文档库 最新最全的文档下载
当前位置:文档库 › 费米-狄拉克分布和玻色-爱因斯坦分布的简单推导

费米-狄拉克分布和玻色-爱因斯坦分布的简单推导

费米-狄拉克分布和玻色-爱因斯坦分布的简单推导
费米-狄拉克分布和玻色-爱因斯坦分布的简单推导

 万方数据

 万方数据

 万方数据

费米-狄拉克分布和玻色-爱因斯坦分布的简单推导

作者:佘守宪, 唐莹, She Shouxian, Tang Ying

作者单位:北方交通大学,物理系,北京,100044

刊名:

物理与工程

英文刊名:PHYSICS AND ENGINEERING

年,卷(期):2001,11(2)

被引用次数:2次

参考文献(2条)

1.陈仁烈统计物理引论 1979

2.马本堃热力学与统计物理 1983

引证文献(2条)

1.陶冶费米面系统热力学性质的±5kT能级宽度修正[期刊论文]-重庆文理学院学报(自然科学版) 2009(4)

2.张连水.刘凤良.党伟.王百荣脉冲放电等离子体电子激发温度发射光谱诊断[期刊论文]-河北大学学报(自然科学版) 2009(3)

本文链接:https://www.wendangku.net/doc/092533619.html,/Periodical_wlygc200102004.aspx

玻色_爱因斯坦凝聚领域Feshbach共振现象研究进展

玻色—爱因斯坦凝聚领域Feshbach 共振现象研 究进展 摘要玻色—爱因斯坦凝聚领域中的Feshbach共振现象是当前的一个研究热点。在很多相关实验都已观测到Feshbach共振现象。在实验里通过调节外加磁场用原子散射的Feshbach共振可以任意改变这些系统中原子之间的相互作用强度,从强相互排斥作用到强相互吸引作用都可以实现。文章详细介绍Feshbach共振现象以及目前它在原子气体系统里的最重要的两个应用,研究有强相互作用的玻色子气体和费米子气体里的超流态。最后,阐述了Feshbach共振现象研究意义,以及对玻色—爱因斯坦凝聚体系统的应用前景作了展望。 关键词Feshbach 共振,玻色- 爱因斯坦凝聚,超流态,强相互作用 Abstract Feshbach resonace is currently a very hot topic in the of Bose-Einstein condensa -tion ,and has already been observed in most low- temperture alkali gases. In these systems the interaction between atoms can be tuned from strong repulsion to strong attraction. A detailed overview is guven of the Feshbach resonance and two of its most important aspects, the superfluid phase in Fermi gases and the strong-interaction regime in Bose gase.Finally,this paper expounds the significance of feshbach resonace research,and the Bose-Einstein conden –sation application prospects are described. Key words Feshbach resonance,Bose-Einstein condensation ,superfluid, strong interaction

玻色一爱因斯坦凝聚

第六章 近独立粒子的最概然分布 教学目标:1. 理解玻色分布和费米分布。 2. 理解三种分布之间的关系。 授课方式:理论讲授。 教学重点:1. 分布与微观状态 2. 三种分布之间的关系 教学难点:非简并性条件 教学内容: 玻色分布和费米分布 上节课中已经求出了玻耳兹曼系统的最概然分布,本节将推导玻色系统和费米系统中粒子的最概然分布。现对费米分布推导如下 : 对! !()!l F D l l l l a a ωω?Ω= -∏取对数得:().ln ln !ln !ln !F D l l l l l a a ωωΩ=---???? ∑ 1N ,若假设1l a ,1l ω可得到: ()()[] ∑----=Ωl l l l l l l l l D F a a a a ωωωωln ln ln ln .. 约束条件: l l a N =∑ ; l l l a E ε =∑。 为求在此约束条件下的最大值,使用拉格朗日乘数法,取未定因子为α和β则拉格朗日函数为:.ln ln 0l F D l l L l l a N E a a δαδβδαβεδω??Ω--=- ++= ?-?? ∑ 若令上式为零,则有:ln 0l l l l a a αβεω++=- , 即 1l l l a e αβεω+=+。 上式给出了费米系统粒子的最概然分布,称为费米——狄拉克分布。 玻色分布的推导作为练习,请同学们课后自己推导。 三种分布的关系 1 、由: l l a N =∑ ; l l l a E ε =∑ 确定拉氏乘子a 和β的值。在许多实际问题中,也 往往将β看作由实验确定的已知参量而由: l l l a E ε =∑ 确定系统的内能.或将a 和β都 当作由实验确定的已知参量,而由:l l a N =∑ ;l l l a E ε=∑ 确定系统的平均总粒子数 和内能。

玻色分布和费米分布

玻色分布和费米分布 现对费米分布推导如下 : 对 ()∏-=Ωl l l l l D F a a !!! ..ωω 取对数得:()[] ∑---=Ωl l l l l D F a !ln !ln !ln ln ..εωω N>>1 , 若假设a l >>1 , ωl >>1可得到: ()()[]∑----=Ωl l l l l l l l l D F a a a a ωωωωln ln ln ln .. 约束条件: ∑=l l N a ; ∑=l l l E a ε 为求在此约束条件下的最大值,使用拉格朗日乘数法,取未定因子为α和β则拉格朗日函数为:l l l l l l D F a a a E N δβεαωβδαδδ∑??? ? ??++-- =--Ωln ln .. 若令上式为零,则有:0ln =++-l l l l a a βεαω , 即 上式给出了费米系统粒子的最概然分布,称为费米——狄拉克分布。 玻色分布的推导作为练习,请同学们课后自己推导. 6.8 三种分布的关系 1 、由 ∑=l l N a ∑=l l l E a ε确定拉氏乘子a 和β的值. 在许多实际问题中,也往往将β看作由实验确定的已知参量而由∑=l l l a εE 确定系统的内 能.或将a 和β都当作由实验确定的已知参量,而由 ∑=l l N a ∑=l l l E a ε确定系统的平均 总粒子数和内能. 2 、能级的εl 有ωl 个量子态处在其中任何一个量子态上的平均粒子数应该是相同的,因此处在能量为εS 的量子态S 上的平均粒子数为: s s s a f ω= 即: s s s a f ω= 定域系统 :s e βεα-- 费米系统:11++s e 玻色系统: 1 1 ++s e βεα 总粒子数和能量可分别表示为: N = ∑s s f 定域系统 = ∑--s S e βε α “+”费米系统 “-”玻色系统 = ∑±+s S e 1 1 βεα

