文档库 最新最全的文档下载
当前位置:文档库 › 一种大角度范围的高精度超声波测距处理方法

一种大角度范围的高精度超声波测距处理方法

一种大角度范围的高精度超声波测距处理方法
一种大角度范围的高精度超声波测距处理方法

第45卷 第4期厦门大学学报(自然科学版)

Vol.45 No.4 2006年7月

Journal of Xiamen University (Nat ural Science )

J ul.2006 

一种大角度范围的高精度超声波测距处理方法

收稿日期:2005209222

基金项目:国家自然科学基金(D0602240476018),厦门大学科技创

新基金(00502K70013)资助

作者简介:孙牵宇(1982-),男,硕士研究生.3通讯作者:xmxu @https://www.wendangku.net/doc/09684310.html,

孙牵宇,童 峰,许肖梅3

(厦门大学水声通信与海洋信息技术教育部重点实验室,福建厦门361005)

摘要:针对移动机器人超声定位中超声收发传感器角度偏向造成的测距精度下降,本文提出了一种基于归一化波形参数

特征修正的超声测距系统.传统的增益控制、可变阈值等抗起伏措施对抑制传播过程中的幅度起伏造成的测距误差效果较好,但如果传感器角度偏向使波形发生畸变,此类方法仍将造成较大误差.本文通过对传感器角度偏向造成接收信号波形畸变及测距精度下降的理论分析及实验研究,建立了超声接收信号归一化波形特征脉宽与前沿变化的关系,设计了基于单片机实现误差校正的大偏向角高精度超声波测距系统.测距实验结果表明本系统显著减小了传感器角度偏向引起的测距误差,在不同的距离上使测距精度平均提高了1.6%,同时具有成本低、使用简单、方便的特点.

关键词:移动机器人定位;超声测距;角度偏向中图分类号:TP 274.53 文献标识码:A 文章编号:043820479(2006)0420513205 由于超声波测距有不受光线影响、结构简单、成本低、信息处理简单可靠、易于小型化和集成化等优点,因此,广泛应用于移动机器人定位及导航系统[1,2].

超声测距的精度直接决定了机器人超声波定位的精度性能,目前许多提高超声波测距精度的研究集中在考虑传播过程中幅度起伏造成的误差[3~6],采用增益控制、可变阈值、零交叉点等抗起伏措施保证触发时刻的稳定,实现超声信号飞行时间(TOF ,time of flight )检测精度的提高.上述方法取得精度提高的前提是接收信号的归一化波形保持不变.

Lamancus [7]的研究表明,当超声收发传感器轴线存在一定偏角、超声波信号偏向入射时接收信号波形会产生畸变,特别是偏角比较大的时候,如移动机器人定位中在机器人活动范围内当发射与接收传感器处于大偏向角位置时,波形由于信号斜入射而畸变大大降低了传统方法下的测距精度.这个问题严重影响了超声波定位系统在自动导引车高精度停靠等需要高定位精度、大偏角范围场合的应用.如童峰等人研制的机器人超声波导航系统[8],在小偏向角度下(轴线方向上)定位精度为1cm ,在大偏向角度下精度下降为5cm.

本文根据波形畸变理论和实验的分析,针对传感器的发射角和入射角所引起的误差,提出了一种可适用于大角度范围工作条件的处理方法并设计了基于单

片机的系统,实现简单方便.实验结果表明:本系统最终在大角度测距时使测距精度平均提高了1.6%.

1 超声测距系统原理及影响测距精度

的因素

1.1 影响测距精度的因素

除声速变化、噪声等影响因素外,声波在空气介质中声速的变化及散射,衰减的随机不均匀性,引起接收信号在幅度和时间轴上的起伏,是造成测距误差的一个主要原因.图1所示为固定门限电平检测下由幅度起伏引起触发电路的信号前沿不同,产生飞行时间(Time of flight )检测误差,起伏变化越大引起的误差就越大.针对这个问题提出的可变门限[3]、前沿线性前推[4]、零交叉点检测等处理方法,这些方法一个共同的前提就是幅度起伏时,信号的归一化波形基本不变(如图1中实线波形所示),如果波形发生了畸变(如图1 图1 幅度起伏(虚线是畸变波形)

 Fig.1 Amplitude fluctuations (dashed :distorted wave 2

form )

中虚线波形所示),仍将造成较大的检测误差.

1.2 信号传输过程分析及斜入射影响

(1)接收超声脉冲信号波形的数学模型[9,10]

超声脉冲信号接收信号的波形和发射传感器、发

射激励、空气对超声信号的吸收和散射、发射角、入射角有关.为简化分析起见,我们对这些作用因素进行建模分析如图

2.

 图2 信号传播过程

 Fig.2 Process of transmission

假定S (t )为发射端加的激励信号,则:Rec (t ,θT ,d ,θR )=S (t -d c

)

?h trans (t ,θT )? 1

d

h air (t ,d )?h rec t ,θR

其中:h trans t ,θT =h θt ,θT ?h T t ,h rec t ,θR

=h θt ,θR ?h R t ,Rec (t ,θT ,d ,θR )为接收波形,h trans ,h air 和h rec 分别是以θT 发射角时的发射传感器、空气介质的吸收和散射,θR 为入射时的接收传感器的脉冲响应.h θ是角度偏向的脉冲响应,h T 和h R 是传感器的脉冲响应.

式中空气介质h air 造成的接收波形变化在较近距离内可近似认为只有幅度上的影响[5],而超声换能器本身的特性h T 和h R 对波形的影响是固定的.因此,接收信号波形主要受传感器发射角和接收角的影响,下面分析斜入射对接收信号波形的影响.

(2)发射角和入射角对接收信号的影响

从接收传感器进行理论分析,在远场时(一般应用场合均满足),入射超声波可看成是平面波,令入射波对传感器的激励强度正比于入射波与传感器面的相交区域的面积,则传感器的输出信号也正比于这个相交区域的面积.对圆形入射面的接收传感器,如图3.

当入射的平面波垂直入射时,对传感器的激励发生在同一时刻,同一作用强度,则其脉冲响应可看作一冲激信号,即垂直入射时不影响输出波形的形状和频谱;当入射波以角度θ入射时,入射平面波从传感器面的一端开始扫过整个传感器面,在任一时刻相交区域是传感器面上的一条弦,则对传感器的激励强度曲线即脉冲响应曲线为传感器面一端到另一端的一族平行弦的弦长,时域上是一个半椭圆[9]:

 图3 信号斜入射

 Fig.3 Signal reception under angular misalignment

h rec (t ,θ

)=

4c co s

θπD sin θ

1-2t

t w

2

,-

t w

2

t w

2

0, 其它

其中,D 是圆形接收换能器的直径,c 为空气中声速,t w 是入射平面波从传感器面的一端开始扫过整个传感器面所用的时间.根据传感器的互易原理,发射传感器发射角对接收信号的脉冲响应可写为:

h rec t ,θ=h trans t ,θ=h θt

所以,当测距超声波信号垂直入射传感器时,h θ(t )表现为全通滤波器,接收信号波形与两传感器互相对准时的接受信号波形基本一致,而当发射和接收出现越来越大的角度时,接收波形等效于脉冲响应为一越来越宽的椭圆曲线的滤波器,频域上表现为截止频率趋低的低通滤波器,此时所得到的接收信号波形与两传感器互相对准时的接受信号波形有显著不同.因此,可变门限[4]、前沿线性前推[5]、零交叉点等处理方法在发射接收角度较小的条件下可有效提高精度,但对于较大的角度偏向造成波形畸变,效果将大大下降.

