文档库 最新最全的文档下载
当前位置:文档库 › 大数据处理框架选型分析

大数据处理框架选型分析

大数据处理框架选型分析
大数据处理框架选型分析

大数据处理框架选型分析

前言

说起大数据处理,一切都起源于Google公司的经典论文:《MapReduce:Simplied Data Processing on Large Clusters》。在当时(2000年左右),由于网页数量急剧增加,Google公司内部平时要编写很多的程序来处理大量的原始数据:爬虫爬到的网页、网页请求日志;计算各种类型的派生数据:倒排索引、网页的各种图结构等等。这些计算在概念上很容易理解,但由于输入数据量很大,单机难以处理。所以需要利用分布式的方式完成计算,并且需要考虑如何进行并行计算、分配数据和处理失败等等问题。

针对这些复杂的问题,Google决定设计一套抽象模型来执行这些简单计算,并隐藏并发、容错、数据分布和均衡负载等方面的细节。受到Lisp和其它函数式编程语言map、reduce思想的启发,论文的作者意识到许多计算都涉及对每条数据执行map操作,得到一批中间key/value对,然后利用reduce操作合并那些key值相同的k-v对。这种模型能很容易实现大规模并行计算。

事实上,与很多人理解不同的是,MapReduce对大数据计算的最大贡献,其实并不是它名字直观显示的Map和Reduce思想(正如上文提到的,Map和Reduce思想在Lisp等函数式编程语言中很早就存在了),而是这个计算框架可以运行在一群廉价的PC机上。MapReduce的伟大之处在于给大众们普及了工业界对于大数据计算的理解:它提供了良好的横向扩展性和容错处理机制,至此大数据计算由集中式过渡至分布式。以前,想对更多的数据进行计算就要造更快的计算机,而现在只需要添加计算节点。

话说当年的Google有三宝:MapReduce、GFS和BigTable。但Google三宝虽好,寻常百姓想用却用不上,原因很简单:它们都不开源。于是Hadoop应运而生,初代Hadoop的MapReduce和

HDFS即为Google的MapReduce和GFS的开源实现(另一宝BigTable的开源实现是同样大名鼎鼎的HBase)。自此,大数据处理框架的历史大幕正式的缓缓拉开。

一、基础

1.大数据的定义

“大数据”一词的确切定义其实是很难给出的,因为不同的人(供应商、从业者、商业公司等)对它的理解也并不完全一致。通常来讲,大数据是:

- 大数据集

- 用于处理大数据集的某类技术

此处的“大数据集”是指一个数据集的数据量太大以至于无法使用传统工具或单机方式来处理和存储,而处理技术包括数据接入、数据持久化存储、数据计算和分析、数据展示(可视化)等等。

2.大数据的特征

大数据系统的基本需求与传统系统并没有本质上的不同。但大数据系统虽然具有海量的数据规模,但是对数据的接入和处理速度上也有较高的要求,而且在每个阶段都要对数据进行处理。这些特点还是为设计解决方案时提供了新的挑战。

在2001年,美国Gartner公司的Doug Laney首先提出了“3V”模型来描述大数据处理系统与传统数据处理系统的不同:

Volume

待处理数据的规模在很大程度决定了系统是否为大数据系统。大数据系统中的数据规模可能比传统处理系统中的数据集大几个数量级,这也为数据处理和存储带来了更多的挑战。由于数据处理和存储等工作超出了单台计算机所能达到的性能极限,所以大数据系统通常采用集群方式。集群方式更加考验资源的分配和协调,集群管理和任务分配算法变得越来越重要。

Velocity

大数据与其他数据系统另一个显著的差异体现在数据的“流动”速度。在大数据系统中,数据经常从多种数据源流入系统,并且以一种近实时的方式进行处理。数据被持续不断的接入、修改、处理和分析以便能够跟得上新数据的接入速度。由于近实时处理可以尽早的提供有价值的信息,目前很多商业公司更加青睐于实时处理系统而不是传统的批处理系统。

Variety

大数据系统的问题通常是其他系统所不具备的,因为它所处理的数据来源广泛。数据源可以是应用程序的日志信息,也可以是社交媒体的用户信息,甚至是物理设备传感器的采集数据。不论何种数据,大数据系统的目标都是在海量数据中寻找有用的数据。

3.大数据处理流程

那么大数据系统实际上是如何处理数据的呢?虽然不同公司的架构设计不尽相同,但我们可以总结出一个基本的流程。下面介绍的流程虽然不是适用于所有情况,但它们确实被广泛使用。大数据处理的基本流程是:

- 接入数据到系统中

- 将数据持久化到存储系统

- 计算和分析数据

- 展示结果(可视化)

4.大数据处理框架的定义

说完了大数据,我们来说说本文的重点——大数据处理框架。大数据处理框架负责对大数据系统中的数据进行计算。数据包括从持久存储中读取的数据或通过消息队列等方式接入到系统中的数据,而计算则是从数据中提取信息的过程。除了大数据处理框架,有些同学可能还听到过“大数据计算框架”、“大数据框架”,这些术语没有严格的区分,但基本可以理解为是一种东西,只不过是对“big data processing framework”不同的翻译(大数据框架是“big data framework”的翻译)。

还有一个名词是“大数据处理引擎”,那么这个“引擎”和我们说的“框架”又有什么关系呢?其实并没有区分他们的权威的定义,但一般来说,前者是实际负责处理操作的组件,而后者可以理解为用来完成同样工作的一系列组件。比如Apache Hadoop可以看做是以MapReduce为默认处理引擎的处理框架。

二、数据处理框架分类

不论是系统中存在的历史数据,还是持续不断接入系统中的实时数据,只要数据是可访问的,我们就可以对数据进行处理。按照对所处理的数据形式和得到结果的时效性分类,数据处理框架可以分为两类:

- 批处理系统

- 流处理系统

批处理是一种用来计算大规模数据集的方法。批处理的过程包括将任务分解为较小的任务,分别在集群中的每个计算机上进行计算,根据中间结果重新组合数据,然后计算和组合最终结果。当处理非常巨大的数据集时,批处理系统是最有效的。

典型的批处理系统就是Apache Hadoop。而流处理则对由连续不断的单条数据项组成的数据流进行操作,注重数据处理结果的时效性。典型的流处理系统有Apache Storm,Apache Samza。还有一种系统,同时具备批处理与流处理的能力,这种称为混合处理系统,比如Apache Spark,Apache Flink。接下来我们来详细介绍这三种处理系统。

三、批处理系统

批处理系统在大数据世界中有着悠久的历史。批处理系统主要操作大量的、静态的数据,并且等到全部处理完成后才能得到返回的结果。批处理系统中的数据集一般符合以下特征:

- 有限:数据集中的数据必须是有限的(无限的数据一批就处理不完了啊。连续不断的数据一般会使用流处理系统来进行处理,我们后面会讲到)

- 持久:批处理系统处理的数据一般存储在持久存储系统上(比如硬盘上、数据库中)

- 海量:极海量的数据通常只能使用批处理系统来处理。批处理系统在设计之初就充分的考虑了数据量巨大的问题,实际上批处理系统也是为此而生的。

由于批处理系统在处理海量的持久数据方面表现出色,所以它通常被用来处理历史数据,很多OLAP (在线分析处理)系统的底层计算框架就是使用的批处理系统。但是由于海量数据的处理需要耗费很多时间,所以批处理系统一般不适合用于对延时要求较高的场景。

Apache Hadoop

说起大数据处理框架,永远也绕不开Hadoop。Hadoop是首个在开源社区获得极大关注的大数据处理框架,在很长一段时间内,它几乎可以作为大数据技术的代名词。在2.0版本以后,Hadoop由以下组件组成:

- Hadoop分布式文件系统HDFS:HDFS是一种分布式文件系统,它具有很高的容错性,适合部署在廉价的机器集群上。HDFS能提供高吞吐量的数据访问,非常适合在大规模数据集上使用。它可以用于存储数据源,也可以存储计算的最终结果。

