文档库 最新最全的文档下载
当前位置:文档库 › 高炉强化冶炼详解

高炉强化冶炼详解

高炉强化冶炼详解
高炉强化冶炼详解

高炉强化冶炼技术及其进步

高炉炼铁生产的原则

高炉冶炼生产的目标是在较长的一代炉龄(例如5年或更长)内生产出尽可能多的生铁,而且消耗要低,生铁质量要好,经济效益要高,概括起来就是“优质,低耗,高产,长寿,高效益”。长期以来,我国乃至世界各国的炼铁工作者对如何处理这五者间的关系进行过,而且还在进行着讨论,讨论的焦点是如何提高产量及焦比与产量的关系。

众所周知,表明高炉冶炼产量与消耗的三个重要指标—有效容积利用系数(ηY)、冶炼强度(I)和焦比(K)之间有着如下的关系:ηY=I/K

显然,利用系数的提高,也即高炉产量的增加,存在着四种途径:

(1)冶炼强度保持不变,不断地降低焦比;

(2)焦比保持不变,冶炼强度逐步提高;

(3)随着冶炼强度的逐步提高,焦比有所降低;

(4)随着冶炼强度的提高,焦比也有所上升,但焦比上升的幅度不如冶炼强度增长的幅度大。

在高炉炼铁的发展史上,这四种途径都被应用过,应当指出在最后一种情况下,产量增长很少,而且是在牺牲昂贵的焦炭的消耗中取得的,一旦在冶炼强度提高的过程中,焦比升高的速率超过冶炼强度提高的速率,则产量不但得不到增加,反而会降低。因此,

冶炼强度对焦比的影响,成为高炉冶炼增产的关键。

在高炉冶炼的技术发展过程中,人们通过研究总结出冶炼强度与焦比的关系如图1所示。

图1 冶炼强度与产量(I)和焦比(K)的关系

a一美国资料,b一原西德资料,c一前苏联资料

在一定的冶炼条件下,存在着一个与最低焦比相对应的最适宜的冶炼强度I适。当冶炼强度低于或高于I适时,焦比将升高,而产量稍迟后,开始逐渐降低。这种规律反映了高炉内煤气和炉料两流股间的复杂传热、传质现象。在冶炼强度很低时,风量及相应产生的煤气量均小,流速低,动压头很小,造成煤气沿炉子截面分布极不均匀,表现为边缘气流过分发展,煤气与矿石不能很好地接触,结果煤气的热能和化学能不能得到充分利用,炉顶煤气中CO,含量低,温度高,而进入高温区的炉料因还原不充分,直接还原发展,消耗了大量宝贵的高温热量,因此焦比很高。随着冶炼强度的提高,风量、煤气量相应增加,煤气的速度也增大,从而改变了煤气流的流动状态,由层流转为湍流,风口前循环区的出现,大大改善了煤气流分布和煤气与炉料之间的接触,煤气流的热能和化学能利用改善,间接还原的发展减少了下部高温区热量的消耗,从而焦比明显下降,直到与最适宜冶炼强度儿相对应的最低焦比值。之后冶炼强度继续提高,煤气量的增加进一步提高了煤气流速,这将带来叠加性的煤气流分布,导致中心过吹或管道行程,在煤气流速过大时,它的压头损失可变得与炉料的有效质量相等或超过有效质量,炉料就停止下降而出现悬料。所有这些将引起还原过程恶化,炉顶煤气温度升高,炉况恶化,最终表现为焦比升高。

高炉炼铁工作者应该掌握这种客观规律,并应用它来指导生产,即针对具体生产条件,确定与最低焦比相适应的冶炼强度,使高炉顺行,稳定地高产。然而高炉的冶炼条件是可以改变的,随着技术的进步,例如加强原料准备,采取合理的炉料结构,提高炉顶

煤气压力,使用综合鼓风,改造设备等,高炉操作条件大大改善。与改善了的条件相应的冶炼强度可以进一步提高,而焦比不会提高,相反与之相对应的最低焦比也进一步下降,这就是世界各国几十年来冶炼强度不断提高,焦比也降低的原因,见图2。

但是,在任何生产技术水平上,当冶炼条件一定时,冶炼强度I与焦比K之间始终保持着极值关系,决不可以得出产量是与冶炼强度成正比地增长的简单结论,而盲目追求高冶炼强度。超越冶炼条件允许的过高冶炼强度将使焦比大幅度上升。

上述有关高炉冶炼重要技术指标ηY、I、K之间的关系还未解决经济效益最佳的冶炼强度问题。在对钢铁的需求大于供给的条件下,实践表明,尽管焦比的消耗对生铁成本有着很大影响,但在一定的操作情况下,产品的最低成本并不是在最低焦比相对应的冶炼强度下,而是在略高的情况下取得的。所以出现这种情况,是因为最高产量是在比最低焦比相对应的冶炼强度稍高的情况下达到的(图1)。随着产量的提高,单位生铁成本中不随时间变化的费用总和不断降低。在K=?(I)曲线的最低值附近,随着冶炼强度的提高,焦比上升得较缓慢,在这个区域内多消耗焦炭的费用能被节省下的加工费用全部补偿,而且还有多余。实践还证明,经济上最合算的产量,并不是生铁成本最低时的产量,而是略高于这个最低产量。

图2 不同冶炼条件下的冶炼强度

(I)与焦比(K)的关系,l~5示意冶炼条件不断改善

图3 日产量(P)对产品成本(S)和生产盈利性的影响(C一出厂价格)

炼铁厂(或车间)经济上最合算的产量是在所具有的设备上,于单位时间内达到最高利润总和时的产量,如图3所示,在生铁成本为产量的函数S=? (P)曲线上,生铁最低成本是在P0产量下获得,而且在最低处附近,生铁成本升高较慢,使得生铁出厂价与成本的差值(C-S)减小的幅度比产量增加的幅度小,所以在某种P> P0的情况下经济效益户(C-S)的乘积达到最大,这就是我国众多厂家追求的产量指标。最后,应当指出的是在我国随着产量和效益的提高,高炉设备,特别是高炉本体的寿命越来越短,大修和中修费用不断增加,有可能影响到增产的效益。这个问题的严重性已引起人们重视,开始研究提高高炉寿命的有效措施,例如采用高质量碳砖,碳化硅砖,改进高炉冷却(炉底水冷,炉身软水密闭循环冷却)以及钒钛炉渣护炉等。高炉长寿技术的开发和实现将促使高炉生产实现高产、低耗、优质,高效益。目前世界各国已把高炉长寿看作炼铁技术的一个重要组成部分和发展的标志。

高炉强化冶炼工艺操作技术

我国高炉炼铁在近几年来取得了很大的进步,冶炼强度在中小型高炉上超过了1.5 t/(m3?d),大高炉上也达到了1.1t/(m3?d)以上,利用系数相应达到3.5 t/(m3?d)以上和2.3 t/(m3?d)以上,燃料比降到530 kg/t和500 kg/t左右。这是由于采取了所谓强化高炉冶炼技术的结果。这些技术包括精料技术、高风温技术、高压操作技术、喷吹燃料技术、富氧大喷煤技术、先进的计算机控制技术等。

精料是高炉强化冶炼的基础

高炉强化冶炼以后,一方面单位时间内产生的煤气量增加,煤气在炉内的流速增大,煤气穿过料柱上升的阻力 p上升;另一方面炉料下降速度加快,炉料在炉内停留时间缩短,也就是冶炼周期缩短,这样煤气与矿石接触的时间缩短,不利于间接还原的进行。为保持强化冶炼后炉况顺行、煤气利用好、产量高、燃料比低,原燃料质量成为决定性的因素。

首先是矿石的人炉晶位和焦炭灰分及含硫量,它们决定着渣量。人们普遍认为,渣量不低于300 kg/t,要实现喷吹燃料200 kg/t 以上,燃料比500 kg/t是困难的,甚至是不可能的;另外渣量也是煤气顺利穿过滴落带的决定性因素。

其次,原料的粒度组成、高温强度和造渣特性是影响料柱透气性和高炉顺行的决定性因素。均匀的粒度组成和较好的高温强度是保证块状带料柱透气性的基本条件,而良好的造渣性能是降低软熔带和滴落带煤气运动阻力的基本条件。

第三,原料的还原性是影响高炉内铁的直接还原度的决定性因素,只有原料具有良好的还原性(如烧结矿、球团矿或粒度小而均匀的天然赤铁矿和褐铁矿矿石),才能保证炉料在进入高温区以前充分还原,从而降低焦比。