2 波形前沿与波形特征宽度关系研究

针对这个问题,本文提出根据信号畸变中波形特征参数的变化对检测误差进行校正的思路.考虑到移动机器人超声波定位系统中通常要求超声测距部分结构简单、实现方便,本文选取易于获取的1/2峰值为门限所得信号脉宽作为波形特征宽度,并通过实验研究其与前沿变化的关系.

2.1 实验数据

在温度为28℃的条件下,在实验室内,设置收发传感器的距离为35cm ,固定接收传感器,使发射传感器在以接收传感器为圆心,半径分别为35cm 的圆弧上移动,移动的角度范围在0°到60°之间.为补偿斜入射造成信号幅度的下降,对波形进行归一化处理后,测量各偏向角度下接收信号1/2峰值处的波形特征宽度T w 和波形前沿的位置T p .图4为

?415?厦门大学学报(自然科学版) 2006年

 图4 不同偏向角度下的接收波形

 Fig.4 Reception waveforms at different angular misalignment

收发传感器相距35cm时同一触发时间下测得的入射角度分别为0°,30°,40°,60°的接收波形.可发现随着偏向角度的加大,接收归一化波形的特征宽度先减小再增加,而波形前沿先稍微前移,然后一直向后移.由此可知,对归一化处理后的波形进行阈值检测虽可抑制幅度起伏引起的触发时刻漂移造成的TO F检测误差,但在大偏向角情况下触发电路的信号前沿前移,检测结果将明显小于真实值,产生较大误差.

2.2 误差修正原理

图5是根据距离为35cm处测得的数据而画出前沿触发时刻和特征宽度随偏向角的变化曲线.

定义

 图5 T w和T p的变化曲线

 Fig.5 Curves of T w and T p

△T w为接收波形特征宽度相对于入射角0°(即垂直入射)时的变化量,则根据图5曲线可看出在入射角小于40°时,波形的前沿变化不大(△T w<0.2ms),此时不会产生大的门限检测的误差;而偏向角在40°~60°之间时,△T w>0.2ms,波形的前沿有较明显变化,影响了门限检测的精度,造成较大误差.我们本着设计简单、易实现的初衷,根据在大偏角情况下前沿到达时刻和波形特征宽度分别呈减小和增加的趋势,提出下列修正误差的方法:

(1)当0.4ms>△T w>0.2ms时,T2=T1+ 0.04ms;其中,T1是误差补偿前的前沿位置,T2是误差补偿后的检测结果.

(2)当△T w>0.4ms时,T2=T1+0.06ms;

这样我们就可以通过获得△T w的值来对T p进行补偿,经过校正后所得到的前沿触发时刻T2再减去一固定偏移值即可得到不同偏向角条件下的高精度TO F检测结果.

3 新的高精度处理方法

3.1 系统设计

根据上述分析,我们设计了基于单片机的大角度超声波高精度测量系统.该测距系统结构框图如图6

?

5

1

5

?

第4期 孙牵宇等:一种大角度范围的高精度超声波测距处理方法

 图6 系统框图

 

Fig.6 Block chart of the proposed system

所示.用单片机产生脉冲信号通过传感器发出40k Hz

的超声波.接收信号经放大、带通滤波,然后经过A GC (自动增益控制)电路使信号幅度保持稳定,通过检波电路检出波形包络并经过1/2峰值门限的比较器,输出信号送单片机,单片机记录信号前沿触发时刻T p (用来计算测距的距离),及持续宽度T w (波形特征宽度,用来修正误差),并根据上述的△T w 和T p 关系进行误差校正,最后输出高精度测距数据.

3.2 实验结果

本实验的数据是在实验室内,温度为28℃的条件下得出的.固定接收传感器,使发射传感器在以接收传感器为圆心,270mm ,470mm ,570mm ,900mm 的圆弧上移动,移动的角度范围在0°到60°之间(-60°到0°范围数据可根据对称性获得).考虑到超声传感器本身的发射接收指向较尖锐(本实验中采用

的传感器3dB 主波束角为±40°

),大偏角接收时信噪比大大下降,实验设置的工作距离在1m 内.

为了比较修正前后的精度变化情况,本文对A GC 增益控制稳定信号幅度后直接检测和本文方法的测距精度进行比较实验,考虑到可变阈值和零交叉点等方法和增益控制方法本质上都是针对幅度起伏的,因此当波形畸变时,其测距误差变化趋势大致相同.根据实验数据画出在4个不同距离上修正前和修正后的测距性能对比图(图7).从图7可看出,随着偏向角度的增大,增益控制检测的测距误差也逐渐增大,特别是在大于40°后误差增加明显.当采用本文提出的误差修正处理后,误差得到较好的补偿,1m 范围内大偏向角(±60°)情况下测距精度从12.24mm 显著提高到了3.4mm .

4 结 论

为了提高移动机器人超声定位等需要大工作范围场合下的超声测距精度,

本文通过对大角度偏向造成 图7 测距实验结果

 Fig.7 Experimental results of distance measurement

信号波形畸变的研究,在超声测距系统中引入了角度

偏向误差修正技术,利用接收波形的特征宽度来对波形前沿进行校正,使门限检测飞行时间TO F 的精度提高.

实验结果表明此修正方法简单实用,与增益控制

检测处理方法相比超声测距系统的大偏角(±60°

)工作精度明显提高.且系统结构简单、实现方便,适用于自动导引车高精度停靠、机器人高精度定位、虚拟现实系统人机交互输入等需要较大工作角度、高测距精度的场合.

考虑到本文采用的超声传感器指向特性较尖锐(3

dB 主波束角为±40°

),本实验中的大偏角测距距离较小(1m 内),但这已能满足自动导引车停靠等需较近距离、高精度定位的场合的要求.若采用具有更宽的主波束角的超声波传感器,工作距离将可进一步扩大.同时,本文采用的波形修正参数只适用于本实验中采用的换能器及滤波电路,对于不同指向特性、频率特性的换能器及滤波电路,本文方法中的修正参数需重新设定.