- 资源管理器YARN:YARN可以为上层应用提供统一的资源管理和调度,它可以管理服务器的资源(主要是CPU和内存),并负责调度作业的运行。在Hadoop中,它被设计用来管理MapReduce 的计算服务。但现在很多其他的大数据处理框架也可以将YARN作为资源管理器,比如Spark。

- MapReduce:即为Hadoop中默认的数据处理引擎,也是Google的MapReduce论文思想的开源实现。使用HDFS作为数据源,使用YARN进行资源管理。

从今天的眼光来看,MapReduce作为Hadoop默认的数据处理引擎,存在着很多的不足。比如:编程模型抽象程度较低,仅支持Map和Reduce两种操作,需要手工编写大量的代码;Map的中间结果需要写入磁盘,多个MR之间需要使用HDFS交换数据,因此不适合迭代计算(机器学习、图计算);任务的启动和调度开销较大等。随着更多高性能处理引擎的发展,目前在企业中使用MapReduce进行计算的应用已经呈下降趋势(HDFS及YARN仍然被广泛使用),但虽然如此,MapReduce作为最早的大数据处理引擎,仍然值得被我们铭记。

四、流处理系统

批处理系统好理解,那什么是流处理系统呢?小学的时候我们都做过这么一道数学题:一个水池有一个进水管和一个出水管,只打开进水管8个小时充满水,只打开出水管6个小时流光水,那么同时打开进水管和出水管,水池多长时间充满水?

好吧,这道题的答案是永远也充不满……因为出水管出水比较快嘛。流处理系统就相当于这个水池,把流进来的水(数据)进行加工,比如加盐让它变成盐水,然后再把加工过的水(数据)从出水管放出去。这样,数据就像水流一样永不停止,而且在水池中就被处理过了。所以,这种处理永不停止的接入数据的系统就叫做流处理系统。

流处理系统与批处理系统所处理的数据不同之处在于,流处理系统并不对已经存在的数据集进行操作,而是对从外部系统接入的的数据进行处理。流处理系统可以分为两种:

- 逐项处理:每次处理一条数据,是真正意义上的流处理。

- 微批处理:这种处理方式把一小段时间内的数据当作一个微批次,对这个微批次内的数据进行处理。不论是哪种处理方式,其实时性都要远远好于批处理系统。因此,流处理系统非常适合应用于对实时性要求较高的场景,比如日志分析,设备监控、网站实时流量变化等等。由于很多情况下,我们想要尽快看到计算结果,所以近些年流处理系统的应用越来越广泛。下面我们来了解两种流处理系统。Apache Storm

Apache Storm是一种侧重于低延迟的流处理框架,它可以处理海量的接入数据,以近实时方式处理数据。Storm延时可以达到亚秒级。Storm含有如下关键概念:

- Topology:Storm topology中封装了实时应用程序的逻辑。Storm topology类似于MapReduce 作业,但区别是MapReduce最终会完成,而topology则会一直运行(除非被强制停止)。Topology 是由spouts和bolts组成的DAG(有向无环图)。

- Stream:Stream是一种不断被接入Storm中的无界的数据序列。

- Spout:Spout是topology中Stream的源。Spout从外部数据源读取数据并接入到Strom系统中

- Bolt:Bolt用于Storm中的数据处理,它可以进行过滤、聚合、连接等操作。将不同的bolt连接组成完整的数据处理链条,最后一个bolt用来输出(到文件系统或数据库等)。

Storm的基本思想是使用spout拉取stream(数据),并使用bolt进行处理和输出。默认情况下Storm提供了“at least once”的保证,即每条数据被至少消费一次。当一些特殊情况(比如服务器故障等)发生时,可能会导致重复消费。为了实现“exactly once”(即有且仅有一次消费),Storm 引入了Trident。Trident可以将Storm的单条处理方式改变为微批处理方式,但同时也会对Storm 的处理能力产生一定的影响。

值得一提的是,一些国内的公司在Storm的基础上进行了改进,为推动流处理系统的发展做出了很大贡献。阿里巴巴的JStorm参考了Storm,并在网络IO、线程模型、资源调度及稳定性上做了改进。而华为的StreamCQL则为Storm提供了SQL查询语义。

Apache Samza

提到Apache Samza,就不得不提到当前最流行的大数据消息中间件:Apache Kafka。Apache Kafka 是一个分布式的消息中间件系统,具有高吞吐、低延时等特点,并且自带了容错机制。以下是Kafka 的关键概念:

- Broker:由于Kafka是分布式消息中间件,所以需要多个节点来存储数据。Broker即为Kafka集群中的单个节点。

- Topic:用于存储写入Kafka的数据流。如同它的字面含义——主题,不同主题的数据流最好写入不同的topic,方便后续的处理。

- Partition:每个topic都有1到多个partition,便于分散到不同的borker中。多个partition的数据合并在一起组成了topic完整的数据。

- Producer:消息的生产者,用来将消息写入到Kafka集群。

- Consumer:消息的消费者,用来读取Kafka中的消息并进行处理。

虽然Kafka被广泛应用于各种流处理系统做数据源,但Samza可以更好的发挥Kafka架构的优势。根据官网的解释,Samza由三个层次组成:

- 数据流层

- 执行层

- 处理层

支持三个层次的组件分别为:

- Kafka

- YARN

- Samza API

也就是说,Samza使用Kafka提供了数据流,使用YARN进行资源管理,自身仅提供了操作数据流的API。Samza对Kafka和YARN的依赖在很多方面上与MapReduce对HDFS和YARN的依赖相似。

如果已经拥有Hadoop集群和Kafka集群环境,那么使用Samza作为流处理系统无疑是一个非常好的选择。由于可以很方便的将处理过的数据再次写入Kafka,Samza尤其适合不同团队之间合作开发,处理不同阶段的多个数据流。

五、混合处理系统:

批处理和流处理

一些处理框架既可以进行批处理,也可以进行流处理。这些框架可以使用相同或相关的API处理历史和实时数据。当前主流的混合处理框架主要为Spark和Flink。

虽然专注于一种处理方式可能非常适合特定场景,但是混合框架为数据处理提供了通用的解决方案。Apache Spark

如果说如今大数据处理框架处于一个群星闪耀的年代,那Spark无疑就是所有星星中最闪亮的那一颗。Spark由加州大学伯克利分校AMP实验室开发,最初的设计受到了MapReduce思想的启发,但不同于MapReduce的是,Spark通过内存计算模型和执行优化大幅提高了对数据的处理能力(在不同情况下,速度可以达到MR的10-100倍,甚至更高)。相比于MapReduce,Spark具有如下优点:- 提供了内存计算模型RDD(Resilient Distributed Dataset,弹性分布式数据集),将数据读入内存中生成一个RDD,再对RDD进行计算。并且每次计算结果可以缓存在内存中,减少了磁盘IO。因此很适用于迭代计算。

- 不同于MapReduce的MR模型,Spark采用了DAG编程模型,将不同步骤的操作串联成一个有向无环图,可以有效减少任务间的数据传递,提高了性能。

- 提供了丰富的编程模型,可以轻松实现过滤、连接、聚合等操作,代码量相比MapReduce少到令人发指,因此可以提高开发人员的生产力。

- 支持Java、Scala、Python和R四种编程语言,为不同语言的使用者降低了学习成本。

而Spark的流处理能力,则是由Spark Streaming模块提供的。Spark在设计之初与MapReduce 一样是用于批处理系统,为了适应于流处理模式,Spark提出了微批次(Micro-Batch)的概念,即把一小段时间内的接入数据作为一个微批次来处理。这样做的优点是在设计Spark Streaming时可以很大程度上重用批处理模块(Spark Core)的代码,开发人员也不必学习两套编程模型。但缺点就是,与Storm等原生的流处理系统相比,Spark Streaming的延时会相对高一些。

除了最初开发用于批处理的Spark Core和用于流处理的Spark Streaming,Spark还提供了其他编程模型用于支持图计算(GraphX)、交互式查询(Spark SQL)和机器学习(MLlib)。