第四,焦炭的强度特别是高温强度是软熔带焦窗和滴落带焦床透气性和透液性的决定性因素,所以降低焦炭的灰分、反应性是十分重要的。

由此可见,要想高炉强化冶炼并获得良好的高炉生产指标,必

须抓好原燃料,改善原燃料质量,使原料具有品位高、粒度均匀、强度好、还原和造渣特性优良等条件,使焦炭具有灰分低、硫低、强度高、反应性低等优良条件。

我国精料技术取进步和发展方

近年来,精料的重要性已深入炼铁工作者的心中,受到各级组织生产者的重视,精料技术取得了相当大的进步,具体表现为:(1) 入炉品位显著提高。由于认识到入炉品位的高低是决定渣量和冶炼过程热量消耗的决定性因素之一,在原来入炉品位较低(T Fe约为50%左右)时,提高矿石晶位1%,可降低燃料比2%,提高产量3%。因此各厂都把提高人炉晶位作为提高冶炼强度和降低燃料消耗最积极、最有效的措施。我国宝钢、三明、杭钢等10余家企业的人炉品位已在60 %以上,绝大部分企业的人炉品位在58.5%以上。入炉晶位提高的措施是:利用两种资源,适量使用进口富矿,淘汰国产劣质矿;改进选矿技术,使精矿粉的品位由原来的60%~63%提高到66%~68%等。

(2) 做好入炉料成分稳定工作。生产实践使人们认识到,原料成分的不稳定是引起高炉炉况波动的重要原因。为防止炉况失常,生产中常被迫维持较高的炉温,这就无形中增加了燃料消耗,这就是很多高炉尤其是中小型高炉炼钢生铁中的[Si]降不下来的原因。例如炼钢要求生铁中[Si]在0.4%即可,但生产者考虑烧结矿中T Fe和碱度m CaO/m SiO2的波动,[Si]迫维持在0.6%,甚至0.8%,而[Si]每增加0.1%焦比要上升4 kg/t。为使原料成分稳定,就要加强中和混匀

工作,很多厂包括地方骨干中型企业建成了中和混匀料场,取得了很好的效果。

(3) 优化入炉料的粒度组成,这是改善料柱透气性和强化冶炼过程的重要影响因素。现在广泛地强化了筛分工作,不仅在烧结厂、球团厂进行,还普遍地在高炉槽下进行,筛去粒度小于5 mm的粉末,与此同时,还限制烧结矿粒度的上限为40~50 mm。

(4)采用低温烧结法生产高碱度低FeO高还原性的烧结矿,并向低SiO2发展,这是提高烧结矿冶金性能的重要措施。我国宝钢烧结矿中的SiO2含量降到4.5 %左右,达到世界先进水平,现在已逐步推广。

(5)发展球团矿生产,为合理炉料结构提供优质酸性料。我国铁矿资源主要是贫矿,通过磁选得到磁精粉,本应用它来生产球团矿,但走的却是生产烧结矿的道路,球团矿生产一直没有得到重视。随着精料技术的发展,球团矿逐步被人们认识到是一种优质的高炉炉料,开始得到发展。近年来,一些厂都新建了球团车间以满足高炉炉料结构的要求。虽然这些球团生产设备绝大部分是竖炉(84%),球团矿的质量还不是太好,很难满足大型高炉对球团矿质量的要求,但为炉料结构的优化还是做出了贡献。现在首钢迁安矿山公司已成功地建成和投产了国产100万t/年的链箅机回转窑生产线,并正在建设200万t/年的新球团设备。

(6)焦炭质量不断提高。我国已有两家焦化厂生产出灰分为10 %左右的优质焦炭,达到国际上要求的一级焦炭。有10余家生产的焦炭的灰分已降到12 %以下,达到11.2 %~11.5 %。很多厂焦炭的

含硫量在0.5 %以下。M40有了很大提高,宝钢焦炭的M40达到89.87%,M10小于7%。

高炉精料技术发展的方向大致是:进一步提高人炉品位;改进焦炭质量,将灰分普遍地降到12%以下,M40提高到85%~90%,M10降到小于6%;烧结矿质量改进,含铁波动±0.05,碱度波动±0.03,粒度大于50 mm加的不超过10%,不大于10 mm的在30%以下,不大于5 mm的不超过3%;大力发展球团矿,将其占人造富矿总量的比例由现在的10%提高到25%;开发生产适用于高炉使用的金属化炉料等。

高强度冶炼和必须具备的条件

通俗地说,高强度冶炼就是使用大风量、加快风口前焦炭的燃烧速度、缩短冶炼周期、提高冶炼强度,以达到提高产量之目的的冶炼操作。

实行高强度冶炼,必须具备以下条件:

(1)原料条件要好,即品位高、强度好、粒度均匀、粉末少。如果原料粒度不均,粉末多,则料柱透气性不好,高炉不接受大风,强行加风,则压差猛增、崩料、悬料不断,不能维持正常操作。如果矿石晶位低,则渣量增加,大风操作时滴落带容易引起液泛,高炉亦不能维持顺行。

(2)要有适合高强度冶炼的合理炉型。适度的“炉缸大、炉身矮、风口多”的高炉有利于强化冶炼,因为这种炉型料柱短,煤气阻力小。由于炉缸截面积大,风口多,在较高的冶炼强度和喷吹燃料的条件

下炉缸燃烧强度并不高,每一个风口上的喷吹负荷也不显过重,高炉易于接受大风。另外,由于风口多,风口之间的死区减少,炉缸煤气和温度分布均匀,有利于顺行。

(3)应采用高压、高风温、富氧和喷吹燃料等技术配合高强度冶炼。这些技术是在高强度冶炼的条件下保证高炉顺行和达到高产、优质的主要措施。

(4)鼓风机具有可以加大风量的能力,同时要减少管道漏风损失。

(5)操作上要根据炉况变化,采取上下部调节以保证炉况顺行,例如一般要采用大料批、正分装;适当提料线,或采用调布料流槽角度使堆尖向中心稍稍移动,与下部回旋区延伸相适应;视喷吹煤量的多少调节风口面积等以维持合适的中心气流和边缘气流。在炉前操作上要保证放好渣铁,因为不及时放渣、放铁,会出现下部透气性变坏、风压升高、炉料难行等现象,难于维持大风量冶炼。

高压操作及条件和优点

高压操作就是通过净煤气管道上的高压阀组提高炉顶压力,从而使整个高炉内的煤气处于高压状态。一般认为高炉炉顶压力在0.03 MPa以上的叫高压,现在大高炉的炉顶压力已达到0.2~0.3 MPa,而420 m3中型高炉的顶压也已达到0.06~0.08 MPa。

高压操作的条件是:.

(1)鼓风机要有满足高压操作的压力,保证在高压操作下能向高炉供应足够的风量。

(2)高炉及整个炉顶煤气系统和送风系统必须保证可靠的密封及足够的强度,以满足高压操作的要求。

高压操作的优点是:

(1)强化冶炼进程,提高产量。炉顶压力提高,高炉工作空间的压力也提高,煤气的体积缩小流速降低,压头损失也随之降低,从而促进高炉顺行,给增加风量创造了条件。根据计算在保持压差不变的情况下,顶压由30 kPa提高到50 kPa时,每提高10 kPa,风量可增加3%左右;而顶压由110 kPa提高到130 kPa时,每增加10 kPa,风量只允许增加 2.5%左右。因此顶压越高,强化冶焙的效果有减小的趋势。

(2)可在一定程度上降低焦炭消耗。同顶压提高一样,加速2CO=CO2+C反应向体积缩小一方进行,有利于煤气的化学能得到充分利用;加上高压操作改善顺行,可以减少悬料、崩料,以及提高产量,减少单位生铁的热量损失等都有减少焦炭消耗的作用,研究表明,高压以后,给提高风温创造了条件,因为高压使煤气阳损降低,使提高风温不致影响顺行,而风温的提高总是使焦比降低的,所以观察到的高压以后焦比降低,风温的提高起了很大作用。(3)降低炉尘吹出量。由于提高顶压煤气流速降低,因而炉尘吹出物大大减少。顶压越高,减少的比例越大。

(4)可以回收能量。采用炉顶余压发电,顶压越高发电量越多。

(5)高压以后,对硅的还原不利,而强化了渗碳过程,所以高压有利于低硅生铁的冶炼,使生铁碳含量增加。

高压操作的工作制度和优点

大小钟均压阀或无料钟均压阀各有两种工作制度:

(1)大钟均压阀。

1) 基本工作制。开大钟或下密封阀前均压阀开启,大钟下降约1/3或下密封阀打开后关闭。采用这种工作制度对大钟或下密封阀上部各机械的密封有利。

2) 辅助工作制。均压阀在大小钟或上、下密封阀完全关闭时经常开启,只在小钟或上密封阀开启前的装料过程中关闭。采用这种工作制度,对大钟或下密封阀有利,对大钟或下密封阀上部的设备不利。

正常情况下,应采用基本工作制度。当大钟或下密封阀不严、而上部密封良好时,为了减轻大钟或下密封阀的磨损,可改用辅助工作制。

(2)小钟均压阀。

1)基本工作制。开小钟或开上密封阀前均压阀开启,小钟开约1/3或上密封阀打开后关闭。

2)辅助工作制。小钟均压阀经常是开启的,只有当大钟或下密封阀开启前关闭。这种工作制度有两个缺点:一是大小钟之间或料中间易吸入空气,不安全;二是小钟均压管易堵塞。

正常情况下应采用基本工作制。只有当处理大小钟设备或料斗设备时才允许短时间改为辅助工作制。

高压与常压的转换操作程序

常压改高压的操作程序是:

(1)用蒸汽驱赶回炉煤气管道中的空气后,开回炉煤气阀门;

(2)上料系统执行大小钟均压程序,合上电源;

(3)向送风机、热风炉、上料系统、煤气清洗部门发出转换高压操作的信号,逐个缓慢关闭煤气加压阀组的阀门,将自动调节阀关到45 角位置,辅助调节阀关到炉顶压力的指定位置后,将自动调节阀改为自动;

(4)在转高压的过程中,一般保持与常压相同的风量或根据经验少量加风,转换完毕后根据具体情况增加风量,以维持原压差为标准。

高压转常压的操作程序是:

(1)向送风机、热风炉、上料系统、煤气清洗部门发出改换常压操作的信号;

(2)将自动调节阀改为手动;

(3)通知风机房减少风量,根据顶压高低决定减风量的多少,一般应使压差不超过高压时的水平;

(4)逐个缓慢打开辅助调节阀;

(5)如需长期常压操作时,要通知上料系统取消均压程序,停止回炉煤气。

使用高压操作的注意事项

(1) 高、常压转换会引起煤气流分布的变化,所以转换操作应缓慢进行,以免损坏设备和引起炉况不顺。

(2) 转高压后一般会导致边缘气流发展,要视情况相应调整装料制度与送风制度。

(3) 处理悬料,首先要改常压,然后放风坐料。严禁在高压下强迫放风坐料。

(4) 炉外事故来不及按正常程序转常压操作时,可先放风,同时改常压。

(5)高压操作时,风口、渣口的冷却水压应高于炉内压力50kPa以上。

(6)为了防止小钟均压放散管堵塞,每班应用上料间歇将大小钟均压阀同时打开吹扫,但一般不得用荒煤气吹扫。

(7)无料钟炉顶密封室充氮气时,应使气密室内压力高于炉顶压力10 kPa。

(8)无料钟均压一般应是料罐内充压,以保护与延长下密封阀的寿命。

高压操作中的调压阀组和它的作用

高压操作中的调压阀组,也叫高压阀组,也有叫它减压阀组的,它安装在高炉的净煤气管道上,是控制高炉炉顶煤气压力高低的阀门组。它的结构示于图4。

图4 高炉的高压调压阀组示意图

在阀组上有5条平行的通道和4个阀门,最小的一条通道直径为g1200~300n皿,是常通的通道,不设阀门起安全保护作用。当炉顶压力因某些原因(例如炉内爆炸、大崩料)突然增高,或其他阀失灵而全部关闭时,仍可有一个自由通道以减小破坏作用。4个阀门中有3个大的(直径一般为?1750 mm)为电控或液压控制的蝶阀,1个小的(直径一般为?400 mm)为自动调节蝶阀。这4个阀门全开时炉顶为常压,当各阀门逐渐关小时,炉顶压力随之升高,高炉就处于高压状态,炉顶压力的高低可用此4个阀关闭的程度来决定。一般在炉顶压力设定在某一数值后,3个大阀门关闭到某一位置或全关,由小阀门自动调节并稳定在预定水平。煤气通过调压阀组,压力能损失很大(阀组前为高压,阀组后为常压),使它成为一套良好的煤气清洗设备,最小的常通通道起到了类似于文氏管的喉口作用,在顶压高于40 kPa时,通过阀组后的煤气含尘量可降到10 mg/m3以下。因此各阀门要用水冲去灰泥,泥浆通过常通通道而排人灰泥捕集器。

余压发电透平机TRT

高炉高压操作时,调压阀组消耗了炉顶煤气的剩余压力,而这部分压力能是由风机提供的。风机为了提高风压以满足炉顶压力的要求消耗了很多能量(由电机或蒸汽透平提供),为了不浪费炉顶煤气的压力能和热能,从20世纪60年代开始开发了利用炉顶煤气的能量发电的技术,现已广泛应用于高压高炉上。

所谓TRT就是炉顶余压发电透平机的简称,余压发电工艺流

程示于图5。

图5 高炉炉顶余压发电工艺流程图

1一重力除尘器;2、3一文氏洗涤塔;4、11、14一煤气;5一主管喷射器;6一蒸汽;7一点火孔;8一减压阀组;9一消音器;10一煤气总管;12一氮气吹扫阀;13一除雾器:

V4一入口蝶阀;V2一入口眼镜阀;V3一紧急切断阀;V4一旁通阀;V5一调速阀;V6一水封截止阀;T l~-T4一放散阀;G-发电机组;TRT--余压发电透平机

TRT的煤气人口从文氏管后的煤气管接出,TRT的煤气出口与调压阀组后的净煤气主管相接,所以TRT是与调压阀组并联在净煤气管道上的。高压煤气在透平机内膨胀做功,推动透平机叶轮转动,带动发电机发电。透平机有轴流向心式、轴流冲动式和轴流反动式3种,其中轴流反动式的质量小、效率高。在回收余压能量方式上有部分回收、全部回收和平均回收3种,平均回收的发电能力高,设备投资低,投资回收期短,而且还能保证高炉炉顶压力稳

定。我国宝钢的TRT就采用平均回收方式。根据炉顶压力不同,每吨生铁可发电20~40kW·h。如果是干法除尘,进入透平的煤气温度高,透平的效率提高(煤气温度每提高10 ℃,透平机出力可提高3%左右),发电量可增加30 %左右。一般来说,炉顶压力达到0.09 MPa即可采用TRT技术,但要有明显的经济效益,炉顶压力应提高到0.11~0.12 MPa以上。

提高风温对高炉冶炼的影响

风温提高引起冶炼过程发生以下几个方面的变化:

(1)风口前燃烧碳量C风减少,这是因为单位生铁的热收入不变的情况下,提高风温带人的热量替代了部分风口前焦炭燃烧放出的热量,可使单位生铁风口前燃烧碳量减少,但是每100℃所减少的C 风是随风温的提高而递减的。

(2)高炉高度上温度分布发生炉缸温度上升、炉身和炉顶温度降低和中温区略有扩大的变化。

(3)铁的直接还原增加,这是由C风减少而使单位铁的CO还原剂减少和炉身温度降低等原因造成的。

(4)炉内料柱阻损增加,特别是炉子下部的?p会急剧上升这将使炉内炉料下降的条件明显变坏。如果高炉是在顺行的极压差下操作,则风温的提高将迫使冶炼强度降低。据统计,在冶炼件不变时,风温每提高100 ℃,炉内?p升高约5 kPa,冶炼强度下降2%左右。造成?p升高的原因是料柱内焦炭数量因焦比下降而减少;炉缸温度升高使煤气实际流速增大;以及下部温度过高,升华物质增多,随

煤气上升到上部冷凝,使料柱的空隙度降低恶化料柱的透气性等。因此,使用高风温必须采取有效的措施,创造接受高风温的条件。

高炉接受高风温的条件

凡是能降低炉缸燃烧温度和改善料柱透气性的措施,都有利于高炉接受高风温。高炉接受高风温的条件是:

(1) 改善原料条件。精料是高炉接受高风温的基本条件,只有原料强度好、粒度组成均匀、粉末少,才能在高温条件下保证高炉顺行。

(2) 喷吹燃料。喷吹物在炉缸燃烧带的加热分解,需相应提高风温来补偿,这就为高炉接受高风温创造了条件。补偿温度根据高温区热平衡,可以用下式计算:

c V t 1500

风风解Q Q t +=?

