文档库 最新最全的文档下载
当前位置:文档库 › 《数学建模实验》

《数学建模实验》

《数学建模实验》
《数学建模实验》

《数学建模》上机作业

信科05-3

韩亚

0511010305

实验1 线性规划模型

一、实验名称:线性规划模型—设备的最优配备问题。

二、实验目的:掌握线性规划模型的建模方法,并能用数值算法或MATLAB 库函数求解。

三、实验题目:某商店拟制定某种商品7—12月的进货、售货计划,已知商店仓库最大容量为1500件,6月底已存货300件,年底的库存以不少于300件为宜,以后每月初进货一次,假设各月份该商品买进、售出单价如下表。

四、实验要求:

1、若每件每月的库存费用为0.5元,问各月进货、售货各为多少件,才能使净收益最多?建立数学模型。

2、利用相应的数值方法求解此问题的数学模型。

3、谈一谈你对这类线性规划问题的理解。

4、举一个简单的二维线性规划问题,并针对此问题将你所了解的线性规划的求解方法作出总结。

5、用软件lindo 或lingo 求解上述问题。(选做题)

6、编写单纯形算法的MATLAB 程序。(选做题) 五、实验内容:

解:设第i 个月进货xi 件,销售yi 件,则下半年总收益为销售收入减去进货费和仓库储存费之和,所以目标函数为:

12

11109871211109711109871211109875.232427252628252528262729)

2345(5.0)2345)300(6(5.07x x x x x x y y y y y y y y y y y x x x x x x z y ------+++++++++++++++++-=

整理后得:

900

24255.28275.2831255.25295.27295.31121110987121110987-------+++++=x x x x x x y y y y y y z

由于仓库的容量为1500件,每个月的库存量大于0,小于1500,所以有如下约束条件

1500

30001500

30001500

30001500

30001500300015003000111210119108978710119108978791089787897877877≤-+-+-+-+-++≤≤-+-+-+-++≤≤-+-+-++≤≤-+-++≤≤-++≤≤+≤y x y x y x y x y x x y x y x y x y x x y x y x y x x y x y x x y x x x

又有年底库存量不少于300则:

300300121112101191089787≥--+-+-+-+-++y y x y x y x y x y x x 化为抽象的线性规划模型为:

90024255.28275.2831255.25295.27295.31max 121110987121110987-------+++++=x x x x x x y y y y y y z ,

;12,,8,7;0,012003001200

3001200

300120030012003001200300121112101191089787111210119108978710119108978791089787897877877 =≥≥--+-+-+-+-+≤-+-+-+-+-+≤-≤-+-+-+-+≤-≤-+-+-+≤-≤-+-+≤-≤-+≤-≤≤-i y x y y x y x y x y x y x x y x y x y x y x y x x y x y x y x y x x y x y x y x x y x y x x y x x x ST

i i

线性规划目标函数的系数:

f = [31; 28.5; 27; 28.5;25;24;-31.5;-29;-27.5;-29;-25.5;-25]; 约束方程的系数及右端项: A=[1,0,0,0,0,0,0,0,0,0,0,0 1,1,0,0,0,0,-1,0,0,0,0,0 1,1,1,0,0,0,-1,-1,0,0,0,0 1,1,1,1,0,0,-1,-1,-1,0,0,0 1,1,1,1,1,0,-1,-1,-1,-1,0,0 1,1,1,1,1,1,-1,-1,-1,-1,-1,0 -1,0,0,0,0,0,0,0,0,0,0,0 -1,-1,0,0,0,0,1,0,0,0,0,0 -1,-1,-1,0,0,0,1,1,0,0,0,0 -1,-1,-1,-1,0,0,1,1,1,0,0,0 -1,-1,-1,-1,-1,0,1,1,1,1,0,0 -1,-1,-1,-1,-1,-1,1,1,1,1,1,0 -1,-1,-1,-1,-1,-1,1,1,1,1,1,1];

b=[1200;1200;1200;1200;1200;1200; 300; 300; 300; 300; 300; 300;0]; lb=zeros(12,1);

[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);

实验2 非线性规划模型

一、实验名称:非线性规划模型。

二、实验目的:掌握非线性规划模型的建模方法,并能用数值算法或MATLAB 库函数求解。

三、实验题目:某厂生产一种产品,其需求量)(1kg x 可用下式来估算:

3

.02

12098012600x p x +-=, 其中p 为产品单价(元/kg ),2x 为广告费(元),产品的生产成本w (元)由下式确定:

212150012.0x x x w ++=。

四、实验要求:

1、问该厂生产的产品、产品的单价、和广告费应为多少,方能使该厂获得的利润最多?建立数学模型。

2、利用相应的数值方法求解此问题的数学模型。

3、谈一谈你对这类这类规划问题的理解。

4、将你所了解的非线性规划的求解方法作出总结。 五、实验内容:

1、设在产品的单价为)kg /(元p ,广告费为元2x 的情况下,获得利润为p 则:

23.02

23.02

3

.02

1)2098012600(5)2098012600(0012.0)2098012600(x x p x p p x p w

p x p -+--+--+-=-=若

求利润最大,就相当于求模型中的p 的最大值: 2、利用matlab 的无约束优化问题的 建立函数myfun function f = myfun(x)

f=(12600-980*x(1)+20*x(2)^0.3)*(-1)*x(1)+0.0012*(12600-980*x(1)+20*x(2)^0.3)^2+5*(12600-980*x(1)+20*x(2)^0.3)+x(2); 用MATLAB 的库函数求解: fminsearch(@myfun,[100,300])

ans = 11.955 30.3846

myfun([11.0955 30.3846])

ans =

-7.0214e+003

所以定价为11元,广告费为:30.3元,最大收益为7021.元 3、此类规划属于无约束条件的非线性规划模型,

4、对于非线性问题的解法,如果是无约束条件的可以利用求导解法求出最优解,如果是有约束的并且是二维的可以利用图解法计算。此外也可以利用数学软件计算,但是在计算过程中对初始值的要求比较苛刻。

实验3 一阶常微分方程模型

一、实验名称:一阶常微分方程模型—人口模型与预测。

二、实验目的:掌握常微分方程模型的建模方法,并能用数值算法或MATLAB 库函数求解。

三、实验题目:下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),

1016540=N 万人,200000=m N 万人。

四、实验要求:

1、建立中国人口的指数增长模型,并用该模型进行预测,与实际人中数据进行比较。

2、建立中国人口的Logistic 模型,并用该模型进行预测,与实际人中数据进行比较。

3、在图1中标出中国人口的实际统计数据,并画出两种模型的预测曲线。

4、在图2中画出两种预测模型的误差比较图,并分别标出其误差(可以是平方误差)。 五、实验内容: 1、

指数增长模型:

建立中国人口的指数增长模型,并用该模型进行预测,与实际人中数据进行比较。 假设:在人口自然增长过程中,单位时间内人口的增长与人口总数成正比.