但Spark也不是没有缺点。在批处理领域,由于内存是比硬盘更昂贵的资源,所以Spark集群的成本比MapReduce集群更高。而在流处理领域,微批次的架构使得它的延时要比Storm等流处理系统略高。不过瑕不掩瑜,Spark依然是如今最炙手可热的数据处理框架。

Apache Flink

有趣的是,同样作为混合处理框架,Flink的思想与Spark是完全相反的:Spark把流拆分成若干个小批次来处理,而Flink把批处理任务当作有界的流来处理。其本质原因是,Spark最初是被设计用来进行批处理的,而Flink最初是被设计用来进行流处理的。这种流处理优先的方式叫做Kappa架构,与之相对的使用批处理优先的架构叫做Lambda架构。Kappa架构会使用处理流的方式处理一切,以此来简化编程模型。这一切是在最近流处理引擎逐渐成熟起来才有可能实现的。

Flink的流处理模型将逐项输入的数据作为真实的流处理。Flink提供了DataStream API用于处理无尽的数据流。Flink的基本组件包括:

- Stream:Stream是流过系统的不可变的、无界的数据集

- Operator:Operator用来操作数据流以产生新的数据流(stream)

- Source:Source是数据流(stream)进入系统的入口

- Sink:Sink是数据流(stream)流出Flink系统后的位置。它可能是数据库或到其他系统的连接器Flink的流处理思想与Storm类似,以source接入数据,通过不同的operator进行transformation,最后输出到sink。

Flink的提供了DataSet API用于批处理。Flink的批处理在很大程度上可以看作是流处理的一种扩展,它读取在持久存储系统上的数据,并把去除的数据集当成一个有边界的流来处理。

与Spark相同,Flink也提供了较为完整的数据处理方式。除了上面介绍的流处理(DataStream API)和批处理(DataSet API)之外,Flink还提供了类SQL查询(Table API)、图计算(Gelly)和机器学习库(Flink ML)。而令人惊讶的是,在很多性能测试中,Flink甚至略优于Spark。

在目前的数据处理框架领域,Flink可谓独树一帜。虽然Spark同样也提供了批处理和流处理的能力,但Spark流处理的微批次架构使其响应时间略长。Flink流处理优先的方式实现了低延迟、高吞吐和真正逐条处理。

同样,Flink也并不是完美的。Flink目前最大的缺点就是缺乏在大型公司实际生产项目中的成功应用案例。相对于Spark来讲,它还不够成熟,社区活跃度也没有Spark那么高。但假以时日,Flink必然会改变数据处理框架的格局。

六、大数据处理框架的选择

1.对于初学者

由于Apache Hadoop在大数据领域的广泛使用,因此仍推荐作为初学者学习数据处理框架的首选。虽然MapReduce因为性能原因以后的应用会越来越少,但是YARN和HDFS依然作为其他框架的基础组件被大量使用(比如HBase依赖于HDFS,YARN可以为Spark、Samza等框架提供资源管理)。学习Hadoop可以为以后的进阶打下基础。

Apache Spark在目前的企业应用中应该是当之无愧的王者。在批处理领域,虽然Spark与MapReduce的市场占有率不相上下,但Spark稳定上升,而MapReduce却稳定下降。而在流处理领域,Spark Streaming与另一大流处理系统Apache Storm共同占据了大部分市场(当然很多公司会使用内部研发的数据处理框架,但它们多数并不开源)。伯克利的正统出身、活跃的社区以及大量的商用案例都是Spark的优势。除了可用于批处理和流处理系统,Spark还支持交互式查询、图计算和机器学习。Spark在未来几年内仍然会是大数据处理的主流框架,推荐同学们认真学习。

另一个作为混合处理框架的Apache Flink则潜力无限,被称作“下一代数据处理框架”。虽然目前存在社区活跃度不够高、商用案例较少等情况,不过“是金子总会发光”,如果Flink能在商业应用上有突出表现,则可能挑战Spark的地位。

2.对于企业应用

如果企业中只需要批处理工作,并且对时间并不敏感,那么可以使用成本较其他解决方案更低的Hadoop集群。

如果企业仅进行流处理,并且对低延迟有着较高要求,Storm更加适合,如果对延迟不非常敏感,可以使用Spark Streaming。而如果企业内部已经存在Kafka和Hadoop集群,并且需要多团队合作开发(下游团队会使用上游团队处理过的数据作为数据源),那么Samza是一个很好的选择。

如果需要同时兼顾批处理与流处理任务,那么Spark是一个很好的选择。混合处理框架的另一个好处是,降低了开发人员的学习成本,从而为企业节约人力成本。Flink提供了真正的流处理能力并且同样具备批处理能力,但商用案例较少,对于初次尝试数据处理的企业来说,大规模使用Flink存在一定风险。

必知的大数据处理框架技术

这5种必知的大数据处理框架技术,你的项目应该使用哪种? 本文将介绍大数据系统一个最基本的组件:处理框架。处理框架负责对系统中的数据进行计算,例如处理从非易失存储中读取的数据,或处理刚刚摄入到系统中的数据。数据的计算则是指从大量单一数据点中提取信息和见解的过程。 作者:佚名来源:大数据杂谈|2016-11-30 13:37 收藏 分享 本文将介绍大数据系统一个最基本的组件:处理框架。处理框架负责对系统中的数据进行计算,例如处理从非易失存储中读取的数据,或处理刚刚摄入到系统中的数据。数据的计算则是指从大量单一数据点中提取信息和见解的过程。 下文将介绍这些框架: 仅批处理框架: Apache Hadoop 仅流处理框架: Apache Storm

Apache Samza 混合框架: Apache Spark Apache Flink 大数据处理框架是什么? 处理框架和处理引擎负责对数据系统中的数据进行计算。虽然“引擎”和“框架”之间的区别没有什么权威的定义,但大部分时候可以将前者定义为实际负责处理数据操作的组件,后者则可定义为承担类似作用的一系列组件。 例如Apache Hadoop可以看作一种以MapReduce作为默认处理引擎的处理框架。引擎和框架通常可以相互替换或同时使用。例如另一个框架Apache Spark可以纳入Hadoop并取代MapReduce。组件之间的这种互操作性是大数据系统灵活性如此之高的原因之一。 虽然负责处理生命周期内这一阶段数据的系统通常都很复杂,但从广义层面来看它们的目标是非常一致的:通过对数据执行操作提高理解能力,揭示出数据蕴含的模式,并针对复杂互动获得见解。 为了简化这些组件的讨论,我们会通过不同处理框架的设计意图,按照所处理的数据状态对其进行分类。一些系统可以用批处理方式处理数据,一些系统可以用流方式处理连续不断流入系统的数据。此外还有一些系统可以同时处理这两类数据。 在深入介绍不同实现的指标和结论之前,首先需要对不同处理类型的概念进行一个简单的介绍。 批处理系统 批处理在大数据世界有着悠久的历史。批处理主要操作大容量静态数据集,并在计算过程完成后返回结果。

大数据处理平台构架设计说明书

大数据处理平台及可视化架构设计说明书 版本:1.0 变更记录

目录 1 1. 文档介绍 (3) 1.1文档目的 (3) 1.2文档范围 (3) 1.3读者对象 (3) 1.4参考文献 (3) 1.5术语与缩写解释 (3) 2系统概述 (4) 3设计约束 (5) 4设计策略 (6) 5系统总体结构 (7) 5.1大数据集成分析平台系统架构设计 (7) 5.2可视化平台系统架构设计 (11) 6其它 (14) 6.1数据库设计 (14) 6.2系统管理 (14) 6.3日志管理 (14)