玻色—爱因斯坦凝聚体的腔光力学

玻色—爱因斯坦凝聚体的腔光力学 【摘要】:在最近几年中腔光力学正经历着飞速的发展,成为了大量理论与实验研究的焦点。其中十分诱人的一项进展是使用原子玻色-爱因斯坦凝聚体取代被光压驱动的腔镜展示出各种腔光力学效应。而本文则设计了一个将凝聚体与腔镜结合在一起的混合腔光力学系统,试图通过这个系统把光学、腔量子电动力学、超冷原子物理、凝聚态物理、纳米技术、量子信息等学科交融在了一起来推动腔光力学的发展。本文的内容可根据原子与腔相互作用的不同区域而分成两个部分。当腔与原子的相互作用处于弱色散耦合区域时,腔内的驻波光场会使原子凝聚体感受到一个周期性的偶极势——光晶格,但凝聚体作为色散介质对腔场的影响却可以忽略不计。腔内光场的强度由于腔镜位置与光压之间的非线性耦合而具有双稳的性质,而这种双稳性质也同样反映在了光晶格的深度以及取决于这个深度的凝聚体多体基态上。同一个输入光强可以使腔内的凝聚体处于超流或者绝缘这两种迥然不同的状态,而对输入光进行特殊的时序控制,则可能实现凝聚体的双稳量子相变。尤其是在双稳切换点附近光场强度发生跳变时,原子凝聚体的动力学是本文的研究重点之一。当腔与原子的相互作用处于强色散耦合区域时,腔内的凝聚体被驻波光场激发出的动量边模能够等效为一个光压驱动的腔镜。而驻波场除了驱动凝聚体和腔镜外还像一个非线性的弹簧一样把两者连接起来形成一对非线性耦合振子。在适当的参量下,整个系统,无论是腔内光强,腔镜位置,还是凝聚体的激发都是

双稳的。我们发现在这个双稳区域附近,如果忽略系统的耗散,则其经典动力学能够展现奇异的哈密顿混沌行为。此外我们还在频率空间中分析了腔镜与凝聚体之间的量子关联,给出了两者之间实现纠缠的条件。【关键词】:玻色-爱因斯坦凝聚体腔光力学光学双稳量子相变混沌量子纠缠 【学位授予单位】:华东师范大学 【学位级别】:博士 【学位授予年份】:2010 【分类号】:O431.2 【目录】:摘要6-7Abstract7-9目录9-12第一章绪论12-221.1光压的故事12-141.2腔光力学14-161.3向量子区域迈进16-201.4本文内容安排20-22第二章腔光力学装置基本原理22-442.1光力学腔的经典模型22-292.1.1法布里-珀罗型光学腔23-252.1.2辐射压力的经典理论25-262.1.3单镜光力学腔26-282.1.4双镜光力学腔28-292.2光力学腔的非线性效应29-352.2.1稳态分析30-312.2.2动力学分析31-352.3光力学腔的量子模型35-442.3.1腔的输入输出理论36-382.3.2振子的量子布朗运动38-402.3.3辐射压力的本征模理论40-412.3.4单镜光力学腔的量子模型41-44第三章光晶格中的原子玻色-爱因斯坦凝聚体44-683.1稀薄原子气体的玻色-爱因斯坦凝聚44-473.1.1无相互作用玻