记时刻t 的人口数量为N(t),考虑t 到t t ?+时间内人口的增长量,根据Malthus 理论,有

t t rN t N t t N ?=-?+)()()(,

其中r 为比例系数,而增长量与t ?成正比.在上式中令0→?t ,有

rN dt

dN

=, 从而有Malthus 人口模型

???

?

?=>=,

)(,0,00N t N r rN dt dN

其中0N 为0t t =时的人口数. 容易求得此微分方程的解为

.)()(00t t r e N t N -=

用最小二乘法曲线拟合求出方程的系数 在控制窗口输入 x=1:17;

y=[101654,103008,104357,105851,107507,109300,111026,112704,114333,115823,117171,118517,119850,121121,122389,123626,124810];

输入曲线拟合命令cftool 进入Curve Fitting Tool 界面,出入控制命令cftool 进入curv fitting tool Xdata 选择x ,Ydata 选择y ;点击creat data set 再点击fitting 再type of setting 中选择Exponential 后,在下面窗口中选择y=a*exp(b*x);点OK 再回到Fitting 点击Apply 得到result

得到拟合的结果为: General model Exp1: f(x) = a*exp(b*x)

Coefficients (with 95% confidence bounds): a

=

1.022e+005

(1.016e+005, 1.029e+005)

b = 0.01303 (0.01243,

0.01363)

Goodness of fit: SSE: 6.193e+006 R-square: 0.9932 Adjusted R-square: 0.9927 RMSE: 642.5 exp(0.01303) ans =

1.0131

所以中国的人口年增长率1.31%

Logistic 模型

建立中国人口的Logistic 模型,并用该模型进行预测,与实际人中数据进行比较。 假设引入常数max N (简记为m N ),用来表示自然资源和环境条件下能容许的最大人口数量.

m N 亦称为环境的最大容量.

将Malthus 模型中的假设条件“人口自然增长率为常数”修正为人口自然增长率为

,0),)

(1(>-

r N t N r m

从而有如下模型

?????=????

?

?-=.

)(,)(100

N t N N t N r Ndt dN m 即

?????=???? ?

?-=.

)(,)(100

N t N N N t N r dt dN m 这个模型称为Logistic.其解为

)

(0011)(t t r m m

e N N N t N --???

? ??-+=

用最小二乘法曲线拟合求出方程的系数 在控制窗口输入 x=1:17;

y=[101654,103008,104357,105851,107507,109300,111026,112704,114333,115823,117171,11851

7,119850,121121,122389,123626,124810];

3.出入控制命令cftool进入curv fitting tool Xdata选择x,Ydata选择y;点击creat data set 再点击fitting 再type of setting 中选择Custom Equations点New Equation 选择Genreal Equations Equations函数选择y=a/(1+(a/b-1)*exp(-c*x)); 初始拟合值为:a=

4.00e+05,b=1.00e+05,c=1.00e-02(这非常关键,如果错误拟合结果会同真是结果相差很大,很大)如图:

点OK 再回到Fitting

点击Apply得到

result

General model:

f(x) =

a/(1+(a/b-1)*exp(-c*x

))

Coefficients (with

95% confidence

bounds):

a =

1.563e+005

(1.468e+005,

1.658e+005)

b = 1.012e+005 (1.008e+005, 1.015e+005)

c = 0.04842 (0.04047, 0.05637)

Goodness of fit:

SSE: 8.004e+005

R-square: 0.9991

Adjusted R-square: 0.999

RMSE: 239.1

拟合的图像为:

人口最大值为15.6亿,拟合的曲线同原数据差值为:239.1,并且有拟合图形可知,logistic 显然比指数拟合好的多

实验4 高阶常微分方程模型

一、实验名称:高阶常微分方程模型—饿狼追兔问题。

二、实验目的:掌握高阶常微分方程模型的建模方法,并能用解析解法或数值算法求解,会利用MATLAB描述解曲线的运动轨迹。

三、实验题目:现有一只兔子、一匹狼,兔子位于狼的正西100米处,假设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的巢穴跑,而狼在追兔子。已知兔子、狼是匀速跑且狼的速度是兔子的两倍。

四、实验要求:

1、建立狼的运动轨迹微分模型。

2、画出兔子与狼的运动轨迹图形。

3、用解析方法求解,问兔子能否安全回到巢穴?

解首先建立坐标系,兔子在O处,

狼在A处。由于狼要盯着兔子追,所以

狼行走的是一条曲线,且在同一时刻, 曲线上狼的位置与兔子的位置的连线为 曲线上该点处的切线。设狼的行走轨迹 是y=f(x),则有 1000x y ='=,1000x y == 又因狼的速度是兔子的两倍,所以

在相同时间内狼走的距离为兔子走的距离的两倍。假设在某一时刻,兔子跑到(0,h)处,而狼在(x,y)处,则有

()02x h y f x x h -?'

=?-??=?

? 整理得到下述模型

2()(100)0,(100)0

xf x f f ?''=??

'==?? 这属于可降阶的二阶微分方程,解得狼的行走轨迹

31

221200

()10303

f x x x =-+

因603

200

)0(>=

f ,所以兔子能够安全返回巢穴。 实验5 时间序列模型

一、实验名称:时间序列模型。

二、实验目的:掌握一元离散数据的时间序列模型的建模方法及模型误差的分析与比较。 三、实验题目:某一商场1—12月份的销售额(单位:万元)时间序列数据如下表所示。

四、实验要求:

1、取3=n ,用简单一次平均法预测下年一月份(第13月)的销售额。

2、取3=n ,用加权一次移动平均法(取1,2,3321===W W W )预测下年一月份(第13月)的销售额。

3、选择合适的MATLAB 库函数作预测。

4、对上面几种预测方法作误差的分析与比较。 五、实验内容: 解:1、用一次平均法

首先建立timesequ.m M文件,内容如下:

y=[49 53 55 59 50 51 52 52 51 52 53 59];

s=0;

for t=3:11

M(t)=(y(t)+y(t-2)+y(t-1))/3;

yp(t+1)=M(t);

ym(t+1)=y(t+1)-yp(t+1);

yy(t+1)=ym(t+1)^2;

s=s+yy(t+1);

end

M(12)=(y(11)+y(10)+y(12))/3;

yp(13)=M(12);

s=sqt(s/(12-3));

运行后可得第t期一次移动平均数M(t),第t+1期预测值yp(t+1)等所以有如下表:

.

(6667.543

5953523

12

1110)

1(1213万元)=++=++=

=y y y M y

为第13月份销售收入的预测值。 预测的标准误差为:

0015

.4)(2

1^

1

=--=

∑++n N y y

S t t

2、 用加权的一次平均法

先建立weight.m 文件:

y=[49 53 55 59 50 51 52 52 51 52 53 59]; s=0; for t=3:11

M(t)=(y(t)*3+y(t-2)*2+y(t-1))/6; yp(t+1)=M(t);

ym(t+1)=y(t+1)-yp(t+1); yy(t+1)=ym(t+1)^2; s=s+yy(t+1); end

M(12)=(y(11)*2+y(10)*1+y(12)*3)/6; yp(13)=M(12); s=sqrt(s/(12-3));

运行后可得 第t 期一次移动平均数M(t),第t+1期预测值yp(t+1)等 所以有如下表:

.