式中 ?t —补偿温度,℃;Q 解—喷吹物的吨铁分解热,kJ ; Q 1500—将喷吹物温度提高到1500 ℃所需要的吨铁热量,kJ ; c t 风—风温在t ℃下的热容,kJ/(m3·℃);

V 风—单位生铁的风量,m 3/t 。

风温为1000 ℃时,喷吹1 kg 重油需补偿风温1.6~2.31 ℃,喷吹1 kg 煤粉需补偿风温1.3~1.812 ℃。

(3)加湿鼓风。鼓风中的水分分解吸热降低燃烧温度,町相应提高风温来补偿。水分分解吸热反应式为:

H 2O=H 2+1/2O 2 240000 kJ

相当于-10800 kJ/m3或-13440 kJ/kg(H2O)

鼓风为900 ℃时热容为1.4 kJ/(m3·℃),因此1 m3鼓风中加1g水可提高风温9.3 ℃(13/1.4)。

(4) 搞好上下部调剂,保证高炉顺行。如果高炉不顺,则不宜使用高风温。此时需正确运用上下部调剂手段,首先保证高炉顺行,方可提高风温。

综合鼓风和综合喷吹

作为高炉强化冶炼的技术,采用高风温和富氧鼓风的同时,通过风口与鼓风一起向炉缸喷吹燃料(煤粉、重油、天然气等)、热还原性气体(天然气等裂化形成的CO+H2的气体)或其他粉料(含铁粉料、熔剂粉料)。由于通过风口向炉缸喷吹热还原性气体和粉状物料尚处于研究试验阶段,还没有应用于生产,所以现在的综合鼓风是高风温、富氧和喷吹燃料三者结合的鼓风,常用综合喷吹这个名词来表达。综合喷吹是高炉炼铁技术的重大进步,对高炉强化冶炼具有很大意义:

(1)采用风口喷吹燃料技术,扩大了高炉冶炼用的燃料品种和来源,可用一些价格低廉、来源广泛的燃料,代替部分昂贵而稀缺的冶金焦,从而使焦比大幅度降低,生铁成本下降。

(2)从风口喷入的燃料,需在炉缸吸热分解后燃烧,需要一定的热量补偿,为高炉接受高风温提供了条件。

(3)高炉喷吹燃料,是一项调剂炉况热度的有效手段,它比从上部变动焦炭负荷快得多,也为稳定高风温操作创造了条件。

高炉强化冶炼详解

高炉强化冶炼技术及其进步 高炉炼铁生产的原则 高炉冶炼生产的目标是在较长的一代炉龄(例如5年或更长)内生产出尽可能多的生铁,而且消耗要低,生铁质量要好,经济效益要高,概括起来就是“优质,低耗,高产,长寿,高效益”。长期以来,我国乃至世界各国的炼铁工作者对如何处理这五者间的关系进行过,而且还在进行着讨论,讨论的焦点是如何提高产量及焦比与产量的关系。 众所周知,表明高炉冶炼产量与消耗的三个重要指标—有效容积利用系数(ηY)、冶炼强度(I)和焦比(K)之间有着如下的关系:ηY=I/K 显然,利用系数的提高,也即高炉产量的增加,存在着四种途径: (1)冶炼强度保持不变,不断地降低焦比; (2)焦比保持不变,冶炼强度逐步提高; (3)随着冶炼强度的逐步提高,焦比有所降低; (4)随着冶炼强度的提高,焦比也有所上升,但焦比上升的幅度不如冶炼强度增长的幅度大。 在高炉炼铁的发展史上,这四种途径都被应用过,应当指出在最后一种情况下,产量增长很少,而且是在牺牲昂贵的焦炭的消耗中取得的,一旦在冶炼强度提高的过程中,焦比升高的速率超过冶炼强度提高的速率,则产量不但得不到增加,反而会降低。因此,

冶炼强度对焦比的影响,成为高炉冶炼增产的关键。 在高炉冶炼的技术发展过程中,人们通过研究总结出冶炼强度与焦比的关系如图1所示。 图1 冶炼强度与产量(I)和焦比(K)的关系 a一美国资料,b一原西德资料,c一前苏联资料

在一定的冶炼条件下,存在着一个与最低焦比相对应的最适宜的冶炼强度I适。当冶炼强度低于或高于I适时,焦比将升高,而产量稍迟后,开始逐渐降低。这种规律反映了高炉内煤气和炉料两流股间的复杂传热、传质现象。在冶炼强度很低时,风量及相应产生的煤气量均小,流速低,动压头很小,造成煤气沿炉子截面分布极不均匀,表现为边缘气流过分发展,煤气与矿石不能很好地接触,结果煤气的热能和化学能不能得到充分利用,炉顶煤气中CO,含量低,温度高,而进入高温区的炉料因还原不充分,直接还原发展,消耗了大量宝贵的高温热量,因此焦比很高。随着冶炼强度的提高,风量、煤气量相应增加,煤气的速度也增大,从而改变了煤气流的流动状态,由层流转为湍流,风口前循环区的出现,大大改善了煤气流分布和煤气与炉料之间的接触,煤气流的热能和化学能利用改善,间接还原的发展减少了下部高温区热量的消耗,从而焦比明显下降,直到与最适宜冶炼强度儿相对应的最低焦比值。之后冶炼强度继续提高,煤气量的增加进一步提高了煤气流速,这将带来叠加性的煤气流分布,导致中心过吹或管道行程,在煤气流速过大时,它的压头损失可变得与炉料的有效质量相等或超过有效质量,炉料就停止下降而出现悬料。所有这些将引起还原过程恶化,炉顶煤气温度升高,炉况恶化,最终表现为焦比升高。 高炉炼铁工作者应该掌握这种客观规律,并应用它来指导生产,即针对具体生产条件,确定与最低焦比相适应的冶炼强度,使高炉顺行,稳定地高产。然而高炉的冶炼条件是可以改变的,随着技术的进步,例如加强原料准备,采取合理的炉料结构,提高炉顶

高炉炼铁工艺流程(经典)61411

本文是我根据我的上传的上一个文库资料继续修改的,以前那个因自己也没有吃透,没有条理性,现在这个是我在基本掌握高炉冶炼的知识之后再次整理的,比上次更具有系统性。同时也增加了一些图片,增加大家的感性认识。希望本文对你有所帮助。 本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档:

一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。 炼铁方法主要有高炉法、 直接还原法、熔融还原法等,其 原理是矿石在特定的气氛中(还 原物质CO、H2、C;适宜温度 等)通过物化反应获取还原后的 生铁。生铁除了少部分用于铸造 外,绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主 要方法,钢铁生产中的重要环节。 这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧

化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

浅谈高炉操作

浅谈高炉操作 摘要:高炉操作是一项生产实践与理论性很强的工艺流程。本文介绍了高炉冶炼对原燃料(精料)的要求和高炉冶炼的四大基本操作制度(装料制度、送风制度、热制度、造渣制度)以及冷却制度的内容与选择;也介绍了高炉的炉前操作对高炉冶炼的影响,高炉操作的出铁口维护等内容;同时,还阐述了高炉冶炼的强化冶炼技术操作如高炉的高压操作,富氧喷煤操作(富氧操作、喷煤粉操作、富氧喷煤操作),高风温操作(风温对高炉的影响和风温降焦比等)等操作细节。本文介绍的内容对高炉冶炼都很重要,望与高炉的实际情况结合,减少高炉操作失误,从而使高炉冶炼取得更好的经济技术指标。 关键词:基本操作制度、冷却制度、炉前操作、强化冶炼 绪论:中国是世界炼铁大国,2007年产铁4.894亿吨,占世界49.5%,有力地支撑我国钢铁工业的健康发展。进入21世纪以来,我国钢铁工业高速发展,新建了大批大、中现代化高炉。在当前国内外市场经济竞争更加激烈的情况下,各企业都面临如何进一步降低生产成本的问题。在高炉炼铁过程中,如何操作,改善操作,保持炉况稳定进行,降低消耗,提高经济效益是高炉工作者的一项重要任务。在遵循高炉冶炼基本规则的基础上,根据冶炼条件的变化,及时准确地采取调节措施。 一.高炉炼铁以精料为基础 高炉炼铁应当认真贯彻精料方针,这是高炉炼铁的基础.,精料技术水平对高炉炼铁技术指标的影响率在70%,高炉操作为10%,企业现代化管理为10%,设备运行状态为5%,外界因素(动力,原燃料供应,上下工序生产状态等)为5%.。高炉炼铁生产条件水平决定了生产指标好坏。因此可见精料的重要性。 1.精料方针的内容: ·高入炉料含铁品位要高(这是精料技术的核心),入炉矿含铁品位提高1%,炼铁燃料比降低1.5%,产量提高2.5%,渣量减少30kg/t,允许多喷煤15 kg/t。 原燃料转鼓强度要高。大高炉对原燃料的质量要求是高于中小高炉。如宝钢要求焦炭M40为大于88%,M10为小于6.5%,CRI小于26%,CSR大于66%。一般高炉M40要求为大于