?615?厦门大学学报(自然科学版) 2006年

参考文献:

[1] 贾莉娜.高精度的超声波测距系统在移动机器人导航方

面的应用[J ].计量与测试技术,2004(9):23-26.

[2] 罗本成,原魁,楚坤水,等.一种超声测距的鲁棒自适应建

模方法[J ].机器人,2002,24(1):554-558.

[3] 杨劲松,王敏,黄心汉.超声波可变阈值测距装置[J ].电

子技术应用,1998,24(7):7-9.

[4] 王春麟.提高超声回波检测测距精度的方法[J ].电测与

仪表,1995,(2):22-24.

[5] 童峰.自动导引车超声导引系统研究[D ].厦门:厦门大

学,2000.

[6] Figueroa J F ,Doussis E.A hardware 2level method to im 2

prove the range and accuracy of an ultrasonic ranging sys 2tem[J ].ACUSTICA ,1993,78:226-232.

[7] John S Lamancusa ,Fernando Figueroa J.Ranging errors

caused by angular misalignment between ultrasonic trans 2ducer pairs[J ].J.Acoust Soc.American ,1990,87(3):1327-1335.

[8] 童峰,许天增.一种移动机器人超声波导航系统[J ].机器

人,2002,24(1):55-61.

[9] Teruko Yata ,Lindasy Kleeman ,Shin ′ichi Yuta.Fast 2bea 2

rin measurement with a single ultrasonic transducer [J ].The International Journal of Robotics Research ,1998,17(11):1202-1213.

[10] Lindsay kleeman ,Oman Kuc.Mobile robot sonar for tar 2

get localization and classification [J ].The International Journal of Robotics Research ,1995,14(4):295-318.

A High Precision U ltrasonic R anging Method under

Misalignment of T ransducer P airs

SUN Qian 2yu ,TON G Feng ,XU Xiao 2mei 3

(Key Laboratory of Underwater Communication and Marine Information Technology of MO E ,

Xiamen University ,Xiamen 361005,China )

Abstract :

To tackle the precision degradation caused by misalignment of transducer pairs in mobile robot localization ,an adjust 2

ment strategy based on normalized waveform parameter is proposed to derive a high precision method for wide 2field ultrasonic ran 2ging.Presently most investigation on high precision ultrasonic ranging focused on the amplitude fluctuation induced by random air medium.Nonetheless ,previous research indicated that the impact of transducer misalignment on reception signal waveform can be modeled as a low 2pass filter ,which will cause waveform distortion of reception signal.Thus the performance of traditional approaches to improve the ultrasonic ranging precision such as automatic gain control (A GC )or variable threshold will be seriously affected un 2der misalignment of transducer pairs.In this paper ,with theoretical analysis and experimental research on the impacts of transducer misalignment ,the relationship between the rising edge and characteristic width of normalized waveform is investigated ,which is used to develop an adjustment approach and design a SCM (Single Chip Microcomputer )based high precision wide 2field ultrasonic ranging system.The experimental results show this system greatly improves the ranging precision under transducer misalignment ,validating the effectiveness and convenience of the proposed https://www.wendangku.net/doc/09684310.html,pared with traditional A GC type method ,it improves the ranging preci 2sion by about 1.6%.

K ey w ords :mobile

robot localization ;ultrasonic ranging ;angular misalignmen

?

715?第4期 孙牵宇等:一种大角度范围的高精度超声波测距处理方法

一种大角度范围的高精度超声波测距处理方法

第45卷 第4期厦门大学学报(自然科学版) Vol.45 No.4 2006年7月 Journal of Xiamen University (Nat ural Science ) J ul.2006  一种大角度范围的高精度超声波测距处理方法 收稿日期:2005209222 基金项目:国家自然科学基金(D0602240476018),厦门大学科技创 新基金(00502K70013)资助 作者简介:孙牵宇(1982-),男,硕士研究生.3通讯作者:xmxu @https://www.wendangku.net/doc/09684310.html, 孙牵宇,童 峰,许肖梅3 (厦门大学水声通信与海洋信息技术教育部重点实验室,福建厦门361005) 摘要:针对移动机器人超声定位中超声收发传感器角度偏向造成的测距精度下降,本文提出了一种基于归一化波形参数 特征修正的超声测距系统.传统的增益控制、可变阈值等抗起伏措施对抑制传播过程中的幅度起伏造成的测距误差效果较好,但如果传感器角度偏向使波形发生畸变,此类方法仍将造成较大误差.本文通过对传感器角度偏向造成接收信号波形畸变及测距精度下降的理论分析及实验研究,建立了超声接收信号归一化波形特征脉宽与前沿变化的关系,设计了基于单片机实现误差校正的大偏向角高精度超声波测距系统.测距实验结果表明本系统显著减小了传感器角度偏向引起的测距误差,在不同的距离上使测距精度平均提高了1.6%,同时具有成本低、使用简单、方便的特点. 关键词:移动机器人定位;超声测距;角度偏向中图分类号:TP 274.53 文献标识码:A 文章编号:043820479(2006)0420513205 由于超声波测距有不受光线影响、结构简单、成本低、信息处理简单可靠、易于小型化和集成化等优点,因此,广泛应用于移动机器人定位及导航系统[1,2]. 超声测距的精度直接决定了机器人超声波定位的精度性能,目前许多提高超声波测距精度的研究集中在考虑传播过程中幅度起伏造成的误差[3~6],采用增益控制、可变阈值、零交叉点等抗起伏措施保证触发时刻的稳定,实现超声信号飞行时间(TOF ,time of flight )检测精度的提高.上述方法取得精度提高的前提是接收信号的归一化波形保持不变. Lamancus [7]的研究表明,当超声收发传感器轴线存在一定偏角、超声波信号偏向入射时接收信号波形会产生畸变,特别是偏角比较大的时候,如移动机器人定位中在机器人活动范围内当发射与接收传感器处于大偏向角位置时,波形由于信号斜入射而畸变大大降低了传统方法下的测距精度.这个问题严重影响了超声波定位系统在自动导引车高精度停靠等需要高定位精度、大偏角范围场合的应用.如童峰等人研制的机器人超声波导航系统[8],在小偏向角度下(轴线方向上)定位精度为1cm ,在大偏向角度下精度下降为5cm. 本文根据波形畸变理论和实验的分析,针对传感器的发射角和入射角所引起的误差,提出了一种可适用于大角度范围工作条件的处理方法并设计了基于单 片机的系统,实现简单方便.实验结果表明:本系统最终在大角度测距时使测距精度平均提高了1.6%. 1 超声测距系统原理及影响测距精度 的因素 1.1 影响测距精度的因素 除声速变化、噪声等影响因素外,声波在空气介质中声速的变化及散射,衰减的随机不均匀性,引起接收信号在幅度和时间轴上的起伏,是造成测距误差的一个主要原因.图1所示为固定门限电平检测下由幅度起伏引起触发电路的信号前沿不同,产生飞行时间(Time of flight )检测误差,起伏变化越大引起的误差就越大.针对这个问题提出的可变门限[3]、前沿线性前推[4]、零交叉点检测等处理方法,这些方法一个共同的前提就是幅度起伏时,信号的归一化波形基本不变(如图1中实线波形所示),如果波形发生了畸变(如图1 图1 幅度起伏(虚线是畸变波形)  Fig.1 Amplitude fluctuations (dashed :distorted wave 2 form ) 中虚线波形所示),仍将造成较大的检测误差.