玻色_爱因斯坦凝聚的研究

玻色———爱因斯坦凝聚的研究 谢世标 (广西民族学院物理与电子工程系,广西 南宁 530006) 摘 要: 综述了玻色—爱因斯坦凝聚的由来、概念及其形成条件,并介绍了当前国内外玻色—爱 因斯坦凝聚研究的动态与进展及其前景展望。 关键词: 玻色—爱因斯坦凝聚;临界温度;激光冷却;磁陷阱 中图分类号: O469 文献标识码:A 文章编号:1003-7551(2002)03-0047-04 1 玻色—爱因斯坦凝聚的由来 我们知道,自然界中,粒子按统计性质分为玻色(Bose)子和费米(Fermi)子。自旋为整数的粒子,如光子、π介子和α粒子是玻色子,玻色子服从玻色—爱因斯坦统计;自旋为半整数的粒子,如电子、质子、中子、μ介子是费米子,费米子服从费米—狄拉克统计。1924年6月24日,30岁的印度物理教师玻色送一份手稿给爱因斯坦,试图不依赖经典电动力学来推导普朗克(黑体辐射)定律的系数8πν2/c3,办法是假定相空间最基本区域的体积为h3。爱因斯坦亲自把玻色的手稿译成德文,送去发表,并在文末加注说:“我以为玻色对普朗克公式的推导乃是一项重大进步,所用方法也将导致理想气体的量子理论”。爱因斯坦意识到玻色工作的重要性,立即着手这一问题的研究。他于1924年和1925年发表两篇论文,将玻色对光子的统计方法推广到某类原子,并预言当这类原子的温度足够低时,所有的原子就会突然聚集在一种尽可能低的能量状态,这就是我们所说的玻色—爱因斯坦凝聚。但在很长一段时间里,没有任何物理系统认为与玻色—爱因斯坦凝聚现象有关。直到1938年,伦敦(F.London)指出,超流和超导现象可能是玻色—爱因斯坦凝聚的表现,玻色—爱因斯坦凝聚才真正引起物理学界的重视。不过这两种现象都发生在强相互作用的体系中。超流液氦中只有10%的原子凝聚;超导与玻色—爱因斯坦凝聚的关系要经过电子的配对,涉及更复杂的相互作用。只有近理想或弱相互作用的玻色气体的玻色—爱因斯坦凝聚,才更易于同理论比较,但一直没有实验证实。在上个世纪五十年代,物理学家发展了很多弱相互作用玻色系统的理论,华人物理学家杨振宁、李政道和黄克逊在这方面做了很出色的工作。然而这些理论在1995年之前都没有得到很好的验证。 随着实验技术的发展,在上世纪80年代初,物理学家开始了在气体中实现玻色—爱因斯坦凝聚的尝试。终于在爱因斯坦理论预言之后的70年,于1995年在实验室看到了中性原子的玻色—爱因斯坦凝聚。7月13日,美国科罗拉多大学和国家标准局合办的实验天体物理研究所发布新闻说:在冷却到绝对温度170nk(毫微度)的碱金属铷(87Rb)蒸气中观察到了玻色—爱因斯坦凝聚。8月底,休斯顿市Rice大学的一个小组发表文章说在锂(7Li)中看到玻色—爱因斯坦凝聚(BEC)的迹象。11月间,麻省理工学院宣布,在钠(23Na)蒸汽中实现了玻色—爱因斯坦凝聚(BEC)。为此,科罗拉多大学和国家标准局实验天体物理研究所的美国科学家埃里克?康奈尔、卡尔?维曼和麻省理工学院的德国科学家沃尔夫冈?克特勒获2001年诺贝尔物理学奖。 2 玻色—爱因斯坦凝聚的概念 设在体积为V的容器中存在由N个同种玻色粒子组成的理想气体。理想玻色气体处于热平衡状态3 收稿日期:2002-07-08

玻色-爱因斯坦凝聚及其研究进展简述

玻色-爱因斯坦凝聚及其研究进展 姓名:于超宇专业班级:201505080226 第1章前言 玻色-爱因斯坦凝聚实际是一类涉及原子分子物理学、量子光学、统计物理学和凝聚态物理学等相关物理学中许多领域的普通物理现象。1925年爱因斯坦根据玻色能量统计分布规律预言:当玻色系统的温度降低到一定程度,理想的全同玻色子会在动量空间最低能态上聚集,并达到宏观的数量。这就是玻色-爱因斯坦凝聚,而这种宏观数量级的原子凝聚在同一状态可视为一种新物态。这一物质形态具有的奇特性质,在芯片技术、精密测量和纳米技术等领域都有美好的应用前景。全世界已经有数十个实验室实现了9种元素的BEC(玻色-爱因斯坦凝聚态)。主要是碱金属,还有氦原子,铬原子和镱原子等。而本论文着手于玻色-爱因斯坦凝聚现象的理论与凝聚态的应用,对当下最新研究进展与研究结果进行文献综述,介绍达成凝聚态的几种方式以及对凝聚态在芯片技术等方面的的应用进行介绍。 第2章玻色-爱因斯坦凝聚的研究历史 2.1 玻色-爱因斯坦凝聚的起源与发展 1924年印度物理学家玻色提出以不可分辨的n个全同粒子的新观念,使得每个光子的能量满足爱因斯坦的光量子假设,也满足波尔兹曼的最大机率分布统计假设,这个光子理想气体的观点可以说是彻底解决了普朗克黑体辐射的半经验公式的问题。可能是当初玻色的论文因没有新结果,遭到退稿的命运。他随后将论文寄给爱因斯坦,爱因斯坦意识到玻色工作的重要性,立即着手这一问题的研究,并于1924和1925年发表两篇文章,将玻色对光子(粒子数不守恒)的统计方法推广到原子(粒子数守恒),预言当这类原子的温度足够低时,会有相变—新的物质状态产生,所有的原子会突然聚集在一种尽可能低的能量状态,这就是我们所说的玻色-爱因斯坦凝聚现象。 1938年:FritzLondon提出液氦(He4)超流本质上是量子统计现象,也是一种凝

