,意思是“强壮的”、“健壮的”。在控制理论中,鲁棒性表示当一个控制系统中的参数或外部环境发生变化(摄动)时,系统能否保持正常工作的一种特性或属性。 鲁棒概念可以描述为:假定对象的数学模型属于一集合,考察反馈系统的某些特性,如内部稳定性,给定一控制器K,如果集合中的每一个对象都能保持这种特性成立,则称该控制器对此特性是鲁棒的。因此谈及鲁棒性必有一个控制器、一个对象的集合和某些系统特性。 由于一个具有良好鲁棒性的控制系统能够保证,当控制参数发生变化(或在一定范围内发生了变化)时系统仍能具有良好的控制性能。因此,我们在设计控制器时就要考虑使得控制系统具有好的鲁棒性,即设计具有鲁棒性的控制器——鲁棒控制器。 所以,鲁棒控制就是设计这样一种控制器,它能保证控制对象在自身参数或外部环境在某种范围内发生变化时,仍能正常工作。这种控制器的特点是当上述变化发生时,控制器自身的结构和参数都不改变。 2 鲁棒控制系统 我们总是假设已经知道了受控对象的模型,但由于在实际问题中,系统特性或参数的变化常常是不可避免的,在实际中存在种种不确定因素,如: 1)参数变化; 2)未建模动态特性; 3)平衡点的变化; 4)传感器噪声; 5)不可预测的干扰输入; 等等。产生变化的原因主要有两个方面,一个是由于测量的不精确使特性或参数的实际值偏离它的设计值;另一个是系统运行过程中受环境因素的影响而引起特性或参数的缓慢变化。因此,如何使所设计的控制系统在系统参数发生摄动的情况下,仍具有期望的性能便成为控制理论中的一个重要研究课题。所以我们所建立的对象模型只能是实际物理系统的不精确的表示。鲁棒系统设计的目标就是要在模型不精确和存在其他变化因素的条件下,使系统仍能保持预期的性能。如果模型的变化和模型的不精确不影响系统的稳定性和其它动态性能,这样的系统我们称它为鲁棒控制系统。 2.1系统的不确定性 2.1.1参数不确定性 如二阶系统: ()[] +-∈++=a a a as s s G ,,1 1 2 可以代表带阻尼的弹簧装置,RLC 电路等。这种不确定性通常不会改变系统的结构和阶次。 2.2.2动态不确定性

非线性时变系统的稳定性和鲁棒性

外文资料翻译 非线性时变系统的:稳定性和鲁棒性 概要:我们这里所叙述的是采样数据模型预测控制的框架,使用连续时间模型, 但采样的实际状况以及为计算控制的状态,进行了在离散instants的时间。在此框架内可以解决一个非常大的一类系统,非线性,时变的,非完整。 如同在许多其他采样数据模型预测控制计划,barbalat的引理一个重要的角色,在证明的名义稳定的结果。这是争辩这泛barbalat的引理,形容这里,可以有也类似的的作用,在证明的鲁棒稳定性的结果,也允许以解决一个很一般类非线性,时 变的,非完整系统,受到的干扰。那个的可能性的框架内,以容纳间断的意见是必要 的实现名义的稳定性和鲁棒稳定性,例如一般类别的系统。 1 引言 许多模型预测控制(MPC)计划描述,在文献上使用连续时间的模型和样本状态 的在离散的instants 时间。见例如[3,7,9,13] ,也是[6] 。有许多好处,在考虑 连续时间模型。不过,任何可执行的模型预测控制计划只能措施,状态和解决的优化问题在离散instants的时间。 在所有的提述,引用上述情况, barbalat的引理,或修改它,是用来作为一个 重要步骤,以证明稳定的MPC的计划。( barbalat的引理是众所周知的和有力的工具,以推断的渐近稳定性的非线性系统,尤其是时间变系统,利用Lyapunov样的办法; 见例如[17]为讨论和应用)。显示模型预测控制的一项战略是稳定(在名义如此),这表明,如果某些设计参数(目标函数,码头设置等),方便的选定,然后价值函数是单调递减。然后,运用barbalat的引理,吸引力该轨迹的名义模型可以建立(i.e. x(t) →0 as t →∞).这种稳定的状态可以推断,一个很笼统的类非线性系统:包括时变 系统的,非完整系统,系统允许间断意见,等此外,如果值函数具有一定的连续性属性,然后Lyapunov稳定性(即轨迹停留任意接近的起源提供了足够的密切开始向原产地)

算 法 的 鲁 棒 性

算法模型好坏、评价标准、算法系统设计 算法模型好坏的评价通用标准: 1、解的精确性与最优性。基于正确性基础上。 2、计算复杂度,时间成本。 3、适应性。适应变化的输入和各种数据类型。 4、可移植性。 5、鲁棒性。健壮性。 鲁棒性(robustness)就是系统的健壮性。它是在异常和危险情况下系统生存的关键。比如说,计算机软件在输入错误、磁盘故障、网络过载或有意攻击情况下,能否不死机、不崩溃,就是该软件的鲁棒性。所谓“鲁棒性”,是指控制系统在一定(结构,大小)的参数摄动下,维持某些性能的特性。根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。 一个电子商务网站推荐系统设计与实现——硕士论文分析 一、应用场景 1、网站首页、新品推荐:采用item相似度策略推荐。目标:提供新颖商品。 2、商品详情、看过的还看过,看过的还买过:采用频繁项集挖掘推荐。目的:降低商品寻求成本,提高体验、促进购买。 3、网站购物车、买过的还买过:频繁项集挖掘。目的:提高客单

价。 4、网站会员中心、与用户浏览历史相关商品:item相似度。目的:提升复购率。 5、商品收藏栏、搜索栏、品牌栏、品类栏:item相似度。目的:获取用户更多反馈;帮助用户发现需求;完善内链结构,流畅页面跳转;完善品类之间内链结构,流畅跳转。 二、推荐系统核心问题 三个核心要素:用户、商品、推荐系统。 用户特征分析:行为特征、兴趣特征。 用户不同特征以不同形式存储在不同介质中:注册信息存储在关系型数据库、行为数据存储在web日志中。 开发时,需要将这些数据进行清理,然后转换到统一的用户偏好数据库中。 商品特征:基本特征、动态特征。 基本特征:品牌、品类、颜色、型号、尺寸、性别等。 动态特征:销量、库存、市场价格、浏览次数、加购物车次数等。 补充说明:如果商品不能直接说明用户的兴趣特征,比如电影、图书,则可以通过用户的标签系统进行推荐。 或者通过协同过滤算法进行推荐,因为协同过滤算法不需要依赖商品自身的特征属性。 用户和商品一般具有三种关系:这是推荐系统工作的依据。 用户--喜欢--商品--相似--商品:基于item的推荐系统思想。

相关文档