(55.83333

215935325213

3212

1110)

1(12^

13万元)=++?+?+?=++=

=y y y M y

为第13月份销售收入的预测值。 预测的标准误差为:

实验6 多元线性回归模型

一、实验名称:多元线性回归模型。

二、实验目的:掌握多元线性回归模型的建模方法,并会作统计分析与检验。 三、实验题目:设某公司生产的商品在市场一的销售价格为1x (元/件)、用于商品的广告费用为2x (万元)、销售量为y (万件)的连续12个月的统计数据如下表所示。 月份 销售价格1x 广告费用2x 销售量y 1 100 5.50 55 2 90 6.30 70 3 80 7.20 90 4 70 7.00 100 5

70

6.30

90

3.896

)(2

1^

1

=--=

∑++n

N y y

S t t

6 70 7.35 105

7 70 5.60 80

8 65 7.15 110

9 60 7.50 125 10 60 6.90 115 11 55 7.15 130 12

50

6.50

130

五、实验内容:

1、建立销售量y 关于销售价格1x 和广告费用2x 的多元线性回归模型。 解:建立的数学模型为:

其中y 为销售量, 1x 为销售价格,2x 为广告费用。 用matlab 中的函数regress 进行拟合. x1=[100 90 80 70 70 70 70 65 60 60 55 50];

x2=[5.50 6.30 7.20 7.00 6.30 7.35 5.60 7.15 7.50 6.90 7.15 6.50]; y=[55 70 90 100 90 105 80 110 125 115 130 130]; x=[ones(12,1),x1’,x2’]; [b,bint,r,rint,stats]=regress(y',x) b = 116.1568 -1.3079 11.2459 bint =

60.4045 171.9090 -1.6005 -1.0152 4.9472 17.5446 r = 7.7782 0.7027 -2.4973 -3.3269 -5.4548 -2.2630 -7.5826 -1.5532

2.9714 -0.2811 5.3681 6.1385 rint =

2.0370 1

3.5194 -10.1081 11.5136 -13.0085 8.0138 -1

4.9338 8.2799 -16.3810

5.4714 -13.3901 8.8641 -14.9658 -0.1995 -13.2859 10.1796 -7.9467 13.8894 -12.0498 11.4877 -5.1699 15.9060 -2.3733 14.6504 stats =

0.9606 109.5892 0.0000 27.6100 所以拟合的曲线模型为:

2111.24591.3079-116.1568x x y +=.

2、设第13个月将该商品的销售价格定为80元/件,广告费用为7万元,预计该商品的销售量将是多少?并对其作统计上的误差分析。 由:

90.2461

7

11.2459801.3079-116.1568?=?+?=y

所以预计销售量为90.2461万件。 3、利用MATLAB 画出回归曲线的图形。 当2x 取7时y 与1x 的函数图像为:

当1x 取80时y 与2x 的函数图像为:

数学建模实验答案-概率模型

数学建模实验答案-概率模型

实验10 概率模型(2学时) (第9章 概率模型) 1.(验证)报童的诀窍p302~304, 323(习题2) 关于每天报纸购进量的优化模型: 已知b 为每份报纸的购进价,a 为零售价,c 为退回价(a > b > c ),每天报纸的需求量为r 份的概率是f (r )(r =0,1,2,…)。 求每天购进量n 份,使日平均收入,即 1 ()[()()()]()()()n r r n G n a b r b c n r f r a b nf r ∞ ==+=----+ -∑∑ 达到最大。 视r 为连续变量,f (r )转化为概率密度函数p (r ),则所求n *满足 * ()n a b p r dr a c -= -? 已知b =, a =1, c =,r 服从均值μ=500(份),均方差σ=50(份)的正态分布。报童每天应购进多少份报纸才能使平均收入最高,这个最高收入是多少 [提示:normpdf, normcdf] 要求:

(1) 在同一图形窗口内绘制10 ()()n y n p r dr =?和2()a b y n a c -= -的图形,观察其交点。 [提示] 22 ()2()r p r μσ-- = ,0 ()()()n n p r dr p r dr p r dr -∞ -∞ =-?? ? ☆(1) 运行程序并给出结果: (2) 求方程0()n a b p r dr a c -= -?的根n *(四舍五入取整),并求G (n *)。

mu=500;sigma=50; a=1; b=; c=; r=n+1; while (a-b)*n*normpdf(r,mu,sigma)>1e-6 r=r+1; end r=n+1:r; G=sum((a-b)*n*normpdf(r,mu,sigma)); r=0:n; G=G+sum(((a-b)*r-(b-c)*(n-r)).*normpdf(r,mu,sigma)) ☆(2) 运行程序并给出结果: 2.(编程)轧钢中的浪费p307~310 设要轧制长l=的成品钢材,由粗轧设备等因素决定的粗轧冷却后钢材长度的均方差σ=,问这时钢材长度的均值m应调整到多少使浪费最少。 平均每得到一根成品材所需钢材的长度为 () () m J m P m = 其中, 2 2 () 2 ()(), () 2 x m l P m p x dx p xσ πσ - - ∞ == ? 求m使J(m)达到最小。 等价于求方程 () () z z z λ ? Φ =- 的根z*。 其中:

数学建模实验报告

数学建模实验报告

一、实验目的 1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握 数学建模分析和解决的基本过程。 2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新 能力,为今后从事科研工作打下初步的基础。 二、实验题目 (一)题目一 1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。设每个 乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直 到电梯中的乘客下完时,电梯需停次数的数学期望。 2、问题分析 (1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。所以选择采用计算机模拟的 方法,求得近似结果。 (2)通过增加试验次数,使近似解越来越接近真实情况。 3、模型建立 建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每 个乘客只会在某一层下,故没列只有一个1)。而每行中1的个数 代表在该楼层下的乘客的人数。 再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。 例如: 给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为: m = 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 c = 1 1 0 1 0 1 1 1 4、解决方法(MATLAB程序代码):

n=10;r=10;d=1000; a=0; for l=1:d m=full(sparse(randint(1,r,[1,n]),1:r,1,n,r)); c=zeros(n,1); for i=1:n for j=1:r if m(i,j)==1 c(j)=1; break; end continue; end end s=0; for x=1:n if c(x)==1 s=s+1; end continue; end a=a+s; end a/d 5、实验结果 ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。 (二)题目二 1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6 千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千 克,工人20名,可获利9万元.今工厂共有原料60千克,工人 150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何 安排生产计划,即两种饮料各生产多少使获利最大.进一步讨 论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 2、问题分析 (1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。 (2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换