1 、当 为 时,分别用费米分布函数和玻尔兹曼分布函数计算

1、当F E E ?为00015410.k T ,k T ,k T 时,分别用费米分布函数和玻尔兹曼分布函数计算电子占据各 该能级的几率。 2、利用表3-2中的n p m ,m ??数值, 计算Si ,Ge ,GaAs 在室温下的C V N ,N 以及本征载流子浓度。3、①室温下,Ge 的有效态密度19310510C N .cm ?=×;1835710v N .cm ?=×,求Ge 的载流子有效质 量n p m ,m ?? 。计算77k 时的C N 、V N 。已知300K 时,067g E .eV =,77K 时076g E .eV =。求这两个温度下Ge 的本征载流子浓度。②77K 时,Ge 的电子浓度为17310cm ?,假定受主浓度为零,而001C D E E .eV ?=,求Ge 中施主浓度D N 为多少? 4、计算施主杂质浓度分别为163183193101010cm ,cm ,cm ???的Si 在室温下的费米能级,并假定杂质是全部电离。再用算出的费米能级核对一下上述假定是否在每一种情况下都成立。计算时,取施主能级在导带底下面0.05eV 处。 5、计算含有施主杂质浓度153910D N cm ?=×及受主浓度为1631110A N .cm ?=×的Si 在300T K =时的 电子和空穴浓度以及费米能级的位置。 6、施主浓度为13310D N cm ?=的n 型硅,计算400K 时本征载流子浓度,多子浓度、少子浓度 和费米能级的位置。 7、制造晶体管一般是在高杂质浓度的n 型衬底上外延一层n 型外延层,再在外延层中扩散硼、磷而成。 ①设n 形硅单晶衬底是掺锑的,锑的电离能为0.039eV ,300K 时的F E 位于导带底下面0026.eV 处,计算锑的浓度和导带中电子浓度;(衬底) ②设n 型外延层杂质均匀分布,杂质浓度为1534610.cm ?×,计算300K 时F E 的位置及电子和空 穴浓度;(外延层) ③在外延层中扩散硼后,硼的浓度分布随样品深度变化。设扩散层某一深度处硼浓度为 1535210.cm ?×,计算300K 时F E 的位置及电子和空穴的浓度; (外延层中的扩散区)④如温度升高到500K ,计算③中电子和空穴的浓度(本征载流子浓度数值查图3-7) 8、计算掺磷的硅、锗在室温下开始发生弱简并时的杂质浓度为多少? 9、利用上题的结果,计算掺磷的硅、锗在室温下开始发生弱简并时有多少施主发生电离?导带中电子浓度为多少?

实现玻色_爱因斯坦凝聚态的重大意义

!"实现玻色!爱因斯坦凝聚态的重大意义"#$%年印度物理学家玻色研究了“光子在各能量级上的分布&问题,他以不同于普朗克的方式推导出普朗克黑体辐射公式。玻色将这一结果寄给爱因斯坦,请其翻译成德文并在德国发表。爱因斯坦意识到玻色工作的重要性,立即着手研究这一问题。爱因斯坦于"#$%年和"#$’年发表了两篇文章,将玻色对光子的统计方法推广到某类原子,并预言这类原子的温度足够低时,所有的原子就会突然聚集在一种尽可能低的能量状态,这就是所谓的玻色!爱因斯坦凝聚(()*+,-.*/+-.0).1+.*2/-).,(,0),这时宏观量物质的状态可以用同一波函数来描写。自"#$’年提出(,0以来,陆续有不少寻求(,0实验实现的研究出现。首先是"#3%年提出的超流态液氦。后来的实验中确实看到量子简并的特性,但是由于系统中存在着强相互作用,很难看成是纯的(,0。接着"#’#年有人提出自旋极化氢原子气体可能是(,0的候选者,但至今仍未能在实验上实现。"#45年, 第三种重要的(,0候选者———氧化亚铜(06$7)中的激子被提出。 经过"5多年的努力, 虽然于"##8年在实验上观测到了,但是由于复杂的相互作用过程,(,0的特性得不到很好的研究。45年代中期,激光冷却和捕陷原子的研究已取得长足的进步,几个研究小组提出了冷却的碱金属原子可以形成只有弱相互作用的(,0。在不断克服实现(,0的一系列技术难题后,"##’年9月,威曼和康奈尔小组使用铷原子首次实现了玻色!爱因斯坦凝聚。 玻色!爱因斯坦凝聚是独一无二的量子力学相变,因为它是在原子间无相互作用条件下发生的,在科学上,玻色!爱因斯坦凝聚对基础研究具有重要意义,它证实了存在一种新的物质态,为实验物理学家提供了一种独一无二的新介质;在应用上,科学家们已提出了很多设想:如改善精密测量的准确度,制造原子钟、原子干涉仪,测量原子物理常数和微重力;实现光速减慢、光信息存储、量子信息传递和量子逻辑操作;进行微结构刻蚀等。例如,玻色!爱因斯坦凝聚体中的原子几乎不动,可以用来设计精确度更高的原子钟,以应用于太空航行和精确定位等。 凝聚体具有很好相干性,可以用于研制高精度的原子干涉仪,测量各种势场,测量重力场加速度和加速度的变化等。另外,以芯片技术为例,传统的芯片技术现已接近发展极限,因为目前的芯片都是利用普通激光来完成集成电路的光刻,而普通激光的波长是有限的。今后,如果利用原子激光来进行集成电路的光刻,将大大提高集成电路的密度,因此将大大提高电脑芯片的运算速度。随着对玻色!爱因斯坦凝聚研究的深入,也许它会像发现普通激光那样给人类带来另一次技术革命。 从实现玻色!爱因斯坦凝聚到获得诺贝尔奖只有9年时间,这在诺贝尔物理学奖授奖的百年史上是相对较短的。然而从爱因斯坦的预言到它的实现,物理学家却花了整整35年。曼才使用一个特制的外边缠有电 磁线圈的玻璃容器进行了他们的 实验。康奈尔说,如果科特勒和他 的同事们能够有类似的装置,那 么他们就不会因为他们的设备中 一个线圈熔化、污染了整个设备 而导致试验耽搁几周了,科学史 可能也会因此而改写了。 为科学家们制造实验用的专 门设备需要有一些创新的思维。 比如要正确使用电子元件,可能 需要查阅大量难懂的产品目录。 对于爱好这项工作的人来说,这 是非常有吸引力的。他们往往会坚持把它做到最好。高效的工作为技术上要求较高的实验创造良好的环境,这一点也表现在:;<=对于实验设备的购置方面。其订购一个部件乃至部件送达的时间都要比其他地方快很多。节省的时间对于实验的进度是至关重要的。但是和任何成功的实验室一样,:;<=不能在它的成绩面前止步不前。其实验计划的更新正在进行中,其中一个重要的领域就是超短激光脉冲。:;<=有专家正在一系列项目中使用最先进的激光技术,包括原子钟的改进研发、化学反应的精密控制、安全通讯的研究以及活体细胞成像等等。不过,这个实验室也遭遇到了一些挫折,其中最严重的就是>;?@在$5世纪#5年代逐步停止了对:;<=原子物理学计划的资金支持。为了不至于给:;<=造成重大的困难,>;?@的撤出是在足够长的时间内进行的。此外,尽管科罗拉多大学拥有很高的声誉,但毕竟不能与哈佛或斯坦福大学齐名,这就使得:;<=的一些资历较深的科学家对它是否能够 持久地吸引优秀的学生多少有些 担心。 然而人们知道,那些希望在 这里建立自己学术权威的人是不受欢迎的,因为这里是一个科学的自由之地。A 袁永康B 编译C ?团队?