高炉操作基础技术2

高炉操作基础技术(选择题) 1.出铁次数是按照高炉冶炼强度及每次最大出铁量不应超过炉缸安全出铁量来确定。( ) A.按安全出铁量的60~80%定为每次出铁量 B.按安全出铁量的30~50%定为每次出铁量 答案:A 2.按照炉料装入顺序,装料方法对加重边缘的程度由重到轻排列为( )。 A.正同装-倒同装-正分装-倒分装-半倒装 B.倒同装-倒分装-半倒装-正分装-正同装 C.正同装-半倒装-正分装-倒分装-倒同装 D.正同装-正分装-半倒装-倒分装-倒同装 答案:D 3.炉缸边缘堆积时,易烧化( )。 A.渣口上部 B.渣口下部 C.风口下部 D.风口上部 答案:D 曲线的形状为:( )。 4.边缘气流过分发展时,炉顶CO 2 A.双峰型 B.馒头型 C.“V”型 D.一条直线 答案:B 5.影响炉缸和整个高炉内各种过程中的最重要的因素是( )。 A.矿石的还原与熔化 B.炉料与煤气的运动 C.风口前焦炭的燃烧 答案:C 6.根据高炉解剖研究表明:硅在炉腰或炉腹上部才开始还原,达到( )时还原出的硅含量达到最高值。 A.铁口 B.滴落带 C.风口 D.渣口

答案:C 7.高压操作使炉内压差降低的原因是( )。 A.冶炼强度较低 B.风压降低 C.煤气体积缩小 D.煤气分布合理答案:C 8.要使炉况稳定顺行,操作上必须做到“三稳定”,即( )的稳定。 A.炉温、料批、煤气流、 B.炉温、煤气流、碱度 C.煤气流、炉温、料批 D.煤气流、料批、碱度 答案:A 9.高炉冶炼过程中,P的去向有( )。 A.大部分进入生铁 B.大部分进入炉渣 C.一部分进入生铁,一部分进入炉渣 D.全部进入生铁 答案:D 10.高温物理化学反应的主要区域在( )。 A.滴落带 B.炉缸渣铁贮存区 C.风口带 答案:A 11.高炉中铁大约还原达到( )。 A.90% B.95% C.99.5% 答案:C 12.高炉中风口平面以上是( )过程。 A.增硅 B.降硅 C.不一定 D.先增后减 答案:A

高炉安全操作规程完整

炼铁分厂各岗位安全操作规程

1围 本表准规定了炼铁分厂安全生产的技术要求 本表准适用于炼铁分厂生产和设备检修。 2安全管理 2.1炼铁分厂建立健全安全管理制度、完善安全生产责任制。 厂长对本厂的安全生产负全面责任,各车间(工段)主要负责人对本车间(工段)的安全生产负责。 2.2炼铁分厂设置安全生产管理机构 并且配备专职安全生产管理员,负责管理本部门的安全生产工作。 2.3炼铁分厂根据GB622的有关规定,配备煤气监测、防护设施、器具及人员。 2.4炼铁分厂建立健全安全生产岗位责任制和岗位安全技术操作规程,严格执行交接班制度。 2.5炼铁分厂认真执行安全检查制度,对查出的问题提出整改措施,并限期整改。 2.6炼铁厂长应具备相应安全生产知识和管理能力。 2.7应定期对职工进行安全生产和劳动保护教育,普及安全知识和安全法规,加强业务技术培训。职工经考试合格方可上岗。 新工人进厂,首先接受分厂、车间、班组三级安全教育,经考试合格后由熟练工带领工作至少三个月,熟悉本工种操作技术并考试合格方可独立工作。

调换工种和脱岗三个月以上重新上岗的人员,应首先进行岗位安全培训,并经考试合格方可上岗。 外来参观或学习人员,要接受必要的安全教育,并由专人带领。 2.8特种作业人员和要害岗位、重要设备与设施的作业人员,均经专门的安全教育和培训,并经考试合格,取得操作,方可上岗。上述人员的培训、考试、发证及复审,应按国家有关规定执行。 2.9采用新工艺、新技术、新设备,应制定相应的安全技术措施;对有关生产人员,进行专门安全技术培训,并经考试合格方可上岗。 2.10炼铁分厂要求职工正确佩戴和使用劳动防护用品。 2.11炼铁分厂应对厂房、机电设备进行定期检查、维护和清扫,要害岗位的设备,实行操作牌制度。 2.12炼铁厂要建立火灾、爆炸、触电和毒物逸散等重大事故的应急救援预案,并配备必要的器材与设施,定期演练。 2.13安全装置和防护设施,不得擅自拆除。 2.14炼铁厂发生伤亡或其它重大事故时,厂长或其代理人应立即到现场组织指挥抢救,并采取有效措施,防止事故扩大。 发生伤亡事故,应按国家有关规定报告和处理。 事故发生后,应及时调查分析,查清事故原因,并提出防止同类事故发生的措施。 3炼铁分厂各岗位安全操作规程 3.1高炉工长安全操作规程 3.1.1 危险源 3.1.1.1 一级危险源 未按规定穿戴好劳动保护用品; 更换风、渣口时未戴好面罩; 接触高温工器具未戴手套; 风口镜片缺损; 监视出铁热辐射; 监视出铁渣铁喷溅、站位不当; 值班室操作配电盘和操作开关漏电; 在运行的电葫芦下走动; 高空擦玻璃; 开关炉顶人孔操作开关人孔盖站位不当。 3.1.1.2 二级危险源

高炉高压操作详解

高炉高压操作 20世纪50年代以前,高炉都是在炉顶煤气剩余压力低于30kPa 的情况下生产的,通常称为常压操作。1944-1946年美国在克利夫兰厂的高路上将炉顶煤气压力提高到70kPa,试验获得成功(产量提高12.3%,焦比降低2.7%,炉煤量大幅度降低),从这时起将炉顶煤气压力超过30kPa的高炉操作称为高压操作。在此后十年中,美国采用高压操作的高炉座数增加很多。苏联于1940年开始在彼得罗夫斯基工厂进行提高炉顶煤气压力操作的试验,它比美国的试验稍早一点,但初次试验并未成功,后来改进了提高炉顶煤气压力的设施后才取得进展,但其发展速度却很快,到1977年高压操作高炉冶炼的生铁占全部产量的97.3%。我国从50年代后期开始,也先后将1000m3级高炉改为高压操作,同样取得较好的效果,但是炉顶压力均维持在50-80kPa,而宝钢1号高炉(4063m3)的炉顶压力已达到250 kPa,进入世界先进行列。 一、高压操作系统 高炉炉顶煤气剩余压力的提高是由煤气系统中的高压调节阀组 控制阀门的开闭度来实现的。前苏联早期试验时,曾将这一阀组设置在煤气导出管上,它很快被煤气所带炉尘所磨坏,因而试验未获成功。后来改进阀组结构并将其安装在洗涤塔之后,才能取得成功(见图1)。我国1000m3级高炉的调压阀组是由三个φ700mm电动蝶式调节阀,一个设有自动控制的φ400mm蝶阀和一个φ200mm常通管道所组成。高压时,φ700mm阀常闭,炉顶煤气压力由φ400mm阀自动控

制在规定的剩余压力,这样自风机到调压阀组的整个管路和高炉炉内均处于高压之下,只有将所有阀门都打开,系统才转为常压,长期以来,由于炉顶装料设备系统中广泛使用着双钟马基式布料器,它既起着封闭炉顶,又起着旋转布料的作用,布料器旋转部位的密封一直阻碍着炉顶压力的进一步提高。只有到70年代实现了“布料与封顶分离”的原则,即采用双钟四阀,无钟炉顶等以后,炉顶煤气压力才大幅度提高到150kPa,甚至到200-300 kPa。 图1 高压操作工艺流程图 图2 余热发电工艺流程图

高炉炼铁工艺流程(经典)教学教材

高炉炼铁工艺流程(经 典)

本文是我根据我的上传的上一个文库资料继续修改的,以前那个因自己也没有吃透,没有条理性,现在这个是我在基本掌握高炉冶炼的知识之后再次整理的,比上次更具有系统性。同时也增加了一些图片,增加大家的感性认识。希望本文对你有所帮助。 本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档:

一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。 炼铁方法主要有高炉法、直接 还原法、熔融还原法等,其原理 是矿石在特定的气氛中(还原物 质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造 外,绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要方 法,钢铁生产中的重要环节。这 种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,

炼铁炉前操作基础知识

炼铁厂炉前操作基础知识 一、作业过程内容概述 通过使用开堵口设备、渣铁分离设备、起重设备,按规定时间将炉内高温液态生铁、炉渣排放到铁罐和渣处理系统。 二、本岗位存在的主要危害因素和高风险作业 A、高温铁水 B、煤气中毒 C、机械伤害 D、粉尘 E、高空落物 F、爆炸 G、窒息 H、触电 I、火灾 J、高压气体 K、高空作业 L、交叉作业P、起重作业Q、出铁作业 三、进入工作岗位前 1、工作时正确穿戴劳保防护用品,严禁穿化纤衣物,严禁班前、班中酒后上岗。 2、必须熟悉炉前设备状况及安全操作规程,熟练掌握事故应急预案。 3、会辨识本岗位危险源点及熟悉自我防范措施。 四、安全注意事项 (一)炉前工安全注意事项: 1、严格遵守炼铁厂安全、技术、设备各项管理制度、规程、作业指导书、作业标准及要求; 2、炉前严格执行炉前出铁确认制,杜绝“三违”作业。 3、启动操作设备时,必须打铃警示,认真观察周围有无人员和障碍物。 4、作业过程中,确认周围环境是否安全,上下楼梯时应扶好扶手,确保安全。。 5、清扫卫生时必须两人以上协同清扫, 互相监护;严禁在运转部位清扫加油,清扫卫生、 点检设备时,要离运转的部位至少300㎜的距离,注意防止衣袖被运转的机械设备咬住。 6、地面上的散料、杂物、积水要及时清理,防止作业时滑倒摔伤。 7、电线接头裸露,绝缘老化,灭火器材不齐全、失效,必须及时汇报处理。 8、要认真检查本岗位的安全防护装置及安全附件、照明设施是否完好,发现损坏要及时 汇报联系处理。保持现场安全通道畅通。 9、更换岗位照明灯泡时,必须断电、挂检修牌,使用安全登高工具应系好安全带,两人 以上更换(一人更换,一人在下面扶好梯子,做好监护),照明损坏要立即通知电工维修,严禁岗位工更换爆裂的照明灯泡。

高炉炼铁炼钢工艺

本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档: 一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中 还原出来的过程。 炼铁方法主要有高炉法、直 接还原法、熔融还原法等,其原 理是矿石在特定的气氛中(还原 物质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造外, 绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要

方法,钢铁生产中的重要环节。这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

高炉炼铁设备操作

喷煤操作规程及管理制度 1. 岗位职责 1.1. 煤粉喷吹操作。 2. 工作内容 2.1. 准备工作 2.1.1. 将直吹管装配好经检查合格的弹子阀。 2.1.2. 检查喷枪长度,确保喷枪位置适宜。 2.1. 3. 插枪时准备好管钳,大锤等工具。 2.2. 喷煤 2.2.1. 将喷枪插入风口直吹管时,喷枪阀门应关闭,调整好喷枪角度,连接好胶皮管或金属软管。 2.2.2. 检查分煤器各阀门,直通阀及旁通阀应关闭。 2.2. 3. 打开分煤器下部放散阀。 2.2.4. 联系喷吹工送风,确认管道送风正常后关闭放散阀,打开分煤器各直通阀及喷枪阀门。 2.2.5. 通知工长,具备送煤条件,由工长通知喷吹工送煤后,检查煤粉枪喷吹情况。 2.3. 风口停喷条件 2.3.1. 风口损坏漏水时。 2.3.2. 风口向凉,升降多,挂渣,涌渣,灌渣。 2.3.3. 风口未全开时。 2.3.4. 直吹管内有异物时。

2.3.5. 喷枪烧坏磨风口时。 2.3.6. 直吹管不严,跑风,吹管前端发红时。 2.4. 喷煤突然停风,停电的处理 喷煤突然停风停电,配管工应立即关闭喷枪阀门,防止热风倒流造成事故,同时打开分煤器放散阀,然后更换烧坏的喷枪或喷煤管,待喷吹正常后再按正常程序送煤。 2.5. 休复风时的喷煤操作 2.5.1. 休风后应关闭喷枪阀门,分煤器直通阀,打开放散阀。 2.5.2. 复风时应先通知喷吹工送风,然后按正常程序送煤。 2.6. 喷枪故障检查与排除 2.6.1. 喷枪堵塞时,应先关闭分煤器直通阀,打开分煤器上旁通,利用炉内热风压力进行倒冲,若倒冲无效,可关闭旁通阀,打开压缩空气或氮气吹扫阀门进行吹扫。 2.6.2. 若分煤器至喷枪部分管路堵塞经吹扫无效后,可打开喷枪连接软管进行吹扫处理。 2.6. 3. 若分煤器出口至分煤器直通阀部分堵塞可打开分煤器下部旁通阀进行处理。 2.6.4. 若喷枪堵塞清扫无效经确认管路畅通,应更换喷枪。 2.6.5. 若分煤器主管堵塞应关闭分煤器所有直通阀,打开放散阀,进行放散,正常后关闭放散阀,打开分煤器直通阀,必要时联系喷吹工进行处理。 2.6.6. 若喷枪全堵,经检查主管畅通,应分别清理至正常。

高炉四大操作制度讲义精编版

高炉四大操作制度讲义 精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

高炉四大操作制度讲义 高炉操作的任务: 高炉操作的任务是在已有原燃料和设备等物质条件的基础上,灵活运用一切操作手段,调整好炉内煤气流与炉料的相对运动,使炉料和煤气流分布合理,在保证高炉顺行的同时,加快炉料的加热、还原、熔化、造渣、脱硫、渗碳等过程,充分利用能量,获得合格生铁,达到高产、优质、低耗、长寿、高效益的最佳冶炼效果。实践证明,虽然原燃料及技术装备水平是主要的,但是,在相似的原燃料和技术装备的条件下,由于技术操作水平的差异,冶炼效果也会相差很大,所以不断提高高炉操作水平、充分发挥现有条件的潜力,是高炉工作者的一项经常性的重要任务。 通过什么方法实现高炉操作的任务: 一是掌握高炉冶炼的基本规律,选择合理的操作制度。二是运用各种手段对炉况的进程进行正确的判断和调节,保持炉况顺行。实践证明,选择合理的操作制度是高炉操作的基本任务,只有选择好合理的操作制度之后,才能充分发挥各种调节手段的作用。 高炉有哪几种基本操作制度: 高炉有四大基本操作制度:(1)热制度,即炉缸应具有的温度与热量水平;(2)造渣制度,即根据原料条件,产品的品种质量及冶炼对炉渣性能的要求,选择合理的炉渣成分(重点是碱度)及软熔带结构和软熔造渣过程;(3)送风制度,即在一定冶炼条件下选择合适的鼓风参数;(4)装料制度,即对装料顺序、料批大小和料线高低的合理规定。选择合理操作制度的根据: 高炉的强化程度、冶炼的生铁品种、原燃料质量、高炉炉型及设备状况等是选定各种合理操作制度的根据。 通过哪些手段判断炉况: 高炉顺行是达到高产、优质、低耗、长寿、高效益的必要条件。为此不是选择好了操作制度就能一劳永逸的。在实际生产中原燃料的物理性能、化学成分经常会发生波动,气候条件的不断变化,入炉料的称量可能发生误差,操作失误与设备故障也不可能完全杜绝,这些都会影响炉内热状态和顺行。炉况判断就是判断这种影响的程度和顺行的趋向,即炉况是向凉还是向热,是否会影响顺行,它们的影响程度如何等等。判断炉况的基本手段基本是两种,一是直接观察,如看入炉原料外貌,看出铁、出渣、风口情况;二是利用高炉数以千、百计的检测点上测得的信息在仪表或计算机上显示重要数据或曲线,例如风量、风温、风压等鼓风参数,各部位的温度、静压力、料线变化、透气性指数变化,风口前理论燃烧温度、炉热指数、炉顶煤气曲线、测温曲线等。在现代高炉上还装备有各种预测、控制模型和专家系统,及时给高炉操作者以炉况预报和操作建议,操作者必须结合多种手段,综合分析,正确判断炉况。 调节炉况的手段与原则: 调节炉况的目的是控制其波动,保持合理的热制度与顺行。选择调节手段应根据对炉况影响的大小和经济效果排列,将对炉况影响小、经济效果好的排在前面,对炉况影响大,经济损失较大的排在后面。它们的顺序是:喷吹燃料——风温(湿度)——风量——装料制度——焦炭负荷——净焦等。调节炉况的原则,一是要尽早知道炉况波动的性质与幅度,以便对症下药;二是要早动少动,力争稳定多因素,调剂一个影响小的因素;三是要了解各种调剂手段集中发挥作用所需的时间,如喷吹煤粉,改变喷吹量需经过3~4小时才能集中发挥作用(这是因为刚开始增加煤量时,有一个降低理论燃烧温度的过程,只有到因增加煤气量,逐步增加单位生铁的煤气而蓄积热量后才有提高炉温的作用),调节风温(湿度)、风量要快一些,一般为~2小时,改变装料制度至少要装完炉内整个固体料段的时间,而减轻焦炭负荷与加净焦对料柱透气性的影响,随焦炭加入量的增加而增加,但对热制度的反映则属一个冶炼周期;四是当炉况波动大而发现晚时,要正确采取多种手段