数学建模实验报告

在下面的题目中选做100分的题目,给出详略得当的答案。 一.通过举例简要说明数学建模的一般过程或步骤。(15分) 答:建立数学模型的方法大致有两种,一种是实验归纳的方法,即根据测试或计算数据,按照一定的数据,按照一定的数学方法,归纳出系统的数学模型;另一种是理论分析的方法,具体步骤有五步(以人口模型 为例): 1、明确问题,提出合理简化的假设:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息 2、建立模型:据所做的假设以及事物之间的联系,构造各种量之间的关系。(查资料得出数学式子或算法)。 3、模型求解:利用数学方法来求解上一步所得到的数学问题,此时往往还要做出进一步的简化或假设。注意要尽量采用简单的数学公具。例如:马尔萨斯模型,洛杰斯蒂克模型 4、模型检验:根据预测与这些年来人口的调查得到的数目进行对比检验 5、模型的修正和最后应用:所建立的模型必须在实际应用中才能产生效益,根据预测模型,制定方针政策,以实现资源的合理利用和环境的保护。 二.把一张四条腿等长的正方形桌子放在稍微有些起伏的地面上,通常只有三只脚着地,然而 只需稍为转动一定角度,就可以使四只脚同时着地,即放稳了。(1) 请用数学模型来描述和证明这个实际问题; (2)讨论当桌子是长方形时,又该如何描述和证明?(15分) 答: 模型假设: 1.椅子四条腿一样长,椅脚与地面的接触部分相对椅子所占的地面面积可视为一个点。 2.地面凹突破面世连续变化的,沿任何方向都不会出现间断(没有向台阶那样的情况),即地面可看作数学上的连续曲面。 3.相对椅脚的间距和椅子腿的长度而言,地面是相对平坦的,即使椅子在任何位置至少有三条腿同时着地。4.椅子四脚连线所构成的四边形是圆内接四边形,即椅子四脚共圆。 5.挪动仅只是旋转。 我们将椅子这两对腿的交点作为坐标原点,建立坐标系,开始时AC、BD这两对腿都在坐标轴上。将AC和BD这两条腿逆时针旋转角度θ。记AC到地面的距离之和为f(θ)。记BD到 地面的距离之和为g(θ)。易得f(θ),g(θ)至少有一个为零。

数学建模实验答案初等模型

实验02 初等模型(4学时) (第2章初等模型) 1.(编程)光盘的数据容量p23~27 表1 3种光盘的基本数据 CAV光盘:恒定角速度的光盘。 CLV光盘:恒定线速度的光盘。 R2=58 mm, R1=22.5 mm,d, ρ见表1。

CLV光盘的信息总长度(mm) L CLV 22 21 () R R d π- ≈ CLV光盘的信息容量(MB) C CLV = ρL CLV / (10^6) CLV光盘的影像时间(min) T CLV = C CLV / (0.62×60) CAV光盘的信息总长度(mm) L CAV 2 2 2 R d π≈ CAV光盘的信息容量(MB) C CAV = ρL CAV / (10^6) CAV光盘的影像时间(min ) T CAV = C CAV / (0.62×60) 1.1(验证、编程)模型求解 要求: ①(验证)分别计算出LCLV, CCLV和TCLV三个3行1列的列向量,仍后输出结果,并与P26的表2(教材)比较。 程序如下:

②(编程)对于LCAV, CCAV和TCAV,编写类似①的程序,并运行,结果与P26的表3(教材)比较。 ★要求①的程序的运行结果: ★要求②的程序及其运行结果:

1.2(编程)结果分析 信道长度LCLV 的精确计算:21 2R CLV R L d π=? 模型给出的是近似值:2221() CLV R R L L d π-= ≈ 相对误差为:CLV L L L δ-= 要求:

①取R2=58 mm, R1=22.5 mm,d, ρ见表1(题1)。 分别计算出LCLV, L和delta三个3行1列的列向量,仍后将它组合起来输出一个3行3列的结果。 ②结果与P26的表2和P27(教材)的结果比较。 [提示] 定积分计算用quad、quadl或trapz函数,注意要分别取d的元素来计算。要用数组d参与计算,可用quadv(用help查看其用法)。 ★编写的程序和运行结果: 程序:

数学建模作业——实验1

数学建模作业——实验1 学院:软件学院 姓名: 学号: 班级:软件工程2015级 GCT班 邮箱: 电话: 日期:2016年5月10日

基本实验 1.椅子放平问题 依照1.2.1节中的“椅子问题”的方法,将假设中的“四腿长相同并且四脚连线呈正方形”,改为“四腿长相同并且四脚连线呈长方形”,其余假设不变,问椅子还能放平吗?如果能,请证明;如果不能,请举出相应的例子。 答:能放平,证明如下: 如上图,以椅子的中心点建立坐标,O为原点,A、B、C、D为椅子四脚的初始位置,通过旋转椅子到A’、B’、C’、D’,旋转的角度为α,记A、B两脚,C、D两脚距离地面的距离为f(α)和g(α),由于椅子的四脚在任何位置至少有3脚着地,且f(α)、g(α)是α的连续函数,则f(α)和g(α)至少有一个的值为0,即f(α)g(α)=0,f(α)≥ 0,g(α)≥0,若f(0)>0,g(0)=0,

则一定存在α’∈(0,π),使得 f(α’)=g(α’)=0 令α=π(即椅子旋转180°,AB 边与CD 边互换),则 f(π)=0,g(π)>0 定义h(α)=f(α)-g(α),得到 h(0)=f(0)-g(0)>0 h(π)=f(π)-g(π)<0 根据连续函数的零点定理,则存在α’∈(0,π),使得 h(α’)=f(α’)-g(α’)=0 结合条件f(α’)g(α’)=0,从而得到 f(α’)=g(α’)=0,即四脚着地,椅子放平。 2. 过河问题 依照1.2.2节中的“商人安全过河”的方法,完成下面的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米之一,而当人不在场时,猫要吃鸡、鸡要吃米,试设计一个安全过河的方案,并使渡河的次数尽量的少。 答:用i =1,2,3,4分别代表人,猫,鸡,米。1=i x 在此岸,0=i x 在对岸,()4321,,,x x x x s =此岸状态,()43211,1,1,1x x x x D ----=对岸状态。安全状态集合为 :