高精度超声波测距系统设计

高精度超声波测距系统设计。 引言 利用超声波测量距离的原理可简单描述为:超声波定期发送超声波,遭遇障碍物时发生反射,发射波经由接收器接收并转化为电信号,这样测距技术只要测出发送和接收的时间差, 然后按照下式计算,即可求出距离: 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求, 因此,广泛应用于倒车提醒、建筑工地、工业现场等的距离测量。目前的测距量程上能达到百米数量级,测量的精度往往能达到厘米数量级。本文在分析现有超声波测距技术基础之上, 给出了一种改进方案,测量精度可达毫米级。 2 系统方案分析与论证 2.1 影响精度的因素分析 根据超声波测距式(1)可知测距的误差主要是由超声波的传播速度误差和测量距离传播 的时间误差引起的。 对于时间误差主要由发送计时点和接收计时点准确性确定,为了能够提高计时点选择的准确性,本文提出了对发射信号和加收信号通过校正的方式来实现准确计时。此外,当要求测距误差小于 1 mm时,假定超声波速度C=344 m/s(20℃室温),忽略声速的传播误差。则测距误差s△t<0.000 002 907 s,即2.907 ms。根据以上过计算可知,在超声波的传播速度是准确的前提下,测量距离的传播时间差值精度只要在达到微秒级,就能保证测距误差小于1 mm的误差。使用的12 MHz晶体作时钟基准的89C51单片机定时器能方便的计数到1μs的精度,因此系统采用AT89S51的定一时器能保证时间误差在 1 mm的测量范围内。

超声波测距仪的设计说明

题目:超声波测距仪的设计 超声波测距仪的设计 一、设计目的: 以51单片机为主控制器,利用超声波模块HC-SR04,设计出一套可在数码管上实时显示障碍物距离的超声波测距仪。 通过该设计的制作,更为深入的了解51的工作原理,特别是51的中断系统及定时器/计数器的应用;掌握数码管动态扫描显示的方法和超声波传感器测距的原理及方法,学会搭建51的最小系统及一些简单外围电路(LED显示电路)。从中提高电路的实际设计、焊接、检错、排错能力,并学会仿真及软件调试的基本方法。 二、设计要求: 设计一个超声波测距仪。要求: 1.能在数码管上实时显示障碍物的实际距离; 2.所测距离大于2cm小于300cm,精度2mm。 三、设计器材: STC89C52RC单片机 HC-SR04超声波模块 SM410561D3B四位的共阳数码管 9014三极管(4) 按键(1) 电容(30PF2,10UF1) 排阻(10K),万用板,电烙铁,万用表,5V直流稳压电源,镊子,钳子,

导线及焊锡若干,电阻(200欧5)。 四、设计原理及设计方案: (一)超声波测距原理 超声测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。基本的测距公式为:L=(△t/2)*C 式中 L——要测的距离 T——发射波和反射波之间的时间间隔 C——超声波在空气中的声速,常温下取为344m/s 声速确定后,只要测出超声波往返的时间,即可求得L。 根据本次设计所要求的测量距离的围及测量精度,我们选用的是HC-SR04超声波测距模块。(如下图所示)。此模块已将发射电路和接收电路集成好了,硬件上不必再自行设计繁复的发射及接收电路,软件上也无需再通过定时器产生40Khz的方波引起压电陶瓷共振从而产生超声波。在使用时,只要在控制端‘Trig’发一个大于15us宽度的高电平,就可以在接收端‘Echo’等待高电平输出。单片机一旦检测到有输出就打开定时器开始计时。 当此口变为低电平时就停止计时并读出定时器的值,此值就为此次测距的时间,再根据传播速度方可算出障碍物的距离。 (二)超声波测距模块HC-SR04简要介绍 HC-SR04超声波测距模块的主要技术参数使用方法如下所述: 1. 主要技术参数: ①使用电压:DC5V ②静态电流:小于2mA ③电平输出:高5V

一种高精度超声波测距系统的研制

一种高精度超声波测距系统的研制3 赵海鸣,卜英勇,王纪婵 (中南大学机电工程学院, 湖南长沙 410083) 摘 要:介绍了超声波测距的原理.分析了超声波测距产生误差的主要原因。提出通过温度测量修正超声波传播速度,应用双比较器整形结合软件准确确定回波前沿以提高空气中超声波测距精度的方法。在此基础上,设计了相应的超声波测距系统电路和软件。实验表明,该测距系统测量精度高,电路简单。 关键词:超声波测距;测距精度;回波前沿;系统设计 中图分类号:T B559 文献标识码:A 文章编号:1005-2763(2006)03-0062-04 D evelop m en t of an Ultra son i c D ist ance M ea sure m en t Syste m w ith H i gh Prec isi on Zhao Hai m ing,B u Yinyong,W ang J ichan (College of Mechanical and Electrical Engineering,Central S outh University,Changsha,Hunan410083,China) Abstract:I n this paper,the p rinci p le of ultras onic distance measure ment is described,the main err or s ources of ultras onic distance measure ment are analyzed als o.A method of i m p r oving p recisi on of ultras onic distance measurement in air,in which the trans m issi on s peed of ultras onic wave is corrected by measured air te mperature and the f or ward edge of receive wave can be de2 ter m ined accurately by use of the t w o comparing circuits of ultra2 s onic signal in combinati on with the s oft w are.Based on the ide2 a,the circuit and s oft w are of ultras onic distance measure ment syste m have been designed.Experi m ent indicates that the meas2 uring p recisi on of ultras onic distance measurement system is higher and its circuit is si m p ler. Key W ords:U ltras onic wave distance measure ment,Precisi on of distance measure ment,For ward edge of receive wave,Syste m design 超声波测距是一种非接触式检测方式,在使用中不受光照度、电磁场、被测物色彩等因素的影响,加之其信息处理简单、速度快、成本低,在机器人避障和定位、车辆自动导航、液位测量等方面已经有了广泛的应用。本文介绍一种以89C52单片机为核心的低成本、高精度、微型化的数字显示超声波测距系统的硬件电路和软件设计。 1 超声测距原理 用于距离测量的超声波通常是由压电陶瓷的压电效应产生,这种压电陶瓷传感器有两块压电晶片和一块共振板,当给它的两极加频率等于晶片固有频率的脉冲信号时,压电晶片就会发生共振,并带动共振板振动,从而产生超声波,超声波经固体表面或液体反射折回,由同一传感器或相邻布置的另一传感器接收,测量超声波整个运行时间t,计算出发射点与反射点的距离s: s=c?t/2(1)式中:c为超声波的传播速度,m/s。超声波在固体中传播速度最快,在气体中传播速度最慢,而且声速受温度影响最大。超声波在空气中的传播速度为: c=331.4×1+T/273(2)式中,T为环境摄氏温度,℃。 超声波从超声传感器发出,在空气中传播,遇到被测物反射后,再传回超声传感器。整个过程,由于吸收衰减和扩散损失,声强随目标距离增大而衰减;同时超声波的衰减随频率增大而成指数增加,但频率越高,指向性越强,这一点有利于距离测量。本文讨论在空气中测量距离,选用40kHz的超声探头。超声传感器接收到的信号的幅值随距离增大而减小,远目标回波信号幅度小、信噪比低,用固定阀值的比较器检测回波,可能导致越过门槛的时刻前后移动,从而影响计时的准确性,这会影响测量的准确度。为了提高超声波测距的精度,需要准确地检测到第一个回波脉冲前沿的到达时间,为此,提出双比较器整形确定回波前沿的方法。 I SS N1005-2763 CN43-1215/T D 矿业研究与开发第26卷第3期 M I N I N G R&D,Vol.26,No.3 2006年6月 Jun.2006 3收稿日期:2005-08-09 基金项目:国家自然科学基金资助项目(50474052). 作者简介:赵海鸣(1966-),男,湖南邵阳人,博士研究生,从事机电一体化、设备故障诊断及海洋采矿和微地貌测量与可视化研究.