费米狄拉克分布函数解析、图像和应用

各能级被电子占据的数目服从特定的统计规律这个规律就是费米-狄拉克分布规律。 一般而言,电子占据各个能级的几率是不等的。占据低能级的电子多而占据高能级的电子少。统计物理学指出,电子占据能级的几率遵循费米的统计规律:在热平衡...状态下,能量为E 的能级被一个电子占据的几率为: f(E) 称为电子的费米(费米-狄拉克)分布函数,k 、T 分别为波耳兹曼常数和绝对温度。E fermi 称为费米能级,它与物质的特性有关。 只要知道了费米能级E fermi 的数值,在一定温度下,电子在各量子态上的统计分布就完全确定了。 费米分布函数的一些特性: 【根据f(E)公式来理解】 第一, 费米能级E fermi 是一种用来描述电子的能级填充水平的假想能级...., E f 越大,表示处于高能级的电子越多; E f 越小,则表示高能级的电子越少。(E f 反映了整体平均水平) 第二,假定费米能级E f 为已知,则f(E)是能量E 与温度T 的函数。根据f(E)式可画出 f(E) 的曲线如图所示,但要注意 因变量f(E)不像普通习惯画在纵轴,而是破天荒的画在横轴。 第三,费米能级E f 在能级图中的位置与材料掺杂情况有关。对于本征半导体,E f 处于禁带E g 的中央,在绝对零度时,在导带E c 中E >E f ,f(E)=0;在价带E v 中E <E f ,f(E)= =1,表明电子全部处于价带E v 之中,因而此时 半导体是完全不导电的。 0 1/2 1 f(E) E E f T 0 T 1 T 2 T 3 费米分布函数变化曲线 T 3 >T 2 >T 1 >T 0 在T 不为绝对零度前提下,若E <E f ,则 f(E) >1/2;若E = E f ,则 f(E)=1/2;若 E >E f ,则 f(E) <1/2。上述结果文字描述,在系统的温度高于绝对零度前提下,如果某能级的能量比费米能级低E f ,则该能级(范 围)被电子占据的几率大于50%;若能级的能量比费米能级E f 高,则该能级被电子占据的几率小于50%。而当能级的能量恰等于费米能级E f 时,该能级被电子占随着温度的升高,能量略低于E f 的量子态被电子占据的概率降低,而略高于E f 的量子态被电子占据的概率增大。 在一定温度下(温度不变),费米能级附近的部分能量小于E f 的电子会被激发到E f 以上,温度越高,被激发的概率越大。 费米分布规律不适用于非平衡状态

玻色-爱因斯坦凝聚理论研究

南京师范大学泰州学院 毕业论文(设计) ( 2014 届) 题目:__玻色-爱因斯坦凝聚理论研究_院(系、部):信息工程学院____专业:物理学(师范)____姓名:严加林______学号: 12100134 _____指导教师:朱庆利____ 南京师范大学泰州学院教务处制

摘要 玻色-爱因斯坦凝聚(玻色—爱因斯坦凝聚)是科学巨匠爱因斯坦在80年前预言的一种新物态。这里的“凝聚”与日常生活中的凝聚不同,它表示原来不同状态的原子突然“凝聚”到同一状态(一般是基态)。即处于不同状态的原子“凝聚”到了同一种状态。形象地说,这就像让无数原子“齐声歌唱”,其行为就好像一个玻色子的放大,可以想象着给我们理解微观世界带来了什么。本文针对玻色-爱因斯坦凝聚这一课题,综述了玻色-爱因斯坦凝聚理论的诞生和发展、概念及其形成条件。在凝聚体实现发面,随着科学技术的发展,我们实现了玻色-爱因斯坦凝聚。1995年,随着 JILA 小组、MIT小组、Rice大学的试验成功,玻色-爱因斯坦凝聚到热浪被推上了高潮。本文中还将介绍一些玻色—爱因斯坦凝聚的实验和国内外的研究动态,最后展望了其发展前景。 关键词:玻色-爱因斯坦凝聚,激光冷却与囚禁,原子激光

Abstract Bose Einstein condensation (BEC) is a new material predicted by science master Einstein in 80 years ago. Here the "cohesion" is different from condensation in everyday life. It says that different states of atomic suddenly "condensed" to the same state (usually the ground state). In different states of atoms "condensed" to the same state. Figure ground says, this is like so many atomic "sing in union", amplifying its behavior as a boson, you can imagine what brings to our understanding of the microscopic world. According to Bose Einstein condensates of this topic, reviews the Bose Einstein condensates birth and development, theory and its formation conditions. In the realization of yeast aggregates, with the development of science and technology, we realize the Bose Einstein condensation. In 1995, with the test of JILA group, MIT group, Rice University's success, Bose Einstein condensates to heat was pushed to the climax. This paper will also introduce some of Bose Einstein condensation in the experiment and research dynamic status, and its development prospects. Keywords: Bose Einstein condensation, laser cooling and trapping, Atom laser