数学建模实验

数学建模课程实验报告 专题实验7 班级数财系1班学号2011040123 丛文 实验题目常微分方程数值解 实验目的 1.掌握用MATLAB求微分方程初值问题数值解的方法; 2.通过实例学习微分方程模型解决简化的实际问题; 3.了解欧拉方法和龙格库塔方法的基本思想。 实验容 (包括分 析过程、 方法、和 代码,结 果) 1. 用欧拉方法和龙格库塔方法求下列微分方程初值问题的数值 解,画出解的图形,对结果进行分析比较 解;M文件 function f=f(x,y) f=y+2*x; 程序; clc;clear; a=0;b=1; %求解区间 [x1,y_r]=ode45('f',[a b],1); %调用龙格库塔求解函数求解数值 解; %% 以下利用Euler方法求解 y(1)=1;N=100;h=(b-a)/N; x=a:h:b;

for i=1:N y(i+1)=y(i)+h*f(x(i),y(i)); end figure(1) plot(x1,y_r,'r*',x,y,'b+',x,3*exp(x)-2*x-2,'k-');%数值解与真解图 title('数值解与真解图'); legend('RK4','Euler','真解'); xlabel('x');ylabel('y'); figure(2)

plot(x1,abs(y_r-(3*exp(x1)-2*x1-2)),'k-');%龙格库塔方法的误差 title('龙格库塔方法的误差') xlabel('x');ylabel('Error'); figure(3) plot(x,abs(y-(3*exp(x)-2*x-2)),'r-')%Euler方法的误差 title('Euler方法的误差') xlabel('x');ylabel('Error');

数学建模与数学实验习题

数学建模与数学实验课程总结与练习内容总结 第一章 1.简述数学建模的一般步骤。 2.简述数学建模的分类方法。 3.简述数学模型与建模过程的特点。 第二章 4.抢渡长江模型的前3问。 5.补充的输油管道优化设计。 6.非线性方程(组)求近似根方法。 第三章 7.层次结构模型的构造。 8.成对比较矩阵的一致性分析。 第五章 9.曲线拟合法与最小二乘法。 10 分段插值法。 第六章 11 指数模型及LOGISTIC模型的求解与性质。 12.VOLTERRA模型在相平面上求解及周期平均值。 13 差分方程(组)的平衡点及稳定性。 14 一阶差分方程求解。 15 养老保险模型。

16 金融公司支付基金的流动。 17 LESLLIE 模型。 18 泛函极值的欧拉方法。 19 最短路问题的邻接矩阵。 20 最优化问题的一般数学描述。 21 马尔科夫过程的平衡点。 22 零件的预防性更换。 练习集锦 1. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 31/52a b P c d e f ?? ??=?????? ,(1)确定矩阵P 的未知元素。 (2)求 P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.58)。 2. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受。 3.考虑下表数据

(1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 4.. 考虑微分方程 (0.2)0.0001(0.4)0.00001dx x xy dt dy y xy dt εε?=--????=-++?? (1)在像平面上解此微分方程组。(2)计算0ε=时的周期平均值。(3)计算0.1ε=时,y 的周期平均值占总量的周期平均值的比例增加了多少? 5考虑种群增长模型 '()(1/1000),(0)200x t kx x x =-= (1)求种群量增长最快的时刻。(2)根据下表数据估计参数k 值。 6. 布均匀,若环保部门及时发现并从某时刻起切断污染源,并更新湖水(此处更新指用新鲜水替换污染水),设湖水更新速率是 3 (m r s 单位:)。 (1) 试建立湖中污染物浓度随时间下降的数学模型? 求出污染物浓度降为控制前的5%所需要的时间。 7. 假如保险公司请你帮他们设计一个险种:35岁起保,每月交费400元,60岁开始领取养老金,每月养老金标准为3600元,请估算该保险费月利率为多少(保留到小数点后5位)? 8. 某校共有学生40000人,平时均在学生食堂就餐。该校共有,,A B C 3 个学生食堂。经过近一年的统计观测发现:A 食堂分别有10%,25%的学生经常去B ,C 食堂就餐,B 食堂经常分别有15%,25%的同学去

数学建模与实验

? 1.1.3 初识MATLAB 例1-1 绘制正弦曲线和余弦曲线。 x=[0:0.5:360]*pi/180; plot(x,sin(x),x,cos(x)); ?例1-2 求方程 3x4+7x3 +9x2-23=0的全部根。 p=[3,7,9,0,-23]; %建立多项式系数向量 x=roots(p) %求根 ?例1-3 求积分 quad('x.*log(1+x)',0,1) ?例1-4 求解线性方程组。 a=[2,-3,1;8,3,2;45,1,-9]; b=[4;2;17]; x=inv(a)*b ? 1.2.1 MATLAB的运行环境 硬件环境: (1) CPU (2) 内存 (3) 硬盘 (4) CD-ROM驱动器和鼠标。 软件环境: (1) Windows 98/NT/2000 或Windows XP (2) 其他软件根据需要选用 ? 1.3.1 启动与退出MATLAB集成环境 1.MATLAB系统的启动 与一般的Windows程序一样,启动MATLAB系统有3种常见方法: (1)使用Windows“开始”菜单。 (2)运行MATLAB系统启动程序matlab.exe。 (3) 利用快捷方式。 ?启动MATLAB后,将进入MATLAB 6.5集成环境。MATLAB 6.5集成环境包括MATLAB 主窗口、命令窗口(Command Window)、工作空间窗口(Workspace)、命令历史窗口(Command History)、当前目录窗口(Current Directory)和启动平台窗口(Launch Pad)。 ?2.MATLAB系统的退出 要退出MATLAB系统,也有3种常见方法: (1) 在MATLAB主窗口File菜单中选择Exit MATLAB命令。 (2) 在MATLAB命令窗口输入Exit或Quit命令。 (3) 单击MATLAB主窗口的“关闭”按钮。 ? 1.3.2 主窗口 MATLAB主窗口是MATLAB的主要工作界面。主窗口除了嵌入一些子窗口外,还主要包括菜单栏和工具栏。 1.菜单栏 在MATLAB 6.5主窗口的菜单栏,共包含File、Edit、View、Web、Window和Help 6个菜单项。

《数学建模实验》

《数学建模》上机作业 信科05-3 韩亚 0511010305

实验1 线性规划模型 一、实验名称:线性规划模型—设备的最优配备问题。 二、实验目的:掌握线性规划模型的建模方法,并能用数值算法或MATLAB 库函数求解。 三、实验题目:某商店拟制定某种商品7—12月的进货、售货计划,已知商店仓库最大容量为1500件,6月底已存货300件,年底的库存以不少于300件为宜,以后每月初进货一次,假设各月份该商品买进、售出单价如下表。 四、实验要求: 1、若每件每月的库存费用为0.5元,问各月进货、售货各为多少件,才能使净收益最多?建立数学模型。 2、利用相应的数值方法求解此问题的数学模型。 3、谈一谈你对这类线性规划问题的理解。 4、举一个简单的二维线性规划问题,并针对此问题将你所了解的线性规划的求解方法作出总结。 5、用软件lindo 或lingo 求解上述问题。(选做题) 6、编写单纯形算法的MATLAB 程序。(选做题) 五、实验内容: 解:设第i 个月进货xi 件,销售yi 件,则下半年总收益为销售收入减去进货费和仓库储存费之和,所以目标函数为: 12 11109871211109711109871211109875.232427252628252528262729) 2345(5.0)2345)300(6(5.07x x x x x x y y y y y y y y y y y x x x x x x z y ------+++++++++++++++++-= 整理后得: 900 24255.28275.2831255.25295.27295.31121110987121110987-------+++++=x x x x x x y y y y y y z 由于仓库的容量为1500件,每个月的库存量大于0,小于1500,所以有如下约束条件