1 1. 文档介绍 1.1 文档目的 设计大数据集成分析平台,主要功能是多种数据库及文件数据;访问;采集;解析,清洗,ETL,同时可以编写模型支持后台统计分析算法。 设计数据可视化平台,应用于大数据的可视化和互动操作。 为此,根据“先进实用、稳定可靠”的原则设计本大数据处理平台及可视化平台。 1.2 文档范围 大数据的处理,包括ETL、分析、可视化、使用。 1.3 读者对象 管理人员、开发人员 1.4 参考文献 1.5 术语与缩写解释

2 系统概述 大数据集成分析平台,分为9个层次,主要功能是对多种数据库及网页等数据进行访采集、解析,清洗,整合、ETL,同时编写模型支持后台统计分析算法,提供可信的数据。 设计数据可视化平台 ,分为3个层次,在大数据集成分析平台的基础上实现大实现数据的可视化和互动操作。

3 设计约束 1.系统必须遵循国家软件开发的标准。 2.系统用java开发,采用开源的中间件。 3.系统必须稳定可靠,性能高,满足每天千万次的访问。 4.保证数据的成功抽取、转换、分析,实现高可信和高可用。

苏宁大数据平台任务调度模块架构设计

— 苏宁大数据离线任务开发调度平台实践:任务调度模块架构设计 2019-02-01 08:00:00 375 收藏 2 作为国内最大的电商平台之一,苏宁每天要处理数量巨大的数据。为了更快速高效地处理这 些数据,苏宁调度平台采取了哪些措施呢 本文是苏宁大数据离线任务开发调度平台实践系列文章之上篇,详解苏宁的任务调度模块。 目录 … 1.绪言\t1 2.设计目标与主要功能\t2 3.专业术语\t3 4.调度架构设计\t5 \ 5.服务重启和任务状态恢复\t6 Master Active 组合服务\t7 Master HA高可用设计\t7 Recover任务状态恢复设计\t7 API接口服务\t9 ~ 7.后续\t10 1.绪言 在上一篇文章《苏宁大数据离线任务开发调度平台实践》中,从用户交互功能、任务调度、 任务执行、任务运维和对外服务等几方面,宏观层面进行了理论和实践的概述。 产品的用户功能重点需要把握用户实际的任务开发运维需求,合理的规划设计产品功能,在 使用和运维上便于用户操作,降低用户的开发使用成本。简单的说就是主要保证用户任务、 任务流等关键元数据的配置信息的准确性,以及任务状态的查询和干预能力,技术上实现不 存在难点,在此不再详细说明。

任务执行模块侧重于任务被领取后,如何根据任务类型选择不同的执行器(Executer)提交任务执行,并将任务的执行状态及时准确的返回,由任务调度服务根据返回状态做相应的下一步处理,除此以外还涉及到任务资源加载、任务配置解析与转换、自身健康状态检查与汇报、worker进程与任务子进程通信、任务隔离、对外接口服务等,这块将在后面一节再跟大家详细分享。 【 任务运维模块主要关注平台的自身稳定性、健壮性等各个指标的监控与预警、平台任务执行异常的监控、任务运行诊断分析、动态扩缩容和应急降级等方面,涉及到的内容也很多,后续章节会陆续跟大家分享。 今天我们重点详细阐述苏宁大数据离线任务调度开发平台的核心模块—任务调度模块的架构设计以及开发实践过程中的关键功能点。 2.设计目标与主要功能 调度模块的核心目标要保证任务能够按照用户配置的调度时间、依赖关系准实时调度和执行,同时也允许用户根据实际需要随时启动和停止任务调度,调整任务执行计划。所谓准时实调度,指的是调度模块会按照各个上线的任务流的调度时间生成调度执行计划,当触发时间到了,平台会按照调度执行计划精确的生成任务流实例和任务实例。但是在任务执行上,并不保证准实时的分配机器执行。实际上平台以整体资源使用情况为最高原则,并按照一定的限流策略控制任务的执行,比如:任务优先级、任务组并发度、平台任务并发数、任务特定执行时间等因素。在保证平台资源允许的情况下,尽量按时执行任务。为了保障任务的实时性,必须保障任务资源的可用性和计划可控性。 # 调度模块的主要核心服务功能包括以下几点: 服务重启和任务状态恢复功能 在调度服务重启、主备切换后,系统状态以及任务运行状态能否准确的恢复。比如,主节点崩溃或维护期间,发生状态变更的任务在主节点恢复以后,能否正确更新状态等等。 Web API接口服务 用户通过Web控制后台管理作业,而Web控制后台与Master服务器之间的交互透过Rest 服务来执行,Rest服务也可以给Web控制后台以外的其它系统提供服务(用于支持外部系统和调度系统的对接)。另外为了便于监控和调查分析调度异常和问题,提供Master内存关键信息的查询和人工干预的接口能力。 ( 数据信息缓存服务 缓存上线任务流、任务、事件、系统配置、服务器的关键元数据信息,这些信息一般在任务流上线后不会经常发生变更,没必要实时从数据库中读取。并对外提供这些元数据信息的同步接口服务,保证缓存信息与数据库的一致性。 缓存任务流实例、任务实例、事件实例等中间状态信息,同时持久化到数据库中。便于在任

大数据分析及其在医疗领域中的应用-图文(精)

第7期 24 2014年4月10日 计算机教育 ComputerEducation ◆新视点 文章编号:1672.5913(2014)07—0024-06 中图分类号:G642 大数据分析及其在医疗领域中的应用 邹北骥 (中南大学信息科学与工程学院,湖南长沙410083) 摘要:互联网和物联网技术的快速发展给数据的上传与下载带来了前所未有的便利,使得互联网上 的数据量急剧增长,由此产生了针对大数据的存储、计算、分析、处理等新问题,尤其是对大数据的挖掘。文章分析当前大数据产生的背景,阐述大数据的基本特征及其应用,结合医疗领域,论述医疗 大数据分析的目的、意义和主要方法。 关键词:大数据;物联网;医疗;大数据挖掘 1 大数据早已存在,为何现在称之为大

数据时代 计算与数据是一对孪生姐妹,计算需要数据,数据通过计算产生新的价值。数据是客观事 物的定量表达,来自于客观世界并早已存在。例 如,半个世纪前,全球的人口数量就有数十亿,与之相关的数据就是大数据;但是在那个时代,由于技术的局限性,大数据的采集、存储和处理 还难以实现。 互联网时代之前,采集世界各地的数据并让它们快速地进入计算系统几乎是一件不可想象的 事情。20世纪80年代兴起的互联网技术在近30 年里发生了翻天覆地的变化,彻底地改变了人们的工作和生活方式【l】。通过互联网人们不仅可以下载到新闻、小说、论文等各类文字数据,而且可以轻而易举地下载到音乐、图像和视频等多媒体数据,这使得互联网上的数据流量急剧增长。据统计,现在互联网上每分钟流人流出的数 据量达到1 000 PB,即10亿 GBt21。 推动大数据产生的另一个重要因素是物联网技术。近几年发展起来的物联网技 术通过给每个物品贴上标签 并应用RFID等技术实现了

基于Spring Batch的大数据量并行处理

基于Spring Batch的?大数据量并?行处理 瑞友科技IT应?用研究院池建强 2012-12-08

About ME ?池建强,70后程序员,98年毕业,先后就职于洪恩软件、RocketSofeware和?用友集团-瑞友科技,现任瑞友科技IT应?用研究院副院?长 ?先后从事互联??网和企业应?用开发,??目前致?力于基础应?用平台的研究?热爱技术和编码?工作,坚持年轻时的理想,倒霉的乐观者?技术领域:Java、Python、Ruby、C/Objective-C、DDD、OSGi、App Platform ?Blog: https://www.wendangku.net/doc/0817234239.html,/ | Weibo: @池建强

?大数据量胜于优秀算法 ?如果数据?足够多,可能产?生出意想之外的应?用 ??无论算法好坏,更多的数据总能带了来更好的效果

处理海量数据的利器Concurrency & Parallelism

Erlang/Scala :Actor&Message Grand Central Dispatch :Block&Queue Go :goroutine GridGain :Compute Grid Hadoop :MapReduce Java7:ForkJoinPool Java6:ExecutorService Spring Batch