高炉炉前安全操作规程(新版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 高炉炉前安全操作规程(新版)

高炉炉前安全操作规程(新版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 1出铁安全规程 1.1出铁前必须穿戴好劳保用品。 1.2禁止潮铁口出铁,铁沟、铁罐必须干净,无潮物。 1.3炉前所用工具必须烤干,严禁用铁管捅铁口和铁水。 1.4出铁时禁止跨越主沟、撇渣器和渣沟。 1.5开口前要修好泥套,开口机、泥炮要试好,并设专人操作。 1.6出铁时,冲渣流嘴附近禁止站人。 1.8严禁使用氧气管捅铁口。 1.9人工开铁口需使用氧气时,氧气瓶必须离开明火10米以外,氧气瓶严禁正对铁口所用工具必须经脱脂,双脚不准站在铁沟内或正对铁口。 1.10保持炉前,平台上下清洁,不准有积水。 1.11液压系统出现问题及时通知维检人员处理,并通知高炉工长,不得随意对各类阀门、压力表进行调节。

2撇渣器安全规程 1工作前必须按规定穿戴好防护用品,检查设备及工作场地。 2开铁口前,检查撇渣器是否有凝盖,挡好砂坝。 3开始放下渣时,应视铁流情况分层落沙坝,不得落的过猛。。 4堵铁口后,落砂坝应慢,严禁一下将砂坝推出,防止渣沟过铁。 5下渣沟流嘴应糊泥铺河沙。 3泥炮安全规程 3.1装泥时,禁止往炮膛内打水,不准将手伸入装泥孔,不准使用冻泥、稀泥和混有杂物的炮泥。 3.2开动泥炮时,其活动半径内不许有人。 3.3带铁堵铁口时,要提前烤热炮嘴。 3.4开炮人必须熟悉炮性能。设专人操作。 3.5出铁前应仔细检查泥炮各部位的工作是否灵活,正常。 3.6泥炮顶泥时炮嘴正前方严禁有人,炮嘴结焦应抠净,出泥要圆,抠炮嘴结焦硬泥时, 不得正对炮泥操作。 4烧氧气安全规程 4.1使用氧气烧铁口、风口,要保证人员分工明确密切配合。

高炉冶炼工艺

第四章高炉冶炼工艺 课时:2学时 授课内容: 第三节热风炉操作 目的要求: 1.了解热风炉燃料; 2.知道影响热风的因素; 3.掌握热风炉的操作特点、燃烧制度; 4.掌握送风制度和换炉操作。 重、难点: 1.影响热风的因素、热风炉的燃烧制度、送风制度和换炉操作。 教学方法: 利用多媒体以课堂讲授为主,结合实际范例进行课堂讨论。 讲授重点内容提要 第三节热风炉操作 一.热风炉燃料 1.燃料品种及其化学成分、发热量 热风炉的燃料为煤气。 表4—15分别列出几种热风炉常用煤气的成分和发热值。 表4—15 热风炉常用煤气成分及发热值 2.煤气及助燃空气的质量 含尘量:煤气含尘量低于10mg/m3。助燃空气含尘量尽量减少。 煤气含水量:在热风炉附近的净煤气管道上设置脱水器或,使用干法除尘。 净煤气压力:净煤气支管处的煤气应有一定的压力,见表4—16。 表4—16 热风炉净煤气吉管处的煤气压力 3.气体燃料可燃成分的热效应 气体燃料可燃成分的热效应(见表4—17) 表4—17 1 m3气体燃料中各可燃成分l%体积的热效应 二.影响热风温度的因素 1.拱顶温度 ◆限制拱顶温度的因素:

①耐火材料理化性能。实际拱顶温度控制在比拱顶耐火砖平均荷重软化点低l00℃左右(也有按拱顶耐火材料最低荷重软化温度低40~50℃控制)。 ②煤气含尘量。不同含尘量允许的拱顶温度不同(见表4—18)。 表4—18 不同含尘量允许的拱顶温度 ③燃烧产物中腐蚀性介质。为避免发生拱顶钢板的晶间应力腐蚀,必须将拱顶温度控制在不超过l400℃或采取防止晶间应力腐蚀的措施。 ◆热风炉实际拱顶温度低于理论燃烧温度70~90℃。 ◆大、中型高炉热风炉拱顶温度比平均风温高120~220℃。小型高炉拱顶温度比平均风温高l50~300℃。 2.废气温度 允许的废气温度范围:大型高炉废气温度不超过350~400℃,小型高炉不得超过400~450℃。 废气温度与热风温度的关系:提高废气温度可以增加热风温度。在废气温度为200~400℃范围内,每提高废气温度100℃约可提高风温40℃。 影响废气温度的因素:单位时间燃烧煤气量、燃烧时间、蓄热面积。 3.热风炉工作周期 热风炉一个工作周期:燃烧、送风、换炉三个过程自始至终所需的时间。 送风时间与热风温度的关系:随着送风时间的延长,风温逐渐降低。 合适的工作周期:合适的送风时间最终取决于保证热风炉获得足够的温度水平(表现为拱顶温度)和蓄热量(表现为废气温度)所必要的燃烧时间。 4.蓄热面积与格子砖重量 当格子砖重量相同并采用相同工作制度时,蓄热面积大的供热能力大。 格子砖重量大,周期风温降小,利于保持较高风温。 单位风量的格子砖重量增大时,热风炉送风期拱顶温度降减少,即能提高风温水平。 单位风量的格子砖重量相同时,蓄热面积大的拱顶温度降小。 5.其他因素 ◆燃烧器形式和能力 陶瓷燃烧器的煤气和空气、混合较好,燃烧能力大,完全可以满足要求。 ◆煤气量(煤气压力) 煤气量不足或煤气压力波动,拱顶温度不能迅速稳定地升高,热风炉蓄热量减少。 ◆高炉操作 高炉顺行、热风炉工作稳定,能最大限度地保持较高风温水平。 三.热风炉的操作 1.蓄热式热风炉的传热特点 热风炉内的传热主要是指蓄热室格子砖的热交换。 高炉热风温度的高低,取决于蓄热室贮藏的热量及拱顶温度。 2.热风炉的操作特点 ◆热风炉操作是在高温、高压、煤气的环境中进行。 ◆热风炉的工艺流程: ①送风通路:热风炉除冷风阀、热风阀保持开启状态外,其他阀门一律关闭; ②燃烧通路:热风炉冷风阀和热风阀关闭外,其他阀门全部打开; ③休风:所有热风炉的全部阀门都关闭。 ◆蓄热式热风炉要储备足够的热量。 ◆热风炉各阀门的开启和关闭必须在均压下进行。 ◆高炉热风炉燃烧可以使用低热值煤气,提供较高的风温。