一种高精度超声测距方法的研究

Study of a N ew U ltrasonic Distance Measurement Method with High Precision W A N G Wensheng,Q I Guangx ue,W EN S huhui,FEN G Bo (Yanshan U niversity,Qinhuangdao Hebei066004P.R.China) Abstract: A new method for ultrasonic distance measurement based on ultrasonic circulation and multi2pulse e2 cho principle is presented in the paper.The ultrasonic distance measurement system based on the single chip mi2 crocomputer is given.This method can conquer the limitation of pulse2echo times and improve the accuracy of measurement after temperature compensation. K ey w ords: ultrasonic distance measurement;high precision;temperature compensation 一种高精度超声测距方法的研究① 王文生,齐广学,温淑慧,冯 波 (燕山大学,河北 秦皇岛 066004) 摘要:本文介绍了一种基于超声波循环反射测量原理的高精度超声测距方法,并给出了以单片机为核心的测距系统的组成.本测量法克服了多次反射法中对回波脉冲个数的限制,经温度补偿后测量精度得到了明显改善. 关键词:超声测距;高精度;温度补偿 中图分类号:TB559 文献标识码:A 文章编号:1004-1699(2002)03-0219-03 1 引 言 超声波测距是一种传统而实用的非接触测量方法,和激光、涡流和无线电测距方法相比,具有不受外界光及电磁场等因素的影响的优点,在比较恶劣的环境中也具有一定的适应能力,且结构简单,成本低,因此在工业控制、建筑测量、机器人定位等方面得到了广泛的应用[1,2].但由于超声波传播声时难于精确捕捉,温度对声速的影响等原因,使得超声波测距的精度受到了很大的影响,限制了超声测距系统在测量精度要求更高的场合下的应用,为此,本文提出一种改进后的超声反射测距方法,并设计了以单片机为核心的超声测距系统.2 超声波循环反射测量原理 脉冲反射法,又称回波法,是利用超声波在介质中传播遇到声阻抗有差异的界面时产生反射现象来工作的.根据反射次数的不同,可分为一次脉冲反射法和多次脉冲反射法.多次脉冲反射法是目前最常用的一种超声测距方法,它是指一个超声脉冲多次往返于超声探头与被测界面之间,通过检测电路得到各个超声波发射和接收的波形,再由波形整形后得到相当于超声波传播声时的方波信号[3].由此声时和超声波在已知介质中的声速便可以得出距离,超声波探头到被测物体的距离公式为: x= nc 2kf r (1) 2002年9月 传 感 技 术 学 报 第3期 ①来稿日期:2002204215

一种高精度超声波测距仪测量精度的研究

收稿日期:2005-10-08;修订日期:2005-12-25 基金项目:中国大洋矿产资源研究开发协会技术发展资助项目(DY 105-03-02) 作者简介:卜英勇(1944-),男,安徽芜湖人,中南大学教授,博士生导师,主要研究方向为设备资产管理、设备状态 监测与故障诊断. 文章编号:1671-6833(2006)01-0086-05 一种高精度超声波测距仪测量精度的研究 卜英勇,何永强,赵海鸣,任凤跃 (中南大学机电工程学院,湖南长沙410083) 摘 要:在超声波测距技术中,通常受温度的影响和传播声时(T OF )的检测误差,使得超声波测距的精度不高.为了提高超声波测距仪的测量精度,针对传统超声测距仪在结构上进行了改进,安装了具有温度补偿功能的标准校正器具;同时,根据回波信号的传输特征,利用小波分析法对回波信号进行运算处理,提出了基于小波包络原理的峰值检测方法.试验结果表明:这些技术显著提高了超声测距的精度并增强了超声检测的可靠性. 关键词:超声波测距;标准校正板;小波分析;峰值检测;中图分类号:T B 559 文献标识码:A 0 引言 超声波测距技术是近年来出现的测距新技 术,是一种非接触的检测方式,和红外、激光及无线电测距相比,它具有结构简单、可靠性能高、价格便宜、安装维护方便等优异特性,在近距范围内、颜色以及电、磁场的影响,在恶劣作业环境下有一定的适应能力.因此利用超声波测距在实现定位及环境建模场合,如:液位、汽车防撞雷达、井深及管道长度测量、机器人定位、辅助视觉系统等方面得到广泛的应用[1~6].但传统的超声波测距仪测量精度普遍较低,都不能满足高精度测量的要求.为了克服此不足,我们从测距仪结构设计和回波信号处理的角度出发,提出了基于回波包络峰值的检测方法,从而进一步提高测距仪超声检测的精度[7~10]. 1 超声波测距原理及系统硬件电路组成 超声波测距是借助于超声波脉冲回波(即声纳法)来实现的.该系统原理如图1所示. 设脉冲超声波由探头发出到接收所经历的时间为t ,超声波在空气中的传播速度为c ,从探头到目标探测物的距离为d ,则 d =1 2 ct (1)2 超声波测距仪的结构改进及温度补偿 原理 超声波在空气中的传播速度随着环境温度、湿度以及大气压力的变化而变化,其中以环境的温度对声速的影响最大.环境温度每升高或降低1℃,声速就增加或减小0.607m/s.因此,消除由温度的变化而引起的测距误差就显得尤为重要. 图1 超声波测距系统原理框图 Fig.1 The principle frame diagram of ultrasonic distance measurement system 2006年 3月第27卷 第1期郑州大学学报(工学版) Journal of Zhengzhou University (Engineering Science )Mar. 2006V ol.27 N o.1