SpringSource与Accenture合作开发了Spring Batch Accenture在批处理架构上有着丰富的?工业级别的经验,SpringSource则有着深刻的技术认知和Spring框架编程模型 Accenture贡献了之前专?用的批处理体系框架,这些框架历经数?十年研发和使?用,为Spring Batch提供了?大量的参考经验 Spring Batch借鉴了JCL(Job Control Language)和COBOL的语?言特性

大数据处理框架选型分析

大数据处理框架选型分析

前言 说起大数据处理,一切都起源于Google公司的经典论文:《MapReduce:Simplied Data Processing on Large Clusters》。在当时(2000年左右),由于网页数量急剧增加,Google公司内部平时要编写很多的程序来处理大量的原始数据:爬虫爬到的网页、网页请求日志;计算各种类型的派生数据:倒排索引、网页的各种图结构等等。这些计算在概念上很容易理解,但由于输入数据量很大,单机难以处理。所以需要利用分布式的方式完成计算,并且需要考虑如何进行并行计算、分配数据和处理失败等等问题。 针对这些复杂的问题,Google决定设计一套抽象模型来执行这些简单计算,并隐藏并发、容错、数据分布和均衡负载等方面的细节。受到Lisp和其它函数式编程语言map、reduce思想的启发,论文的作者意识到许多计算都涉及对每条数据执行map操作,得到一批中间key/value对,然后利用reduce操作合并那些key值相同的k-v对。这种模型能很容易实现大规模并行计算。 事实上,与很多人理解不同的是,MapReduce对大数据计算的最大贡献,其实并不是它名字直观显示的Map和Reduce思想(正如上文提到的,Map和Reduce思想在Lisp等函数式编程语言中很早就存在了),而是这个计算框架可以运行在一群廉价的PC机上。MapReduce的伟大之处在于给大众们普及了工业界对于大数据计算的理解:它提供了良好的横向扩展性和容错处理机制,至此大数据计算由集中式过渡至分布式。以前,想对更多的数据进行计算就要造更快的计算机,而现在只需要添加计算节点。 话说当年的Google有三宝:MapReduce、GFS和BigTable。但Google三宝虽好,寻常百姓想用却用不上,原因很简单:它们都不开源。于是Hadoop应运而生,初代Hadoop的MapReduce和

大数据平台架构~巨衫

1.技术实现框架 1.1大数据平台架构 1.1.1大数据库是未来提升业务能力的关键要素 以“大数据”为主导的新一波信息化浪潮正席卷全球,成为全球围加速企业技术创新、推动政府职能转变、引领社会管理变革的利器。目前,大数据技术已经从技术研究步入落地实施阶段,数据资源成为未来业务的关键因素。通过采集和分析数据,我们可以获知事物背后的原因,优化生产/生活方式,预知未来的发展动态。 经过多年的信息化建设,省地税已经积累了丰富的数据资源,为下一步的优化业务、提升管理水平,奠定了坚实的基础。 未来的数据和业务应用趋势,大数据才能解决这些问题。 《1.巨杉软件SequoiaDB产品和案例介绍 v2》P12 “银行的大数据资产和应用“,说明税务数据和业务分析,需要用大数据解决。 《1.巨杉软件SequoiaDB产品和案例介绍 v2》P14 “大数据与传统数据处理”,说明处理模式的差异。 1.1.2大数据平台总体框架 大数据平台总体技术框架分为数据源层、数据接口层、平台架构层、分析工具层和业务应用层。如下图所示:

(此图要修改,北明) 数据源层:包括各业务系统、服务系统以及社会其它单位的结构化数据和非结构化数据; 数据接口层:是原始数据进入大数据库的入口,针对不同类型的数据,需要有针对性地开发接口,进行数据的缓冲、预处理等操作; 平台架构层:基于大数据系统存储各类数据,进行处理?; 分析工具层:提供各种数据分析工具,例如:建模工具、报表开发、数据分析、数据挖掘、可视化展现等工具; 业务应用层:根据应用领域和业务需求,建立分析模型,使用分析工具,发现获知事物背后的原因,预知未来的发展趋势,提出优化业务的方法。例如,寻找服务资源的最佳配置方案、发现业务流程中的短板进行优化等。 1.1.3大数据平台产品选型 针对业务需求,我们选择巨杉数据库作为大数据基础平台。

大数据技术架构解析

技术架构解析大数作者:匿名出处:论2016-01-22 20:46大数据数量庞大,格式多样化。大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。 一、大数据建设思路 1)数据的获得 大数据产生的根本原因在于感知式系统的广泛使用。随着技术的发展,人们已经有能力制造极其微小的带有处理功能的传感器,并开始将这些设备广泛的布置于社会的各个角落,通过这些设备来对整个社会的运转进行监控。这些设备会源源不断的产生新数据,这种数据的产生方式是自动的。因此在数据收集方面,要对来自网络包括物联网、社交网络和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。 2)数据的汇集和存储 数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类信息系统的数据交换和数据共享。数据存储要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。 3)数据的管理 大数据管理的技术也层出不穷。在众多技术中,有6种数据管理技术普遍被关注,即分布式存储与计算、内存数据库技术、列式数据库技术、云数据库、非关系型的数据库、移动数据库技术。其中分布式存储与计算受关注度最高。上图是一个图书数据管理系统。 4)数据的分析 数据分析处理:有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。大数据的处理类型很多,主要的处理模式可以分为流处理和批处理两种。批处理是先存储后处理,而流处理则是直接处理数据。挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。 5)大数据的价值:决策支持系统 大数据的神奇之处就是通过对过去和现在的数据进行分析,它能够精确预测未来;通过对组织内部的和外部的数据整合,它能够洞察事物之间的相关关系;通过对海量数据的挖掘,它能够代替人脑,承担起企业和社会管理的职责。 6)数据的使用 大数据有三层内涵:一是数据量巨大、来源多样和类型多样的数据集;二是新型的数据处理和分三是运用数据分析形成价值。大数据对科学研究、经济建设、社会发展和文化生活等各个领;析技术 域正在产生革命性的影响。大数据应用的关键,也是其必要条件,就在于?屔与经营的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。 二、大数据基本架构 基于上述大数据的特征,通过传统IT技术存储和处理大数据成本高昂。一个企业要大力发展大数据应用首先需要解决两个问题:一是低成本、快速地对海量、多类别的数据进行抽取和存储;二是使用新的技术对数据进行分析和挖掘,为企业创造价值。因此,大数据的存储和处理与云计算技术密不可分,在当前的技

大数据平台技术框架选型分析报告

大数据平台框架选型分析 一、需求 城市大数据平台,首先是作为一个数据管理平台,核心需求是数据的存和取,然后因为海量数据、多数据类型的信息需要有丰富的数据接入能力和数据标准化处理能力,有了技术能力就需要纵深挖掘附加价值更好的服务,如信息统计、分析挖掘、全文检索等,考虑到面向的客户对象有的是上层的应用集成商,所以要考虑灵活的数据接口服务来支撑。 二、平台产品业务流程

城市犬数据平台 載据集成敬據仓库平會骨理决彙支持 上曉应用集虎 三、选型思路 必要技术组件服务: ETL >非/关系数据仓储> 大数据处理引擎> 服务协调> 分析BI >平台监管 元蜀据扎卑—— socket 文件导入 DE cctiect ^eb^erv-ce 数据清洗 tT. 定制分析 统ii■分析、N 「定市牛外乱歡据海 权限扱边据接 口■ 生成领导仪表 fi —元花琳 标准[匕入嘩「

丹址“£ Ar Sa:城曲犬董拯选童实饕恿善 「 四、选型要求 1 ?需要满足我们平台的几大核心功能需求,子功能不设局限性。如不满足全部, 需要对未满足的其它核心功能的开放使用服务支持 2 ?国内外资料及社区尽量丰富,包括组件服务的成熟度流行度较高 3?需要对选型平台自身所包含的核心功能有较为深入的理解,易用其API或基于源码开发 4 ?商业服务性价比高,并有空间脱离第三方商业技术服务