第八章 玻色统计和费米统计教案

热力学与统计物理课程教案

第八表 玻色统计和费来统计 8.1 热力学量的统计表达式 一、非简并气体和简并气体 第七章根据玻耳兹曼分布讨论了定域系统和满足经典极限条件(非简并条件)的近独立粒子系统的平衡性质。非简并条件可以表达为: 122 3 2>>?? ? ??= h mkT πN V e α 或 122 32 3 <

奥秘探索~玻色-爱因斯坦凝聚

大多数人初次听到玻色-爱因斯坦凝聚这个术语时,都感到既陌生又神秘。那它到底是什么意思呢?早在1924年,印度物理学家萨蒂延德拉·纳思·玻色(Satyendra Nath Bose,1894-1974)提出了一个分析光子行为的统计力学方法,也就是现在我们所说的“玻色统计”。玻色提出了一种新的统计理论,它与传统的统计理论仅在一条基本假定上不同。传统统计理论假定一个系统中所有粒子是可区别的。基于这一假定的经典统计理论圆满地解释了理想气体定律,取得了非凡的成功。然而玻色认为,我们实际上根本不可能区分两个光子有何不同。玻色讨论了如下问题:将N个相同的小球放进M个标号为1,2,……的箱子中,假定箱子的容积足够大,可能有多少种不同的放法?在此问题的基础上,他采用与传统统计相似的方法得到了一套新的统计理论。玻色的理论无须借助经典物理就可以正确描述光子的行为,但他在发表自己的论文时遇到了一些麻烦,因为人们不相信他的理论,不肯在科学杂志上刊登他的论文。于是玻色就将论文寄给了爱因斯坦这位当时最著名的物理学家。爱因斯坦立刻意识到这篇论文的重要性,并通过自己的影响力将它发表在德国的学术刊物上。也许有人会问,玻色的理论为什么还同时用爱因斯坦的名字命名呢?事实上,爱因斯坦不仅帮助玻色发表论文,而且进一步对他的理论进行深化和推广。爱因斯坦认为,玻色的理论不但对光子适用,而且可以用来研究所有原子的行为。他最终建立了遵守玻色-爱因斯坦统计的粒子的完整量子理论模型。有关结果在1924-1925年的两篇论文中发表。所谓的“玻色-爱因斯坦统计”就这样诞生了。爱因斯坦发现,他建立的方程式表明,原子在非常低的温度下的表现与通常状态相比大为不同。如果原子足够冷,那么就可能会有一些不同寻常的事情发生。它是那样的奇异,以至爱因斯坦无法确定自己的理论是否正确。也许有人认为,爱因斯坦是永远不会错的,但事实上他只对了一半。因为并不是所有的原子都遵守玻色-爱因斯坦统计。现在我们已经知道,粒子实际上可以分成两大类。所有微观粒子均有自旋,其效果等价于粒子的自旋角动量,但又不是由机械运动产生的。奇怪的是,自旋的取值,以普朗克常数为单位,取分立的值。一类粒子自旋取值是半整数,如1/2,3/2,5/2……叫费米子,如电子、质子等,遵守费米-狄拉克统计;另一类取值为整数,如0,1,2……称为玻色子,如光子、介子等,遵守玻色-爱因斯坦统计。爱因斯坦的理论表明,无相互作用的玻色子在足够低的温度下,将发生相变,即全部玻色子会分布在相同的最低能级上。这就是著名的“玻色-爱因斯坦凝聚”(BEC:Bose-Einstein Condensation)如何实现玻色-爱因斯坦凝聚爱因斯坦的预言引起了实验物理学家的广泛兴趣,并部分实现了玻色-爱因斯坦凝聚,例如超导中的库伯电子对无电阻现象,超流体中的无摩擦现象。但因其系统特别复杂,难以对玻色-爱因斯坦凝聚现象进行充分的研究。然而1995年以前,人们一直未能观察到严格意义上的BEC现象。原因何在呢?这是因为BEC的实现条件太苛刻了。它要求凝聚粒子(原子)的德布罗意波彼此重叠,同时又要求原子的内部运动可以忽略。通常情况下,这两种要求是互相矛盾的。任何微观粒子都具有波动性,即一定的粒子相应的具有一定的物质波(德布罗意波),其波长与粒子的动量成反比。德布罗意波彼此重叠一般要求原子靠得很近,从而原子之间会出现交换电子等“强作用”,但这样一来,原子内部的运动就不可忽略了。因此,为了满足原子内部运动可以忽略这个条件,就应使原子彼此间相距很远,也就是应该考虑的是稀薄气体原子。但此时要使德布罗意波彼此重叠,只有增大其波长。为此,可以减少原子的动量,或者说,降低原子气体的温度,使之足够低,导致原子的德布罗意波有足够长,可以彼此重叠,全体进入相同的量子态(一般是能量最低态)。可见,这里的技术关键是使原子气体的温度降到非常低。这也是与低温冷却有关的研究屡次获得诺贝尔物理学奖的原因所在。早在1976年,人们开始寻找实现BEC的办法。当时,诺桑劳、斯特瓦里提出,自旋极化的氢原子实际上是玻色子,一般不会结合为分子。后来,麻省理工学院的克勒普奈尔和格瑞达克、阿姆斯特丹的斯尔威那和瓦尔纳文利用所谓的“蒸汽冷却”法,以后又有人利用“磁陷阱”法冷却自旋极化的氢原子气体,试图实现“玻色-爱因斯坦凝聚”,但都未能取得成功。实现玻色-爱因斯坦凝聚的第一步是激光冷却原子,其基本原理是通过原子与光子的动量交换来达到冷却原子的目的。通过这一步骤可以将原子冷却到10-4开,然后再用蒸发冷却的方法把热的原子蒸发掉,使原子达到所需要的温度。