数学建模与数学实验试卷及答案

数学建模与数学实验试卷及答案 二、本题10分(写出程序和结果) 蚌埠学院2010—2011学年第二学期 2,x在 [-5 ,5] 区间内的最小值,并作图加以验证。求函数yxe,,,3《数学建模与数学实验》补考试卷答案 f1=inline('x.^2 +exp(-x)-3') 注意事项:1、适用班级:09数学与应用数学本科1,2班 2、本试卷共1页,附答题纸1页。满分100分。 x=fmin(f1,-5,5) 3、考查时间100分钟。 y=f1(x) 4、考查方式:开卷 fplot(f1,[-5,5]) 一、填空:(每空4分,共60分) x = 0.3517,y== -2.1728 123111,,,,, ,,,,三、本题15分(写出程序和结果) 1. 已知,,则A的秩为 3 ,A的特征值为 A,612B,234,,,, ,,,,,215531,,,,,360000xx,,,12,max2.5fxx,,求解:, stxx..250000,,,1212-1.9766 4.4883 + 0.7734i 4.4883 - 0.7734i ,若令 A([1,3],:)= B([2,3],:),则,x,150001,A(2,:)= 6 1 2 ; 解: xxx,,,22,123,model: 2. 的解为 1.25 ,0.25 0.5 ; xxx,,,521,123max=2.5*x1+x2; ,242xxx,,,123,3*x1+x2<=60000; 装订线内不要答题 2*x1+x2<=50000; 3. 将1234521 分解成质因数乘积的命令为_factor(sym(‘1234521’)),

数学建模实验报告

数学建模实验报告 实验一计算课本251页A矩阵的最大特征根和最大特征向量 1 实验目的 通过Wolfram Mathematica软件计算下列A矩阵的最大特征根和最大特征向量。 2 实验过程 本实验运用了Wolfram Mathematica软件计算,计算的代码如下:

3 实验结果分析 从代码的运行结果,可以得到最大特征根为5.07293,最大特征向量为 {{0.262281},{0.474395},{0.0544921},{0.0985336},{0.110298}},实验结果 与标准答案符合。

实验二求解食饵-捕食者模型方程的数值解 1实验目的 通过Wolfram Mathematica或MATLAB软件求解下列习题。 一个生物系统中有食饵和捕食者两种种群,设食饵的数量为x(t),捕食者为y(t),它们满足的方程组为x’(t)=(r-ay)x,y’(t)=-(d-bx)y,称该系统为食饵-捕食者模型。当r=1,d=0.5,a=0.1,b=0.02时,求满足初始条件x(0)=25,y(0)=2的方程的数值解。 2 实验过程 实验的代码如下 Wolfram Mathematica源代码: Clear[x,y] sol=NDSolve[{x'[t] (1-0.1y[t])x[t],y'[t] 0.02x[t]y[t]-0.5y[t],x[0 ] 25,y[0] 2},{x[t],y[t]},{t,0,100}] x[t_]=x[t]/.sol y[t_]=y[t]/.sol g1=Plot[x[t],{t,0,20},PlotStyle->RGBColor[1,0,0],PlotRange->{0,11 0}] g2=Plot[y[t],{t,0,20},PlotStyle->RGBColor[0,1,0],PlotRange->{0,40 }] g3=Plot[{x[t],y[t]},{t,0,20},PlotStyle→{RGBColor[1,0,0],RGBColor[ 0,1,0]},PlotRange->{0,110}] matlab源代码 function [ t,x ]=f ts=0:0.1:15; x0=[25,2]; [t,x]=ode45('shier',ts,x0); End function xdot=shier(t,x)

数学建模与数学实验课后习题答案

P59 4.学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生要组织一个10人的委员会,使用Q 值法分配各宿舍的委员数。 解:设P 表示人数,N 表示要分配的总席位数。i 表示各个宿舍(分别取A,B,C ),i p 表示i 宿舍现有住宿人数,i n 表示i 宿舍分配到的委员席位。 首先,我们先按比例分配委员席位。 A 宿舍为:A n = 365.21002 10237=? B 宿舍为:B n =323.31002 10333=? C 宿舍为:C n =311.4100210432=? 现已分完9人,剩1人用Q 值法分配。 5.93613 22372 =?=A Q 7.92404 33332 =?=B Q 2.93315 44322 =?=C Q 经比较可得,最后一席位应分给A 宿舍。 所以,总的席位分配应为:A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。

商人们怎样安全过河

由上题可求:4个商人,4个随从安全过河的方案。 解:用最多乘两人的船,无法安全过河。所以需要改乘最多三人乘坐的船。 如图所示,图中实线表示为从开始的岸边到河对岸,虚线表示从河对岸回来。商人只需要按照图中的步骤走,即可安全渡河。总共需要9步。

P60 液体在水平等直径的管内流动,设两点的压强差ΔP 与下列变量有关:管径d,ρ,v,l,μ,管壁粗糙度Δ,试求ΔP 的表达式 解:物理量之间的关系写为为()?=?,,,,,μρ?l v d p 。 各个物理量的量纲分别为 []32-=?MT L p ,[]L d =,[]M L 3-=ρ,[]1-=LT v ,[]L l =,[]11--=MT L μ,Δ是一个无量纲量。 ???? ??????-----=?0310100011110010021113173A 其中0=Ay 解得 ()T y 00012111---=, ()T y 00101102--=, ()T y 01003103--=, ()T y 10000004= 所以 l v d 2111---=ρπ,μρπ112--=v ,p v ?=--313ρπ,?=4π 因为()0,,,,,,=??p l v d f μρ与()0,,,4321=ππππF 是等价的,所以ΔP 的表达式为: ()213,ππψρv p =?

数学建模与数学实验

数学建模与数学实验 实验报告 班级: 数学师范153 姓名:付爽 学号:1502012060 实验名称: 数列极限与函数极限 基础实验 基础实验一数列极限与函数极限第一部分实验指导书解读

一、实验目的 从刘徽的割圆术、裴波那奇数列研究数列的收敛性并抽象出极限的定义;理解数列收敛的准则;理解函数极限与数列极限的关系。 二、实验使用软件 Mathematic 5、0 三.实验的基本理论即方法 1割圆术 中国古代数学家刘徽在《九章算术注》方田章圆田术中创造了割圆术计算圆周率π。刘徽先注意到圆内接正多边形的面积小于圆面积;其次,当将边数屡次加倍时,正多边形的面积增大,边数愈大则正多边形面积愈近于圆的面积。 “割之弥细,所失弥少。割之又割以至不可割,则与圆合体而无所失矣。”这几句话明确地表明了刘徽的极限思想。 以n S 表示单位圆的圆内接正1 23-?n 多边形面积,则其极限为 圆周率π。用下列Mathematica 程序可以从量与形两个角度考察数列{n S }的收敛情况: m=2;n=15;k=10; For[i=2,i<=n,i++, l[i_]:=N[2*Sin[Pi/(3*2^i)],k]; (圆