5?—些非功能性需求的条件标准清晰,如承载的集群节点、处理数据量及安全机 制等 五、选型需要考虑 简单性:亲自试用大数据套件。这也就意味着:安装它,将它连接到你的Hadoop安装, 集成你的不同接口(文件、数据库、B2B等等),并最终建模、部署、执行一些大数据作业。 自己来了解使用大数据套件的容易程度一一仅让某个提供商的顾问来为你展示它是如何工作是远远不够的。亲自做一个概念验证。 广泛性:是否该大数据套件支持广泛使用的开源标准——不只是Hadoop和它的生态系统,还有通过SOAF和REST web服务的数据集成等等。它是否开源,并能根据你的特定问题易于改变或扩展?是否存在一个含有文档、论坛、博客和交流会的大社区? 特性:是否支持所有需要的特性?Hadoop的发行版本(如果你已经使用了某一个)? 你想要使用的Hadoop生态系统的所有部分?你想要集成的所有接口、技术、产品?请注意过多的特性可能会大大增加复杂性和费用。所以请查证你是否真正需要一个非常重量级的解决方案。是否你真的需要它的所有特性? 陷阱:请注意某些陷阱。某些大数据套件采用数据驱动的付费方式(“数据税”), 也就是说,你得为自己处理的每个数据行付费。因为我们是在谈论大数据,所以这会变得 非常昂贵。并不是所有的大数据套件都会生成本地Apache Hadoop代码,通常要在每个 Hadoop集群的服务器上安装一个私有引擎,而这样就会解除对于软件提供商的独立性。还要考虑你使用大数据套件真正想做的事情。某些解决方案仅支持将Hadoop用于ETL来填充 数据至数据仓库,而其他一些解决方案还提供了诸如后处理、转换或Hadoop集群上的大数 据分析。ETL仅是Apache Hadoop和其生态系统的一种使用情形。 六、方案分析

大数据处理技术参考架构

大数据处理技术参考架构 二〇一五年十二月

目录 1.背景 (1) 2.技术目标 (3) 3.技术要求 (3) 4.大数据处理业务场景 (4) 5.大数据处理技术对比 (6) 5.1. MPP与H ADOOP&S PARK技术对比 (6) 5.2. H ADOOP&S PARK技术优势 (9) 5.3. H ADOOP框架对比 (10) 5.4. H ADOOP使用情况 (11) 5.5. H ADOOP血缘关系 (12) 5.6. 行业大数据应用场景对比分析 (17) 6.大数据处理参考架构 (19) 6.1. 参考架构 (19) 6.2. 与J AVA EE体系对比 (21)

6.3. 参考架构运行状态 (21) 7.总结与思考 (22) 附录:名词解释 (25)

1.背景 随着大数据时代的到来,数据由海量拓展为多样,在注重计算速度的同时更加关注挖掘有价值的数据。以IOE体系为核心的数据计算和存储方式越来越不能满足目前大数据处理在性能和成本上的综合要求。为适应对大数据处理的要求,众多的分布式计算平台随之兴起,在对众多分布式计算平台进行权衡的同时,增强自主创新能力,以满足人民银行对信息技术安全可控的要求。 在核心应用自主研发、核心知识自主掌控的氛围下,保障大数据技术达到灵活可用的目标,确保数据和信息的有效、及时,确保信息系统的可靠、灵活。同时,充分的利用开源产品透明公开的关键信息,做到对技术细节的掌控和验证,开源产品的特点也更能够激发开发者的热情并推进技术的快速变革。 在“互联网+”的战略布局下,当利用信息通信技术把互联网和包括金融行业在内的相关行业结合起来时,能够更加合理和充分的利用大数据技术促进互联网金融的健康发展。当前互联网金融的格局中,由传统金融机构和非金融机构组成。传统金融机构的发展方向主要为传统金融业务的互联网创新以及电商化创新、手机APP服务等;非金融机构的发展方向则主要是指利用互联网技术进行金融运作的电子商务企业、P2P模式的网络借贷平台,众筹模式的网络投资平台或掌上理财服务,以及第三方支付平台等。在金融行业新兴业态下,为促进互联网金融的健康发展,为全面提升互联网金融服务能力和普惠水平,为有效防范互联网金融风险及其外溢效应而提供技术支撑。 在金融领域,新生业态层出不穷,金融机构日益多样化,金融资产的流动性

车联网大数据平台架构设计

车联网大数据平台架构设计-软硬件选型 1.软件选型建议 数据传输 处理并发链接的传统方式为:为每个链接创建一个线程并由该线程负责所有的数据处理业务逻辑。这种方式的好处在于代码简单明了,逻辑清晰。而由于操作系统的限制,每台服务器可以处理的线程数是有限的,因为线程对CPU的处理器的竞争将使系统整体性能下降。随着线程数变大,系统处理延时逐渐变大。此外,当某链接中没有数据传输时,线程不会被释放,浪费系统资源。为解决上述问题,可使用基于NIO的技术。 Netty Netty是当下最为流行的Java NIO框架。Netty框架中使用了两组线程:selectors与workers。其中Selectors专门负责client端(列车车载设备)链接的建立并轮询监听哪个链接有数据传输的请求。针对某链接的数据传输请求,相关selector会任意挑选一个闲置的worker线程处理该请求。处理结束后,worker自动将状态置回‘空闲’以便再次被调用。两组线程的最大线程数均需根据服务器CPU处理器核数进行配置。另外,netty内置了大量worker 功能可以协助程序员轻松解决TCP粘包,二进制转消息等复杂问题。 IBM MessageSight MessageSight是IBM的一款软硬一体的商业产品。其极限处理能力可达百万client并发,每秒可进行千万次消息处理。 数据预处理 流式数据处理 对于流式数据的处理不能用传统的方式先持久化存储再读取分析,因为大量的磁盘IO操作将使数据处理时效性大打折扣。流式数据处理工具的基本原理为将数据切割成定长的窗口并对窗口内的数据在内存中快速完成处理。值得注意的是,数据分析的结论也可以被应用于流式数据处理的过程中,即可完成模式预判等功能还可以对数据分析的结论进行验证。 Storm Storm是被应用最为广泛的开源产品中,其允许用户自定义数据处理的工作流(Storm术语为Topology),并部署在Hadoop集群之上使之具备批量、交互式以及实时数据处理的能力。用户可使用任意变成语言定义工作流。 IBM Streams IBM的Streams产品是目前市面上性能最可靠的流式数据处理工具。不同于其他基于Java 的开源项目,Streams是用C++开发的,性能也远远高于其他流式数据处理的工具。另外IBM 还提供了各种数据处理算法插件,包括:曲线拟合、傅立叶变换、GPS距离等。 数据推送 为了实现推送技术,传统的技术是采用‘请求-响应式’轮询策略。轮询是在特定的的时间间隔(如每1秒),由浏览器对服务器发出请求,然后由服务器返回最新的数据给客户端的浏览器。这种传统的模式带来很明显的缺点,即浏览器需要不断的向服务器发出请求,然而HTTP request 的header是非常长的,里面包含的数据可能只是一个很小的值,这样会占用很多的带宽和服务器资源。