汽车倒车系统中超声波测距模块的设计

收稿日期:2006-12-13 作者简介:彭翠云(1979-),女,湖北省荆门市人,硕士生,研究方向为汽车倒车辅助系统。 文章编号: 1004-2474(2008)02-0251-04汽车倒车系统中超声波测距模块的设计 彭翠云1,赵广耀2,戎海龙3 (1.安徽工程科技学院机械学院,安徽芜湖,241000;2.东北大学机械工程与自动化学院, 辽宁沈阳110004;3.东南大学自动化学院,江苏南京,210096) 摘 要:介绍了以Cy gnal 8051F 330单片机为控制器,用于汽车倒车的超声波测距模块的硬件电路和软件设 计方案,在抗干扰设计等方面该模块采用了软硬件综合处理措施,实现了较高的测距精度和较宽的测距范围。在满足倒车系统要求的基础上,体现了简单、经济、实效、实用的特点,文章给出了该模块的实际调试效果和误差分析结果。 关键词:超声波测距;带通滤波;单片机中图分类号:T P212 文献标识码:A The Design of Ultrasonic Distance -Measuring S ystem Used on Car -backing System PENG Cui -yun 1 ,ZHAO Guang -yao 2 ,R ONG Hai -long 3 (1.Dept .of M echanical Engineering ,An hui University of Technology and S cien ce ,Wu hu Anhui 241000,China ; 2.C ollege of M echanical E ngineering an d Automation ,Northeastern University ,Shenyang 110004,China ; 3.College of Automation ,S ou theastern University ,Nanjing 210096,China ) A bstract :A n per so nally desig ned ultr aso nic distance -measuring sy stem is intro duced and its hardw are circuits and softw are design me tho ds are giv en in this pape r ,which ba ses o n Cyg na l 8051F330sing le chip ,a nd is applied to ca rbacking sy stem .In the sy stem ,some impr ovement on bo th ha rdw are a nd softw are is adapted ,w hich makes the sy stem has better precisio n and wider measuring range .M o reove r ,besides its capability o f satisfy the requirement raised by car -backing sy stem ,the system ha s other characters such as briefness ,economy ,actual effect ,practicality e tc ..T he practical debugg ing results and err or a nalyzing results a re given at the end of this paper . Key words :ultrasonic distance -measuring ;bandpass -filtr ation ;sing le chip 超声波测距是利用超声波指向性强、能量消耗缓慢并因而在特定介质中传输距离远的特点,通过发射具有特征频率的超声波实现对被摄目标距离的探测[1]。本文主要探讨倒车系统的超声波测距模块的设计与实现。超声测距模块作为汽车外部环境传感器,其用途是向决策系统实时提供汽车与障碍物的间距,以利于汽车蔽障。为克服以往超声波测距模块因采用超声波专用集成电路而造成的电路固定,应用不灵活,抗干扰和抗噪声能力差等不足,本超声波测距模块以Cy gnal 8051F330单片机为核心,并侧重发送模块和回波接收预处理模块的开发与实验研究,获得了较高的测距精度和较宽的测距范围,能满足倒车系统要求。该模块选用器件较廉价且易获取,体现出简单、经济、实效、实用的特点。 1 硬件设计 为使超声测距模块和决策系统之间的接口线最少,本设计采用模拟口方式而不采用串口、SM Bus 等方式。该方式即决策系统从超声波测距模块获得的距离信息为一模拟电压,该模拟电压正比于被测 距离。 为实现控制系统的简单化,本超声测距模块的中央处理器采用Cyg nal 8051F330单片机[2],该单片机较其他单片机(如F060等)外设规模小,仅有17个I /O 口,虽然功能上显得不够强劲,但其指令执行速度并未降低,加上其20引脚的精简封装,已广泛应用于所需功能较为简单的小规模控制电路中。对于倒车超声波测距系统可谓是合适的选择。 图1为超声测距模块的原理。单片机每隔一定时间间隔向超声波换能器发送一串频率为40kHz (超声波换能器的谐振频率)的激励脉冲,使超声波换能器向需要探测的方向发射出超声波,同时开始定时,一旦接收到返回的超声波信号即停止定时,获得超声波往返时间,由超声波脉冲在空气中传输的速度,便可计算出超声波换能器与目标物体间距离。 第30卷第2期压 电 与 声 光 Vo l .30No .22008年4月 PI EZO EL ECT ECT RICS &ACO U ST OO P T ICS Apr .2008

高精度超声波测距系统设计

高精度超声波测距系统设计 引言 利用超声波测量距离的原理可简单描述为:超声波定期发送超声波,遭遇障碍物时发生反射,发射波经由接收器接收并转化为电信号,这样测距技术只要测出发送和接收的时间差,然后按照下式计算,即可求出距离: 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此,广泛应用于倒车提醒、建筑工地、工业现场等的距离测量。目前的测距量程上能达到百米数量级,测量的精度往往能达到厘米数量级。本文在分析现有超声波测距技术基础之上,给出了一种改进方案,测量精度可达毫米级。 2 系统方案分析与论证 2.1 影响精度的因素分析 根据超声波测距式(1)可知测距的误差主要是由超声波的传播速度误差和测量距离传播的时间误差引起的。 对于时间误差主要由发送计时点和接收计时点准确性确定,为了能够提高计时点选择的准确性,本文提出了对发射信号和加收信号通过校正的方式来实现准确计时。此外,当要求测距误差小于1 mm时,假定超声波速度C=344 m/s(20℃室温),忽略声速的传播误差。则测距误差s△t<0.000 002 907 s,即2.907 ms。根据以上过计算可知,在超声波的传播速度是准确的前提下,测量距离的传播时间差值精度只要在达到微秒级,就能保证测距误差小于1 mm的误差。使用的12 MHz晶体作时钟基准的89C51单片机定时器能方便的计数到1μs的精度,因此系统采用AT89S51的定一时器能保证时间误差在1 mm的测量范围内。