费米狄拉克统计

费米–狄拉克统计[编辑] 维基百科,自由的百科全书 (重定向自费米-狄拉克统计) 费米–狄拉克统计(英语:Fermi–Dirac statistics),有时也简称费米统计、FD统计,在统计力学中用来描述由大量满足泡利不相容原理的费米子组成的系统中,粒子处在不同量子态上的统计规律。 这个统计规律的命名来源于恩里科·费米和保罗·狄拉克,他们分别独立地发现了这一统计规律。不过费米在数据定义比狄拉克稍早。[1][2] 费米–狄拉克统计的适用对象是,热平衡时自旋量子数为半奇数的粒子。除此之外,应用此统计规律的前提是,系统中各粒子之间的相互作用可以忽略不计。这样,就可以用粒子在不同定态的分布状况来描述大量微观粒子组成的宏观系统。不同的粒子分处于不同的能态上,这一特点对系统许多性质会产生影响。费米–狄拉克统计适用于自旋量子数为半奇数的粒子,这些粒子也被称为费米子。由于电子的自旋量子数为1/2,因此它是费米–狄拉克统计最普遍的应用对象。费米–狄拉克统计是统计力学的重要组成部分,它利用了量子力学的一些原理。 目录 [隐藏] ? 1 概述 ? 2 历史 ? 3 费米–狄拉克分布 o 3.1 粒子的能量分布 ? 4 量子范畴和经典范畴 ? 5 参考文献 ? 6 相关条目 概述[编辑] 函数反对称,在费米子的某一个能级上,最多只能容纳一 个粒子。因而符合费米–狄拉克统计分布的粒子,当他们 处于某一分布(“某一分布”指这样一种状态:即 在能量为的能级上同时有个粒子存在着,不难 想象,当从宏观观察体系能量一定的时候,从微观角度观察体系可能有很多种不同的分布状态,而且在这些不同的分布状态中,总有一些状态出现的几率特别的大,而其中出现几率最大的分布状态被称 为最可几分布)时,体系总状态数为:

《固体物理》期末复习要点

《固体物理》期末复习要点 第一章 1.晶体、非晶体、准晶体定义 晶体:原子排列具有长程有序的特点。 非晶体:原子排列呈现近程有序,长程无序的特点。 准晶体:其特点是介于晶体与非晶体之间。 2.晶体的宏观特征 1)自限性2)解理性3)晶面角守恒4)各向异性 5)均匀性6)对称性7)固定的熔点 3.晶体的表示,什么是晶格,什么是基元,什么是格点 晶格:晶体的内部结构可以概括为是由一些相同的点在空间有规则地做周期性无限分布,这些点的总体称为晶格。 基元:若晶体有多种原子组成,通常把由这几种原子构成晶体的基本结构单元称为基元。 格点:格点代表基元的重心的位置。 4.正格和倒格之间的关系,熟练掌握典型晶体的倒格矢求法 5.典型晶体的结构及基矢表示

6.熟练掌握晶面的求法、晶列的求法,证明面间距公式 7.什么是配位数,典型结构的配位数,如何求解典型如体心、面心的致密度。 一个粒子周围最近邻的粒子数称为配位数。 面心:12 体心:8 氯化铯(CsCl ):8 金刚石:4 氯化钠(NaCl ):6 8.什么是对称操作,有多少种独立操作,有几大晶系,有几种布拉维晶格,多少个空间群。 对称操作: 使晶体自身重合的动作。 根据对称性,晶体可分为7大晶系, 14种布拉维晶格,230个空间群。 9.能写出晶体和布拉维晶格 10.了解 X 射线衍射的三种实验方法及其基本特点 1)劳厄法:单晶体不动,入射光方向不变。 2)转动单晶法:X 射线是单色的,晶体转动。 3)粉末法:单色X 射线照射多晶试样。 11.会写布拉格反射公式 12. 什么是几何结构因子。 几何结构因子:原胞内所有原子的散射波,在所考虑方向上的振幅与一个电子的散射波的振幅之比。 第二章 1.什么结合能,其定位公式 晶体的结合能就是将自由的原子(离子或分子) 结合成晶体时所释放的能量。 2.掌握原子间相互作用势能公式,及其曲线画法。