大数据技术架构解析

大数据数量庞大,格式多样化。大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。 一、大数据建设思路 1)数据的获得 大数据产生的根本原因在于感知式系统的广泛使用。随着技术的发展,人们已经有能力制造极其微小的带有处理功能的传感器,并开始将这些设备广泛的布置于社会的各个角落,通过这些设备来对整个社会的运转进行监控。这些设备会源源不断的产生新数据,这种数据的产生方式是自动的。因此在数据收集方面,要对来自网络包括物联网、社交网络和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。 2)数据的汇集和存储 数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类信息系统的数据交换和数据共享。数据存储要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。 3)数据的管理 大数据管理的技术也层出不穷。在众多技术中,有6种数据管理技术普遍被关注,即分布式存储与计算、内存数据库技术、列式数据库技术、云数据库、非关系型的数据库、移动数据库技术。其中分布式存储与计算受关注度最高。上图是一个图书数据管理系统。 4)数据的分析 数据分析处理:有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。大数据的处理类型很多,主要的处理模式可以分为流处理和批处理两种。批处理是先存储后处理,而流处理则是直接处理数据。挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。 5)大数据的价值:决策支持系统 大数据的神奇之处就是通过对过去和现在的数据进行分析,它能够精确预测未来;通过对组织内部的和外部的数据整合,它能够洞察事物之间的相关关系;通过对海量数据的挖掘,它能够代替人脑,承担起企业和社会管理的职责。 6)数据的使用 大数据有三层内涵:一是数据量巨大、来源多样和类型多样的数据集;二是新型的数据处理和分析技术;三是运用数据分析形成价值。大数据对科学研究、经济建设、社会发展和文化生活等各个领

课程名称大数据分析与应用

课程名称:大数据分析与应用 一、课程编码: 课内学时:32学分:2 二、适用学科专业:计算机专业硕士 三、先修课程:无 四、教学目标 通过本课程的课堂学习与应用案例,建立科学的大数据观,掌握大数据架构、大数据精准语义搜索、大数据语义分析挖掘、知识图谱等关键技术,熟练使用常用的大数据搜索挖掘与可视化工具,提升大数据的综合应用能力。 五、教学方式 课堂学习、研讨班与应用实践 六、主要内容及学时分配 1.科学的大数据观2学时 1.1.大数据的定义,科学发展渊源; 1.2.如何科学看待大数据? 1.3.如何把握大数据,分别从“知著”、“显微”、“晓义”三个层面阐述科学的大 数据观。 2.大数据技术平台与架构4学时 2.1云计算技术与开源平台搭建 2.2Hadoop、Spark等数据架构、计算范式与应用实践 3.机器学习与常用数据挖掘4学时 3.1常用机器学习算法:Bayes,SVM,最大熵、深度神经网络等; 3.2常用数据挖掘技术:关联规则挖掘、分类、聚类、奇异点分析。 4.大数据语义精准搜索4学时 4.1.通用搜索引擎与大数据垂直业务的矛盾; 4.2.大数据精准搜索的基本技术:快速增量在线倒排索引、结构化与非机构化数 据融合、大数据排序算法、语义关联、自动缓存与优化机制; 4.3.大数据精准搜索语法:邻近搜索、复合搜索、情感搜索、精准搜索; 4.4.JZSearch大数据精准搜索应用案例:国家电网、中国邮政搜索、国家标准搜 索、维吾尔语搜索、内网文档搜索、舆情搜索; 5.非结构化大数据语义挖掘10学时 5.1.语义理解基础:ICTCLAS与汉语分词 5.2.内容关键语义自动标引与词云自动生成; 5.3.大数据聚类; 5.4.大数据分类与信息过滤; 5.5.大数据去重、自动摘要; 5.6.情感分析与情绪计算;

大数据 技术架构解析

大数据技术架构解析 作者:匿名出处:论坛2016-01-22 20:46 大数据数量庞大,格式多样化。大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。 一、大数据建设思路 1)数据的获得 大数据产生的根本原因在于感知式系统的广泛使用。随着技术的发展,人们已经有能力制造极其微小的带有处理功能的传感器,并开始将这些设备广泛的布置于社会的各个角落,通过这些设备来对整个社会的运转进行监控。这些设备会源源不断的产生新数据,这种数据的产生方式是自动的。因此在数据收集方面,要对来自网络包括物联网、社交网络和机构信息系统的数据附上时空标志,去伪存

真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。 2)数据的汇集和存储 数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类信息系统的数据交换和数据共享。数据存储要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。 3)数据的管理

4)数据的分析

5)大数据的价值:决策支持系统

大数据的神奇之处就是通过对过去和现在的数据进行分析,它能够精确预测未来;通过对组织内部的和外部的数据整合,它能够洞察事物之间的相关关系;通过对海量数据的挖掘,它能够代替人脑,承担起企业和社会管理的职责。 6)数据的使用

大数据平台技术框架选型

大数据平台技术框架选 型 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

大数据平台框架选型分析 一、需求 城市大数据平台,首先是作为一个数据管理平台,核心需求是数据的存和取,然后因为海量数据、多数据类型的信息需要有丰富的数据接入能力和数据标准化处理能力,有了技术能力就需要纵深挖掘附加价值更好的服务,如信息统计、分析挖掘、全文检索等,考虑到面向的客户对象有的是上层的应用集成商,所以要考虑灵活的数据接口服务来支撑。 二、平台产品业务流程 三、选型思路 必要技术组件服务: ETL >非/关系数据仓储>大数据处理引擎>服务协调>分析BI >平台监管 四、选型要求 1.需要满足我们平台的几大核心功能需求,子功能不设局限性。如不满足全部,需要对未满足的其它核心功能的开放使用服务支持 2.国内外资料及社区尽量丰富,包括组件服务的成熟度流行度较高 3.需要对选型平台自身所包含的核心功能有较为深入的理解,易用其API或基于源码开发 4.商业服务性价比高,并有空间脱离第三方商业技术服务 5.一些非功能性需求的条件标准清晰,如承载的集群节点、处理数据量及安全机制等 五、选型需要考虑 简单性:亲自试用大数据套件。这也就意味着:安装它,将它连接到你的Hadoop安装,集成你的不同接口(文件、数据库、B2B等等),并最终建模、部署、执行一些大数据作业。自己来了解使用大数据套件的容易程度——仅让某个提供商的顾问来为你展示它是如何工作是远远不够的。亲自做一个概念验证。

广泛性:是否该大数据套件支持广泛使用的开源标准——不只是Hadoop和它的生态系统,还有通过SOAP和REST web服务的数据集成等等。它是否开源,并能根据你的特定问题易于改变或扩展是否存在一个含有文档、论坛、博客和交流会的大社区特性:是否支持所有需要的特性Hadoop的发行版本(如果你已经使用了某一个)你想要使用的Hadoop生态系统的所有部分你想要集成的所有接口、技术、产品请注意过多的特性可能会大大增加复杂性和费用。所以请查证你是否真正需要一个非常重量级的解决方案。是否你真的需要它的所有特性 陷阱:请注意某些陷阱。某些大数据套件采用数据驱动的付费方式(“数据税”),也就是说,你得为自己处理的每个数据行付费。因为我们是在谈论大数据,所以这会变得非常昂贵。并不是所有的大数据套件都会生成本地Apache Hadoop代码,通常要在每个Hadoop集群的服务器上安装一个私有引擎,而这样就会解除对于软件提供商的独立性。还要考虑你使用大数据套件真正想做的事情。某些解决方案仅支持将Hadoop用于ETL来填充数据至数据仓库,而其他一些解决方案还提供了诸如后处理、转换或Hadoop集群上的大数据分析。ETL仅是Apache Hadoop和其生态系统的一种使用情形。 六、方案分析

大数据架构的介绍及分析

大数据架构的介绍及分析 数据分析工作虽然隐藏在业务系统背后,但是具有非常重要的作用,数据分析的结果对决策、业务发展有着举足轻重的作用。随着大数据技术的发展,数据挖掘、数据探索等专有名词曝光度越来越高,但是在类似于Hadoop系列的大数据分析系统大行其道之前,数据分析工作已经经历了长足的发展,尤其是以BI 系统为主的数据分析,已经有了非常成熟和稳定的技术方案和生态系统,对于BI 系统来说,大概的架构图如下: 可以看到在BI系统里面,核心的模块是Cube,Cube是一个更高层的业务模型抽象,在Cube之上可以进行多种操作,例如上钻、下钻、切片等操作。大部分BI系统都基于关系型数据库,关系型数据库使用SQL语句进行操作,但是SQL 在多维操作和分析的表示能力上相对较弱,所以Cube有自己独有的查询语言MDX,MDX表达式具有更强的多维表现能力,所以以Cube为核心的分析系统基本占据着数据统计分析的半壁江山,大多数的数据库服务厂商直接提供了BI套装软件服务,轻易便可搭建出一套Olap分析系统。不过BI的问题也随着时间的推移逐渐显露出来: BI系统更多的以分析业务数据产生的密度高、价值高的结构化数据为主,对于非结构化和半结构化数据的处理非常乏力,例如图片,文本,音频的存储,分析。 由于数据仓库为结构化存储,在数据从其他系统进入数据仓库这个东西,我