内接正1 23-?n 多边形边长) s[i_]:=N[3*2^(i-1)*l[i]*Sqrt[1-(l[i])^2/4],k]; (圆内接正1 23-?n 多边形面积) r[i_]:=Pi-s[i]; d[i_]:=s[i]-s[i-1]; Print[i," ",r[i]," ",l[i]," ",s[i]," ",d[i]] ] t=Table[{i,s[i]},{i,m,n}] (数组) ListPlot[t] (散点图) 2裴波那奇数列与黄金分割 由2110;1; 0--+===n n n F F F F F 有著名的裴波那奇数列}{n F 。 如果令n n n F F R 11 --=,由n F 递推公式可得出 11111/11---+=+=+=n n n n n n n R F F F F F R ,]251251[511 1 ++??? ? ??--??? ? ??+=n n n F ; 2 15lim lim 1 -==+∞ →∞ →n n n n n F F R 。 用下列Mathematica 程序可以从量与形两个角度考察数列{n R }的收敛情况: n=14,k=10; For[i=3,i<=n,i++, t1=(Sqrt[5]+1)/2; t2=(1-Sqrt[5])/2;

2018数学建模课程论文以及课程实验题目

2017-2018学年第二学期数学建模课程论文题目 请大家在三个题目中选择二个来完成,完成的二个题目装订为一个文档。打印从封面开始,页码从摘要开始编。 交论文时间:12周三下午3:30-5:50;至善楼217 A题食品加工 一项食品加工,为将几种粗油精炼,然后加以混合成为成品油。原料油有两大类,共5种:植物油2种,分别记作V1和V2;非植物油3种,记为O1、O2和O3。各种原料油均从市场采购。现在(一月份)和未来半年中,市场价格(元/吨)如下表所示: 月份油V1 V2 O1 O2 O3 一1100 1200 1300 1100 1150 二1300 1300 1100 900 1150 三1100 1400 1300 1000 950 四1200 1100 1200 1200 1250 五1000 1200 1500 1100 1050 六900 1000 1400 800 1350 成品油售价1500元/吨。植物油和非植物油要在不同的生产线精炼。每个月最多可精炼植物油200吨,非植物油250吨。假设精炼过程中没有重量损失。精炼费用可以忽略。每种原料油最多可存贮1000吨备用。存贮费为每吨每月50元。成品油和经过精炼的原料油不能存贮。对成品油限定其硬度在3至6单位之间。各种原料油的硬度如下表所示: 油V1 V2 O1 O2 O3 硬度8.8 6.1 2.0 4.2 5.0 假设硬度是线性地合成的。 另加条件:现存有5种原料油每种500吨。要求在6月底仍然有这样多的存货;每个月最多使用3种原料油;如果某月使用了原料油V1和V2,则必须使用O3。 (1)为使公司获得最大利润,应取什么样的采购和加工方案。 (2)分析总利润同采购和加工方案适应不同的未来市场价格应如何变化。考虑如下的价格变化方式:2月份植物油价上升x%,非植物油价上升2x%;3月份植物油价上升2x%,非植物油价上升4x%;其余月份保持这种线性上升势头。对不同的x值(直到2),就方案的必要的变化以及对总利润的影响,作出计划。

数学建模实验答案_概率模型

实验10 概率模型(2学时) (第9章 概率模型) 1.(验证)报童的诀窍p302~304, 323(习题2) 关于每天报纸购进量的优化模型: 已知b 为每份报纸的购进价,a 为零售价,c 为退回价(a > b > c ),每天报纸的需求量为r 份的概率是f (r )(r =0,1,2,…)。 求每天购进量n 份,使日平均收入,即 1 ()[()()()]()()()n r r n G n a b r b c n r f r a b nf r ∞ ==+=----+ -∑∑ 达到最大。 视r 为连续变量,f (r )转化为概率密度函数p (r ),则所求n *满足 * ()n a b p r dr a c -= -? 已知b =0.75, a =1, c =0.6,r 服从均值μ=500(份),均方差σ=50(份)的正态分布。报童每天应购进多少份报纸才能使平均收入最高,这个最高收入是多少? [提示:normpdf, normcdf] 要求:

(1) 在同一图形窗口内绘制10 ()()n y n p r dr =?和2()a b y n a c -= -的图形,观察其交点。 [提示] 22 ()2()r p r μσ-- = ,0 ()()()n n p r dr p r dr p r dr -∞ -∞ =-?? ? ☆(1) 运行程序并给出结果: (2) 求方程0()n a b p r dr a c -= -?的根n *(四舍五入取整),并求G (n *)。

mu=500;sigma=50; a=1; b=0.75; c=0.6; r=n+1; while (a-b)*n*normpdf(r,mu,sigma)>1e-6 r=r+1; end r=n+1:r; G=sum((a-b)*n*normpdf(r,mu,sigma)); r=0:n; G=G+sum(((a-b)*r-(b-c)*(n-r)).*normpdf(r,mu,sigma)) ☆(2) 运行程序并给出结果: 2.(编程)轧钢中的浪费p307~310 设要轧制长l =2.0m的成品钢材,由粗轧设备等因素决定的粗轧冷却后钢材长度的均方差σ=0.2m,问这时钢材长度的均值m应调整到多少使浪费最少。 平均每得到一根成品材所需钢材的长度为 () () m J m P m = 其中, 2 2 () 2 ()(), () 2 x m l P m p x dx p xσ πσ - - ∞ == ? 求m使J(m)达到最小。 等价于求方程 () () z z z λ ? Φ =- 的根z*。 其中:

数学建模实验六

数学建模实验六 一、上机用Lindo 软件解决货机装运问题。 某架货机有三个货仓:前仓、中仓、后仓。三个货舱所能装载的货物的最大重量和体积都有限,如表所示,并且,为了保持飞机的平衡,货舱中实际装载货物的重量必须与其最大容许重量成正比例 三个货舱装载货物的最大容许重量和体积 四类装运货物的信息 应如何安排装运,使该货机本次飞行获利最大? 解答过程: 模型建立: 决策变量:用x ij 表示第i 种货物装入第j 个货舱的重量(吨),货舱j=1、2、3分别表示前仓、中仓、后仓。 决策目标是最大化总利润,即Max Z=3100(x11+x12+x13)+3800(x21+x22+x23)+3500(x31+x32+x33)+2850(x41+x42+x43) 约束条件为: 1) 共装载的四种货物的总重量约束,即 x11+x12+x13<=18 x21+x22+x23<=15 x31+x32+x33<=23 x41+x42+x43<=12 2)三个货舱的重量限制,即 x11+x21+x31+x41<=10 x12+x22+x32+x42<=16 x13+x23+x33+x43<=8 3)三个货舱的空间限制,即 480x11+650x21+580x31+390x41<=6800 480x12+650x22+580x32+390x42<=8700 480x13+650x23+580x33+390x43<=5300 4)三个货舱装入重量的平衡约束,即 8 43 33231316423222121041312111x x x x x x x x x x x x +++=+++=+++ 模型求解