10米超声波测距仪设计实现

10米超声波测距仪设计实现 一、功能要求 设计一个超声波测距仪,可以测量测距仪与被测物体间的距离。要求测量范围0.1~10.00米,测量精度1cm,测量时与被测物体不接触,并将测量结果显示出来。 二、系统硬件电路 1.单片机系统及显示电路 单片机采用89C51或89S51。采用12MHz高精度晶振,以获得较稳定的时钟频率,减小测量误差。单片机用p1.0端口输出超声波换能器所需的40Hz方波信号,利用外中断0口监测超声波接受电路输出的返回信号。显示电路采用简单实用的4位共阳极LED数码管,段码用74LS244驱动,位用PNP8550驱动。 2.超声波发射电路 主要由74LS04和超声波换能器T构成。这种推挽形式的方波信号可以提高发射强度。反相器并联提高驱动能力。上拉电阻R1、R2提高74LS04输出高电平的驱动能力。 3.超声波接收电路 CX20106A是接收38KHz超声波的芯片,可利用它做接收电路。 4.系统程序 超声波测距仪的软件主要由主程序、超声波发生子程序、超声波接收中断程序及显示子程序组成。 主程序:

开始 系统初始化 发送超声波脉冲 等待反射超声波 计算距离 显示结果 丢系统初始化,设置T0为方式1,EA=1,P0,P2清0。为避免超声波发射器直接接传送到接收器,需要延时0.1ms。由于时钟的频率是12MHz,计数器每计一个数就是1us。如果按声速344m/s,则d=c*t/2=172T0 cm 超声波发生子程序:通过P1.0端口发送2个左右超声波脉冲信号,脉宽12us,同时T0计数。 超声波测距仪利用中断0检测返回的超声波,一旦接收到返回的信号,立即进入中断。中断后就立即关闭T0停止计时。如果计数器益出则测试不成功。 3方案设计和选择 根据本次设计的要求,方案的选择应力求实用性强,性价比高,使用简单。 3.1 超声波测距的基本原理 谐振频率高于20kHz的声波被称为超声波。超声波

毕业设计开题报告—超声波测距

毕业设计(论文)开题报告学生姓名:学号: 所在学院: 专业:通信工程 设计(论文)题目:基于STM32的超声波测距仪 指导教师: 2014年2月25日

开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效; 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇(不包括辞典、手册); 4.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年4月26日”或“2004-04-26”。

毕业设计(论文)开题报告 1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述: 文献综述 一、课题研究背景、目的和意义 传感器技术是现代信息技术的主要内容之一,信息技术主要包括计算机技术、通信技术和传感器技术,计算机技术相当于人的大脑,通信相当于人的神经,而传感器就相当于人的感官。比如温度传感器、光电传感器、湿度传感器、超声波传感器、红外线传感器、压力传感器等等,其中超声波传感器在测量方面有着广泛、普遍的应用。利用单片机控制超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且测量精度较高。 超声波测距是一种典型的非接触测量方式。超声波在气体、液体及固体中以不同速度传播,定向性好、能量集中、传输过程中衰减较小、反射能力较强。且超声波测距系统结构简单、电路易实现、成本低、速度快,所以在工业自动控制、建筑工程测量和机器人视觉识别等领域应用非常广泛。 超声波作为一种特殊的声波,同样具有声波传输的基本物理特性、反射、折射、干涉、衍射、散射与物理紧密联系,应用灵活。它是一种指向性强,能量消耗慢的波。它在介质中传播的距离较远,因而超声波经常用于距离的测量,可解决超长度的测量。二、超声波测距仪的整体设计思路 超声波测距一般采用渡越时间法。超声波测距的实质是时间的测量,即:用超声脉冲激励超声探头向外发射超声波,同时接收从被测物体反射回来的超声波(简称回波),通过精确测量从发射超声波至接收回波所经历的射程时间t(渡越时间),按下式计算超声波探头与被测物体之间的距离S,即 S=12ct 其中,c 为空气介质中声波的传播速度。在常温下,超声波的传播速度为340 m/s,

高精度高重频脉冲激光测距系统

第40卷第8期红外与激光工程2011年8月Vol.40No.8Infrared and Laser Engineering Aug.2011 高精度高重频脉冲激光测距系统 纪荣祎,赵长明,任学成 (北京理工大学光电学院,北京100081) 摘要:在三维激光扫描探测系统中,激光测距的测量重频和测量精度是影响整个系统性能的关键参数。介绍了三维激光扫描探测系统的工作特点,设计了一种以Nios II嵌入式软处理器为核心的高重频、高精度脉冲激光测距系统。通过分析影响测量重频和测距精度的因素,采用双阈值时刻鉴别方法进行计时起止时刻的鉴别,使用TDC-GP2高精度时间间隔测量芯片进行精密计时,设计了基于Nios II嵌入式软处理器的计时控制系统以提高测量重频。实验结果表明:实现了测量重频为20000次/s、测距精度为3cm的激光测距。与传统的单片机控制的计时系统相比,该系统不仅测量重频和测量精度高,且具有更好的可扩展性和灵活性。 关键词:脉冲激光测距;精密时间测量;三维激光扫描;Nios II 中图分类号:TN247文献标志码:A文章编号:1007-2276(2011)08-1461-04 High precision and high frequency pulse laser ranging system Ji Rongyi,Zhao Changming,Ren Xuecheng (School of Photoelectronics,Beijing Institute of Technology,Beijing100081,China) Abstract:In three-dimensional(3D)laser scanning detection system,the measurement repetition rate and measurement precision of laser ranging are the key parameters affecting the performance of the whole system.The work characteristics of3D laser scanning detection system were introduced,and a high repetition rate and high measurement precision pulse laser ranging system based on the Nios II soft-core was designed.According to the analysis of the factors which affected the repetition rate and precision of range measure,the double-threshold time discriminator was adopted to produce timing mark for the start-stop time discrimination,and the TDC-GP2high-precision interval measuring chip was used to achieve high precision on time measure.In addition,the time measure control system based on the Nios II soft-core was designed to improve the measurement repetition rate.Experimental results show that the measurement repetition rate of20000/s and the ranging precision of±3cm are https://www.wendangku.net/doc/09684310.html,pared with the traditional MCU time measure control system,the designed system owns the advantages of high repetition rate and high measurement precision,furthermore,it is more expandable and flexible. Key words:pulse laser ranging;high precision time measure;3D laser scanning;Nios II 收稿日期:2010-12-18;修订日期:2011-01-17 基金项目:国防科技工业技术基础科研项目(J172009C001) 作者简介:纪荣祎(1984-),男,博士生,主要从事三维扫描激光探测系统的研究。Email:xiaoxiao8673@https://www.wendangku.net/doc/09684310.html,。 导师简介:赵长明(1960-),男,教授,博士生导师,博士,主要从事新型激光器件与技术、光电子信息技术与系统方面的研究工作。 Email:zhaochm1@https://www.wendangku.net/doc/09684310.html,