们通常叫做ETL过程,ETL动作和业务进行了强绑定,通常需要一个专门的ETL团队去和业务做衔接,决定如何进行数据的清洗和转换。 随着异构数据源的增加,例如如果存在视频,文本,图片等数据源,要解析数据内容进入数据仓库,则需要非常复杂等ETL程序,从而导致ETL变得过于庞大和臃肿。 当数据量过大的时候,性能会成为瓶颈,在TB/PB级别的数据量上表现出明显的吃力。 数据库的范式等约束规则,着力于解决数据冗余的问题,是为了保障数据的一致性,但是对于数据仓库来说,我们并不需要对数据做修改和一致性的保障,原则上来说数据仓库的原始数据都是只读的,所以这些约束反而会成为影响性能的因素。 ETL动作对数据的预先假设和处理,导致机器学习部分获取到的数据为假设后的数据,因此效果不理想。例如如果需要使用数据仓库进行异常数据的挖掘,则在数据入库经过ETL的时候就需要明确定义需要提取的特征数据,否则无法结构化入库,然而大多数情况是需要基于异构数据才能提取出特征。 在一系列的问题下,以Hadoop体系为首的大数据分析平台逐渐表现出优异性,围绕Hadoop体系的生态圈也不断的变大,对于Hadoop系统来说,从根本上解决了传统数据仓库的瓶颈的问题,但是也带来一系列的问题:从数据仓库升级到大数据架构,是不具备平滑演进的,基本等于推翻重做。 大数据下的分布式存储强调数据的只读性质,所以类似于Hive,HDFS 这些存储方式都不支持update,HDFS的write操作也不支持并行,这些特性导致其具有一定的局限性。 基于大数据架构的数据分析平台侧重于从以下几个维度去解决传统数据仓库做数据分析面临的瓶颈: 分布式计算:分布式计算的思路是让多个节点并行计算,并且强调数据本地性,尽可能的减少数据的传输,例如Spark通过RDD的形式来表现数据的计算逻辑,可以在RDD上做一系列的优化,来减少数据的传输。

大数据框架整理

大数据框架整理 大数据离线部分 一、HDFS 1 : HDFS的架构部分及.工作原理 NameNode :负责管理元素据,将信息保存在内存中 DataNode :保存数据,以块的形式保存。启动后需要定时的向NameNode 发送心跳,报告自身存储的块信息 2: HDFS的上传过程 3: HDFS的下载 4: NameNode 的元数据安全机制 以记日志的形式将每一个操作写在磁盘的日志文件中,然后借助Seco ndary NameNode 的checkpoint 功能将fslmage 和日志进行合并。 重点:记住checkpoint 工作过程 5:如果服务器的磁盘坏了,如何挽救数据? 配置多个dfs. name node, name.dir 路径为本地磁盘路径和nfs网络磁盘路径。 6 : hdfs集群中,受到拓展瓶颈的是NameNode 还是Data node? 是NameNode ,因为DataNode 不够可以很方便的水平拓展,而工作的 NameNode 只有一个,他的存储能力完全取决于他的内存,所以。。。。, 但是其实NameNode —般不会成为瓶颈,因为一个块记录的元数据信息大小约为150B,如果每一个块大小为128M 的话,那么15G的NameNode 内存可以存储12PB 的数据。 7: data node 明明已启动,但是集群中的可用data node 列表中就是没有,怎么办?

NameNode 不认。 8:文件下载到window 中,为什么会报错? 默认使用操作系统的内核进行磁盘数据的写入,也就是需要一个win util的工具,而默认的安装包中不提供,所以需要编译源码或者设置为使用Java的进行磁盘写入。 9 : hadoop 的HA (高可用) 二、MapReduce 1: MapReduce 中,file in putformat -> map -> shuffle -> reduce 的过程 2 : Map Reduce 中,job提交的过程 3:自定义Javabean 作为数据,需要extends writableandCompareble 接口。 4 :自定义outputformat ,进行不同方向的处理。 5: MapReduce 的一些应用场景 1、排序并且求TOP One 和TOPN 2、求某个用户前几个月的总流量,并且选择出流量前几名的用户。 3、r educe 端的join 4、m ap 端join 5、求共同好友问题 三、hive 1 :什么是hive ? 一个将sql转化为MapReduce 程序的、单机版的、数据仓库工具。通过关系型数据库(mysql等)来记录表元数据信息。真正的数据在HDFS中。 Hive利用HDFS存储数据,利用MapReduce 查询分析数据

大数据平台技术框架选型资料

大数据平台技术框架选 型资料 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

大数据平台框架选型分析 一、需求 城市大数据平台,首先是作为一个数据管理平台,核心需求是数据的存和取,然后因为海量数据、多数据类型的信息需要有丰富的数据接入能力和数据标准化处理能力,有了技术能力就需要纵深挖掘附加价值更好的服务,如信息统计、分析挖掘、全文检索等,考虑到面向的客户对象有的是上层的应用集成商,所以要考虑灵活的数据接口服务来支撑。 二、平台产品业务流程 三、选型思路 必要技术组件服务: ETL >非/关系数据仓储>大数据处理引擎>服务协调>分析BI >平台监管 四、选型要求 1.需要满足我们平台的几大核心功能需求,子功能不设局限性。如不满足全部,需要对未满足的其它核心功能的开放使用服务支持 2.国内外资料及社区尽量丰富,包括组件服务的成熟度流行度较高 3.需要对选型平台自身所包含的核心功能有较为深入的理解,易用其API或基于源码开发 4.商业服务性价比高,并有空间脱离第三方商业技术服务 5.一些非功能性需求的条件标准清晰,如承载的集群节点、处理数据量及安全机制等 五、选型需要考虑

简单性:亲自试用大数据套件。这也就意味着:安装它,将它连接到你的Hadoop安装,集成你的不同接口(文件、数据库、B2B等等),并最终建模、部署、执行一些大数据作业。自己来了解使用大数据套件的容易程度——仅让某个提供商的顾问来为你展示它是如何工作是远远不够的。亲自做一个概念验证。 广泛性:是否该大数据套件支持广泛使用的开源标准——不只是Hadoop和它的生态系统,还有通过SOAP和REST web服务的数据集成等等。它是否开源,并能根据你的特定问题易于改变或扩展?是否存在一个含有文档、论坛、博客和交流会的大社区? 特性:是否支持所有需要的特性?Hadoop的发行版本(如果你已经使用了某一个)?你想要使用的Hadoop生态系统的所有部分?你想要集成的所有接口、技术、产品?请注意过多的特性可能会大大增加复杂性和费用。所以请查证你是否真正需要一个非常重量级的解决方案。是否你真的需要它的所有特性? 陷阱:请注意某些陷阱。某些大数据套件采用数据驱动的付费方式(“数据税”),也就是说,你得为自己处理的每个数据行付费。因为我们是在谈论大数据,所以这会变得非常昂贵。并不是所有的大数据套件都会生成本地Apache Hadoop代码,通常要在每个Hadoop集群的服务器上安装一个私有引擎,而这样就会解除对于软件提供商的独立性。还要考虑你使用大数据套件真正想做的事情。某些解决方案仅支持将Hadoop用于ETL来填充数据至数据仓库,而其他一些解决方案还提供了诸如后处理、转换或Hadoop集群上的大数据分析。ETL仅是Apache Hadoop和其生态系统的一种使用情形。 六、方案分析

相关文档
相关文档 最新文档