超冷分子的诞生与分子玻色—爱因斯坦凝聚

超冷分子的诞生与分子玻色—爱因斯坦凝聚 文/金政 一、介绍 在1985~1986年,朱棣文教授(Steven Chu, 目前在美国的劳伦斯柏克莱国家实验室Lawrence Berkeley National Laboratory, LBNL)与William D. Phillips教授(目前在美国的国家标准及技术中心National Institute of Standards and Technology, NIST)成功的以雷射捕捉和冷却中性原子,此技术为原子物理学开启了一个新的纪元。这项成就加上Claude Cohen-Tannoudji教授(目前在巴黎的Ecole Normale Supérieure, ENS)所作的理论研究于1997年获颁了诺贝尔物理奖。 近年来科学家对超冷原子气体的研究已有了长足的进展。在1995 年有一个重大的突破,科学家将具有玻色子性质的原子进一步冷却,并观察到原子玻色—爱因斯坦凝聚(Bose-Einstein Condensation),简称为玻色凝聚。由于这个实验,JILA的Eric A. Cornell教授、Carl E. Wieman教授与麻省理工学院的Wolfgang Ketterle教授分享了2001年的诺贝尔物理奖。原子的玻色凝聚导致了许多重要的实验发现;例如,第一个物质波放大器[1]、物质波的孤立子(soliton)[2]和涡流(vortex)[3]以及在光晶格(optical lattices)中的量子相变(quantum phase transition)[4]。 在超冷原子气体的研究中我们提出了一个新的构想:是否也能对分子气体做类似的量子控制?若答案是肯定的,由分子组成的量子气体将能对相位和谐(phase coherent)的化学反应有全新的贡献;分子气体也可能提供更高精确度的精密量测,并加深我们对于费米系统中的库柏配对(Cooper pairing)现象及其超导或超流性质的了解。那么,我们怎样去产生分子的超冷气体?分子气体在什么样的情形下会产生玻色—爱因斯坦凝聚?利用分子气体的玻色凝聚可以进行什么样的实验?在这篇文章里,我将会对新近的分子气体实验和令人惊异的结果—费米原子的实验首先达到分子玻色凝聚的里程碑—做一个简介。 二、冷却分子气体 如同原子的量子气体,分子的量子气体意指每个量子态的平均分子数是一或大于一。在如此高的相空间密度下,气体的行为完全被量子统计所支配,而形成一个量子简并气体(quantum degenerate gas)。在这个机制下,玻色气体会产生玻色—爱因斯坦凝聚,许多玻色子会占据同一个巨观量子态。另一方面,对费米气体来说,由于鲍立不兼容原理(Pauli exclusion principle)禁止两个或更多个相同的费米子占有同一个量子态,系统于是形成一个简并费米气体(degenerate Fermi gas)。 达到量子简并的条件是:原子的德布洛依波长(de Broglie wavelength)必须超过粒子之间的平均距离,而气体必须被冷却到极低温才能达到此种状态。在原子气体的实验中,冷却降温通常由两步骤组成。首先,透过雷射冷却与局限的技术将原子初步的减速并限制其活动;其次,将较“热”的原子从位能阱中移除,促使得剩下的原子进一步降温(蒸发冷却,evaporative cooling ),直到达成量子简并态。 不过,雷射冷却的方法对分子来说是无效的,因为雷射冷却的高效率是倚赖原子简单的能阶结构和其能够被连续激发的特性,这种特性允许原子透过连续散射数千个光子而减速。但对于分子而言,复杂的分子振动与旋转的能阶结构,使得利用连续雷射激发致冷几乎是不可能的。想要获得超冷的分子气体我们必须应用其他策略。 近几年所发展出冷却分子的一种方法是倚赖缓冲 物理双月刊(廿七卷二期)2005年4月

实验十九_金属中电子的费米—狄拉克分布验证22

费米—狄拉克分布实验验证 【实验目的】 1.通过实验验证费米—狄拉克分布。 2.学会一种实验方法及处理实验数据的技巧。 【实验原理】 近代电子理论认为金属中的电子按能量的分布是遵从费米――狄拉克的量子统计规律的,费米分布函数为 (1) 金属中的每个电子都占有一定能量的能级,这些能级分布密集,形成能带。当其温度为绝对零度时,金属中电子的平均能量并不为零。此时金属中的电子将能量从零到能量为εf(εf称费米能级,εf的值随金属的不同而不同)的能级全部占据。而高于费米能级的那些能级全部空着,没有电子去占据。如图(1)中的实线所示,当金属的温度为1500℃,则靠近费米能级的少数电子由于热运动的增加,其能量超过εf值,因而从低于费米能级的能带跃迁到高于费米能级的能带上去,其分布曲线如图(1)中的虚线所示。我们的实验是在灯丝灼热(约1400℃~1500℃)的情况下进行的,因此我们实验所测的结果也只是靠近费米能级的一部分,如图(1)中矩形所包的虚线部分。对(1)式求导可得 (2) (1)、(2)两式的理论曲线如图(1)和图(2)所示。 由于金属内部电子的能量无法测量,只能对真空中热发射电子的动能分布进行测量。由于电子在真空中的热运动与电子在金属内部的运动情况完全不同,这是因为金属内部存在着带正电的原子核,电子不但有热运动的动能,而且还具有势能,真空中的电子就不存在势能,εf=0。由于电子从金属内部逃逸到真空中时,还要消耗一部分能量用作逸出功,因此从金属内部电子的能量ε减去逸出功A,就可得到真空中热发射电子的动能εk εk=ε-A (3)

此外,在真空与金属表面附近还存在着电子气形成的偶电层,就是说逸出金属表面的电子,还要消耗一些能量穿越偶电层,根据前苏联科学院院 士,Я.И符伦克尔和И.E塔姆的理论,电子穿越偶电层所需的能量,也就是该金属的费米能级εf。考虑到这两个因素之后应对费米函数作适当的修正,修正后的费米函数应为: (4) 对(4)式求导得 (5) 由(4)、(5)两式可以看出,真空中发射电子的动能分布也遵从费米—狄拉克分布。 【实验方法及数据处理】 本实验是利用理想二极管的特殊结构,在管子的外面套一个螺线管,并且通以直流电流,则螺线管中的磁感应强度B的方向与管子的轴线(灯丝)平行,在二极管不加板压的情况下(u p=0),从灯丝发射出电子,沿半径方向飞向园柱面板极(阳极),由于阳板电压为零,所以电子在不受外电场力的作用下,保持其初动能飞向阳极形成阳极饱和电流,其线路如图(3)所示。 由于电子的初动能各不相同,如何将它们按相等的动能间隔区分开来,并且求出电子数目的相对值,便成为本实验的焦点。由图(4)可知,从二极管灯丝(即园心)发射出的电子,沿半径方向飞向园柱面阳极(即园周),在螺线管所产生的磁感应强度B的作用下,电子将受到罗仑兹力F=-ev× 匀速圆周运动。罗仑兹力是向心力,它不改变电子的动能,由于v⊥B,所以罗仑兹力公式可用下式表示: (6) (7) (7)式中的v是电子沿二极管半径方向的速度,或者电子的速度在半径方向的分量,R是电子作匀速圆周运动的半径,m是电子的质量,B是螺线管中间部

相关文档
相关文档 最新文档