数学建模实验

数学建模实验项目一梯子问题 一、实验目的与意义: 1、进一步熟悉数学建模步骤; 2、练习Matlab优化工具箱函数; 3、进一步熟悉最优化模型的求解过程。 二、实验要求: 1、较能熟练应用Matlab工具箱去求解常规的最优化模型; 2、注重问题分析与模型建立,熟悉建模小论文的写作过程; 3、提高Matlab的编程应用技能。 三、实验学时数: 2学时 四、实验类别: 综合性 五、实验内容与步骤: 一幢楼房的后面是一个很大的花园。在花园中紧靠着楼房建有一个温室,温室高10英尺,延伸进花园7英尺。 清洁工要打扫温室上方的楼房的窗户。他只有借助于梯子,一头放在花园中,一头靠在楼房的墙上,攀援上去进行工作。他只有一架20米长的梯子,你认为他能否成功?能满足要求的梯子的最小长度是多少?步骤: 1.先进行问题分析,明确问题; 2.建立模型,并运用Matlab函数求解; 3.对结果进行分析说明; 4.设计程序画出图形,对问题进行直观的分析和了解(主要用画线函数plot,line)5.写一篇建模小论文。 数学建模实验项目二养老基金问题 一、实验目的与意义: 1、练习初等问题的建模过程; 2、练习Matlab基本编程命令; 二、实验要求: 3、较能熟练应用Matlab基本命令和函数; 4、注重问题分析与模型建立,了解建模小论文的写作过程; 5、提高Matlab的编程应用技能。 三、实验学时数: 1学时 四、实验类别: 综合性 五、实验内容与步骤: 某大学青年教师从31岁开始建立自己的养老基金,他把已有的积蓄10000元也一次性地存入,已知月利率为0.001(以复利计),每月存入700元,试问当他60岁退休时,他的退休基金有多少?又若,他退休后每月要从银行提取1000元,试问多少年后他的基金将用完? 微分方程实验项目一狐狸与野兔问题

数学建模实验答案微分方程模型

实验07 微分方程模型(2学时) (第5章 微分方程模型) 1.(验证)传染病模型2(模型)p136~138 传染病模型2(模型): 0(1),(0)di k i i i i dt =-= 其中, i (t )是第t 天病人在总人数中所占的比例。 k 是每个病人每天有效接触的平均人数(日接触率)。 i 0是初始时刻(0)病人的比例。 1.1 画~di i dt 曲线图p136~138 取0.1,画出i dt di ~的曲线图,求i 为何值时dt di 达到最大值,并在曲线图上 标注。 参考程序:

提示:, , , , , 1)画曲线图 用函数,调用格式如下: () 必须为一个M文件的函数名或对变量x的可执行字符串。 若取[ ],则x轴被限制在此区间上。 若取[ ],则y轴也被限制。 本题可用 ('0.1*x*(1)',[0 1.1 0 0.03]); 2)求最大值 用求解边界约束条件下的非线性最小化函数,调用格式如下:(''12) 必须为一个M文件的函数名或对变量x的可执行字符串。 返回自变量x在区间x1

; %在上面的同一张图上画线(同坐标系) ([0],[],':',[],[0],':'); 4)图形的标注 使用文本标注函数,调用格式如下: 格式1 (,文本标识内容, '', '字符串1') 给定标注文本在图中添加的位置。 ''为水平控制属性,控制文本标识起点位于点()同一水平线上。'字符串1'为水平控制属性值,取三个值之一: '',点()位于文本标识的左边。 '',点()位于文本标识的中心点。 '',点()位于文本标识的右边。 格式2 (, 文本标识内容, '', '字符串2') 给定标注文本在图中添加的位置。 ''为垂直控制属性,控制文本标识起点位于点()同一垂直线上。'字符串1'为垂直控制属性值,取四个值之一: '','','','',''。(对应位置可在命令窗口应用确定) 本题可用 (0,'()m','',''); (0.0012(x),'',''); 5)坐标轴标注 调用函数,和

数学建模实验

园钢下料 摘要:如何按照工艺要求和生产计划确定下料方案,使得原料最省。本文通过数学规划模型和lingo软件可得最优方案。 问题重述 制造产品X,需要A,B,C,D四种轴类零件,其规格和数量如下表: 表1 各类零件都用5.5米长的圆钢下料,如果计划生产产品G 的数量900件,至多用4种切割模式情况下,问如何下料,才能使原料最省? 问题分析切割模式是按照客户需要在原料钢管安排切割的一种组合。一个可行合理的切割模式的余料不应该大于或等于需要的圆钢的最小尺寸(本题中为0.7米),切割计划只使用可行合理的切割模式。 问题化为在满足生产计划和工艺要求的情况下,按照那些种(最多四种)合理的模式,切割多少根原料园钢,最为节省。 而原料最省,有两种标准:一是切割后剩余的总余料量最小,二是切割原料钢管的总根数最少。下面将对这两个目标分别讨论。 模型建立 决策变量由于不同切割模式不能超过4种。可以用x i表示按照第i种模式(i=1,2,3,4)切割的原料钢管的根数,显然它们应当是非负整数。设所使用的第i种切割模式下每根原料原钢生产3.1米,2.3米,1.5米和0.7米的圆钢

数量分别为r1i,r2i,r3i,r4i(非负整数)。 决策目标以切割后剩余的总余料量最小,目标为 Min∑ = - - - - 4 1 1 ) 4 7.0 3 5.1 2 3.2 1 1.3 5.5(i r i r i r i r xi(1) 以切割原料圆钢的总根数最少,目标为 Min x1+x2+x3+x4 (2) 约束条件为满足需求,应有 r11x1+r12x2+r13x3+r14x4>=900 (3) r21x1+r22x2+r23x3+r24x4>=1800 (4) r31x1+r32x2+r33x3+r34x4>=1500 (5) r41x1+r42x2+r43x3+r44x4>=8100 (6) 每种切割模式必须可行、合理,所以每根原料圆钢的成品量不能超过5.5米,也不能少于4.8米(余量不能大于0.7米),于是 4.8<=3.1r11+2.3r21+1.5r31+0.7r41<= 5.5 (7) 4.8<=3.1r12+2.3r22+1.5r32+0.7r42<= 5.5 (8) 4.8<=3.1r13+2.3r23+1.5r33+0.7r43<= 5.5 (9) 4.8<=3.1r14+2.3r24+1.5r34+0.7r44<= 5.5 (10) 模型求解 在(3)~(6)式中出现决策变量的乘积,是一个整数非线性规划模型,用lingo软件直接求解运行时间很长也难以得到最优解,为此可以增加一些显然的

相关文档