高精度超声波测距系统设计

高精度超声波测距系统设计 作者:宋永东周美丽白宗文 来源:《现代电子技术》2008年第15期 摘要:提出了一种基于AT89S51单片机的超声波测距系统的设计方案。详细分析了影响测距系统精度的主要因素,设计出了各单元电路和整体电路,重点介绍了提高测量精度的方案和具体实现电路,采用单片机技术进行控制,并给出了控制流程图。设计出的超声波测距系统精度可达毫米数量级,电路具有结构简单、操作方便、精度高、应用广泛的特点。 关键词:测距系统;AT89S51;误差分析;硬件设计;流程图 中图分类号:TP302.1 文献标识码:B 文章编号:1004373X(2008)1513703 Design of High Precision Ultrasonic Distance Measurement System SONG Yongdong,ZHOU Meili,BAI Zongwen (College of Physics and Electronic Information,Yan′an University,Yan′an,716000,China) Abstract:A plan of ultrasonic distance measurement system based on AT89S51 is derived in this paper, the main factors impact of precision are analyzed in detail and the unit circuit and complete circuit are given.The plan of improving the accuracy and specific circuit is introduced.The system′s accuracy is reached millimeters orders of magnitude.All of the component is controlle by AT89S51,and the control program flow is presented.Circuit have many advantages such as simply structure,easy to use,high accuracy and wide application. Keywords:distance measurement system;AT89S51;error analysis hardware design;program flow 1 引言 利用超声波测量距离的原理可简单描述为:超声波定期发送超声波,遭遇障碍物时发生反射,发射波经由接收器接收并转化为电信号,这样测距技术只要测出发送和接收的时间差,然后按照下式计算,即可求出距离:S=CΔt/2(1) 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此,广泛应用于倒车提醒、建筑工地、工业现场等的距离测量。目前的测距量程上能达到百米数量级,测量的精度往往能达到厘米数量级。本文在分析现有超声波测距技术基础之上,给出了一种改进方案,测量精度可达毫米级。 2 系统方案分析与论证

高精度时间间隔测量方法综述_孙杰

综述与评论 计算机测量与控制.2007.15(2)  Com puter Measurement &C ontrol 145 中华测控网chinamca.co m 收稿日期:2006-03-06; 修回日期:2006-05-09。 作者简介:孙 杰(1975-),男,安徽合肥人,讲师,主要从事测控技术方向的研究。 文章编号:1671-4598(2007)02-0141-04 中图分类号:O63;TP273.5 文献标识码:A 高精度时间间隔测量方法综述 孙 杰,潘继飞 (解放军电子工程学院,安徽合肥 230037) 摘要:时间间隔测量技术在众多领域已经获得了应用,如何提高其测量精度是一个迫切需要解决的问题,在分析电子计数法测量原理与误差的基础上,重点介绍了国内外高精度时间间隔测量方法,这些方法都是对电子计数法的原理误差进行测量,并且取得了非常好的效果;最后给出了高精度时间间隔测量方法的发展方向及应用前景。 关键词:时间间隔;原理误差;内插;时间数字转换;时间幅度转换 Methods of High Precision Time -Interval Measurement Sun Jie ,Pan Jifei (Electr onic Eng inee ring Institute o f PL A ,H efei 230037,China ) Abstract :Technology of time -interval m easu rement has been app lied in many field s.H ow to improve its precision is an em ergent ques -tion.On the basis of an alyzing electronic counter 's principle and error ,this paper puts emphasis upon introducing high precision time -in ter -val measu rements all over the w orld.All these methods aim at electronic counter 's principle error ,and ob tain special https://www.wendangku.net/doc/09684310.html,s tly ,the pro -gress direction and ap plication foreg rou nd of high precision tim e -interval measurem ent meth od s are predicted. Key words :time in terval ;prin ciple error ;interpolating ;tim e -to -digital conversion ;time -to -amplitude con version 0 引言 时间有两种含义,一种是指时间坐标系中的某一刻;另一种是指时间间隔,即在时间坐标系中两个时刻之间的持续时间,因此,时间间隔测量属于时间测量的范畴。 时间间隔测量技术在通信、雷达、卫星及导航定位等领域都有着非常重要的作用,因此,如何高精度测量出时间间隔是测量领域一直关注的问题。本文详细分析了目前国内外所采用的高精度时间间隔测量方法,指出其发展趋势,为研究新的测量方法指明了方向。 1 电子计数法 1.1 测量原理与误差分析 在测量精度要求不高的前提下,电子计数法是一种非常好 的时间间隔测量方法,已经在许多领域获得了实际应用,其测量原理如图1所示。 图1 电子计数法测量时间间隔基本原理 量化时钟频率为f 0,对应的周期T 0=1/f 0,在待测脉冲上升沿计数器输出计数脉冲个数M ,N ,T 1, T 2为待测脉冲 上升沿与下一个量化时钟脉冲上升沿之间的时间间隔,则待测脉冲时间间隔T x 为: T x =(N -M ) T 0+T 1-T 2 (1) 然而,电子计数法得到的是计数脉冲个数M ,N ,因此其测量的脉冲时间间隔为: T ′x =(N -M ) T 0(2) 比较表达式(1)、(2)可得电子计数法的测量误差为Δ=T 1-T 2,其最大值为一个量化时钟周期T 0,产生的原因是待测脉冲上升沿与量化时钟上升沿的不一致,该误差称为电子计数法的原理误差。 除了原理误差之外,电子计数法还存在时标误差,分析表达式(2)得到: ΔT ′x =Δ (N -M ) T 0+(N -M ) ΔT 0(3) 比较表达式(3)、(2): ΔT ′x T ′x =Δ(N -M )(N -M )+ΔT 0T 0(4) 根据电子计数法原理,Δ(N -M )=±1,N -M =T ′x /T 0,因此: ΔT ′x =±T 0+T ′x ΔT 0/T 0 (5)T ′x ΔT 0/T 0即为时标误差,其产生的原因是量化时钟的稳定度ΔT 0/T 0,可以看出待测脉冲间隔T x 越大,量化时钟的稳定度导致的时标误差越大。 根据以上分析得出电子计数法具有以下特点: (1)测量范围广,容易实现,且能够作到实时处理。(2)存在时标误差与原理误差,限制了其测量精度。电子计数法是一种成熟的时间间隔测量方法,参考文献[1-3]都有一定的说明,有兴趣的读者可以参阅。 1.2 误差克服途径 时标误差可以采用高稳定度的时钟来克服,比如铷原子频率标准;量化误差的克服有许多方法,也是国内外研究的热点,可以将其分为以下三类。 第一类:提高量化时钟的频率,这带来的问题是时钟频率 DOI 牶牨牥牣牨牰牭牪牰牤j 牣cn ki 牣牨牨牠牬牱牰牪牤tp 牣牪牥牥牱牣牥牪牣牥牥牪

相关文档
相关文档 最新文档