管理制度高炉四大操作制度讲义

(管理制度)高炉四大操作 制度讲义

高炉四大操作制度讲义 高炉操作的任务: 高炉操作的任务是于已有原燃料和设备等物质条件的基础上,灵活运用壹切操作手段,调整好炉内煤气流和炉料的相对运动,使炉料和煤气流分布合理,于保证高炉顺行的同时,加快炉料的加热、仍原、熔化、造渣、脱硫、渗碳等过程,充分利用能量,获得合格生铁,达到高产、优质、低耗、长寿、高效益的最佳冶炼效果。实践证明,虽然原燃料及技术装备水平是主要的,可是,于相似的原燃料和技术装备的条件下,由于技术操作水平的差异,冶炼效果也会相差很大,所以不断提高高炉操作水平、充分发挥现有条件的潜力,是高炉工作者的壹项经常性的重要任务。 通过什么方法实现高炉操作的任务: 壹是掌握高炉冶炼的基本规律,选择合理的操作制度。二是运用各种手段对炉况的进程进行正确的判断和调节,保持炉况顺行。实践证明,选择合理的操作制度是高炉操作的基本任务,只有选择好合理的操作制度之后,才能充分发挥各种调节手段的作用。 高炉有哪几种基本操作制度: 高炉有四大基本操作制度:(1)热制度,即炉缸应具有的温度和热量水平;(2)造渣制度,即根据原料条件,产品的品种质量及冶炼对炉渣性能的要求,选择合理的炉渣成分(重点是碱度)及软熔带结构和软熔造渣过程;(3)送风制度,即于壹定冶炼条件下选择合适的鼓风参数;(4)装料制度,即对装料顺序、料批大小和料线高低的合理规定。 选择合理操作制度的根据: 高炉的强化程度、冶炼的生铁品种、原燃料质量、高炉炉型及设备情况等是选定各种合理操作制度的根据。 通过哪些手段判断炉况: 高炉顺行是达到高产、优质、低耗、长寿、高效益的必要条件。为此不是选择好了操作制度

高炉强化冶炼

一高炉强化冶炼实践 杨锐炼铁厂一高炉 【摘要】一号高炉年休后通过采取加强原燃料管理、装料制度的调整、高风温高富氧大喷吹、大风量高压差操作及加强日常管理和设备检查维护等措施,提高了冶炼强度,各项生产经济指标得到了很大的提高。 【关键词】高炉,强化冶炼,措施 1 前言 攀钢高炉的主要炉料是以大部分高钛型钒钛磁铁矿精矿和部分普通矿粉为原料的钒钛烧结矿,炉渣中含有较高的TiO2,给高炉冶炼带来一系列与冶炼普通矿不同的特点,这主要是由于TiO2在炉内还原所引起的,所以如何减少在炉内的TiO2还原是确保冶炼钒钛磁铁矿高炉顺行的关键。炉料和渣铁在炉内停留时间长,会使TiO2的还原产物增多,进而影响高炉顺行,所以冶炼强度低时,则高炉的顺行状况不好,技术经济指标不理想,而冶炼强度较高时,则炉况比较易稳定、顺行,技术经济指标也较好。因此,较高的冶炼强度是冶炼高钛型钒钛型磁铁矿高炉稳定顺行的必要条件[1]。 攀钢一高炉有效容积1200m3,设有1个出铁口,2个渣口,18个风口,采用SS布料器,并罐式无料钟炉顶,采用4座内燃式热风炉。近段时间来,由于冷却设备、炉前设备事故多、操作制度等原因,始终不能稳产高产,技术经济指标没能得到优化,公司于2011年4月初对1号高炉进行了检修。 表1 2010年12月—2011年6月1号高炉主要经济指标 月份利用系数 /t·(m3·d) -1 风量/ m3·min-1 风温 /℃ 综合冶炼强度/ t·(m3·d) -1 焦比 /kg·t-1 煤比/ kg·t-1 富氧 /m3·h-1 2010.12 2.662 3100 1193 1.426 436 122.06 6845 2011.1 2.613 3050 1186 1.376 429 118.11 6280 2011.2 2.615 3069 1192 1.411 435 122.25 6590 2011.3 2.599 3043 1196 1.426 451 123.95 6795 2011.4 2.660 3095 1191 1.458 465 122.64 6760 2011.5 2.643 3057 1194 1.436 455 124.17 6866 2011.6 2.691 3153 1193 1.452 438 129.39 6950 注:2011年4月、5月休风时间未在统计内,6月统计到上旬

高炉炼铁生产工艺流程简介

高炉炼铁生产工艺流程简介 [导读]:高炉炼铁生产是冶金(钢铁)工业最主要的环节。高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中,定期从铁口、渣口放出。高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。本专题将详细介绍高炉炼铁生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。 高炉冶炼目的:将矿石中的铁元素提取出来,生产出来的主要产品为铁水。付产品有:水渣、矿渣棉和高炉煤气等。 高炉冶炼原理简介: 高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。生产时,从炉顶(一般炉顶是由料种与料斗组成,现代化高炉是钟阀炉顶和无料钟炉顶)不断地装入铁矿石、焦炭、熔剂,从高炉下部的风口吹进热风(1000~1300摄氏度),喷入油、煤或天然气等燃料。装入高炉中的铁矿石,主要是铁和氧的化合物。在高温下,焦炭中和喷吹物中的碳及碳燃烧生成的一氧化碳将铁矿石中的氧夺取出来,得到铁,这个过程叫做还原。铁矿石通过还原反应炼出生铁,铁水从出铁口放出。铁矿石中的脉石、焦炭及喷吹物中的灰分与加入炉内的石灰石等熔剂结合生成炉渣,从出铁口和出渣口分别排出。煤气从炉顶导出,经除尘后,作为工业用煤气。现代化高炉还可以利用炉顶的高压,用导出的部分煤气发电。 高炉冶炼工艺流程简图: [高炉工艺]高炉冶炼过程: 高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中, 定期从铁口、渣口放出。 高炉冶炼工艺--炉前操作

高炉操作01高炉冶炼的特点

高炉操作 第1章 高炉冶炼的特点 1.1 高炉冶炼的根本任务 把铁矿石冶炼成合格生铁是高炉冶炼的根本任务。 高炉冶炼过程是在密闭的竖炉内进行,经历一个极为复杂的物理化学的反应过程,实质上冶炼过程基本上是氧的传输与热的交换过程。铁矿石在炉内不断下降,随着温度的升高氧化铁逐渐失氧而被还原、熔化,其他元素的还原,最终冶炼成合格铁。 1.2 高炉日常操作 1.2.1 日常操作 新建或大修后的高炉开始操作称为点火,完全停止高炉的操作称为停风。 装料是把焦炭和矿石按规定的方式分层装入,让炉料落到根据探尺判断的预定落点;装入一组料称做一批,以控制气流分布为主要目;确定一次的装入量,有定焦批重装入法和定矿石批重装入法,其他的量根据燃料比的变动而改变。 出铁作业单铁口高炉每1~2h一次,有渣口的高炉出渣作业也在每次出铁作业前进行,出渣过程中见渣中带铁或跑风既停止,无渣口的高炉出渣作业通过铁口随出铁一起进行。大型高炉出铁作业基本是连续的,间隔只有5~10min,出渣作业也是通过铁口随出铁一起进行。 高炉操作中把出铁温度、铁水含硅量、铁水含硫量、渣的成分组成、送风压力、流量、炉料下降情况、炉顶煤气成分等作为重要指标来判定炉况,作为调节炉况的依据。 1.2.2 炼铁单耗和产品 生产lt铁所需要的原料称做炼铁单耗,它因原料质量和操作方法的不同而变化。 炼铁的产品为铁水,副产品为炉渣、煤气、炉尘(瓦斯灰)。 1.3 高炉冶炼的工艺特点 高炉生产工艺与其他冶金工艺过程比较,具有以下几大特点: (1)生产过程的连续性 (2)生产过程中炉料与煤气相对运动

(3)高炉炼铁反应在密闭的容器中进行 (4)庞大的生产体系与巨大的生产能力 1.4 高炉操作 高炉工长的技术操作水平应该表现在: (1)能及时掌握炉况波动的因素,准确地把握外界条件的变化; (2)能尽早知道炉况不稳定的原因; (3)在错综复杂的矛盾中抓住主要矛盾,对炉况做出及时、正确的判断; (4)及早采取恰当的调节措施,具有处理炉况波动的方法与手段,能控制炉况变化的规律。 上述水平来源于长期的生产实践,日常细心与准确的观察,只有对炉况变化的情况明白,才能处理正确,效果显著。 1.5 高炉的关键部分 1.5.1 软熔带结构与作用 矿焦层装的高炉,软熔带结构也是层状的。一层矿石一层焦炭,矿焦相间,其形状受等温线分布的影响。 作用:高炉内软熔带起煤气分布器作用。 从目前研究结果看,煤气流的分布状态受下列因素影响而变化:

第二节 高炉炉前操作

第二节高炉炉前操作 一、炉前操作的任务 1、利用开口机、泥炮、堵渣机等专用设备和各种工具,按规定的时间分别打开渣、铁口,放出渣、铁,并经渣铁沟分别流人渣、铁罐内,渣铁出完后封堵渣、铁口,以保证高炉生产的连续进行。 2..、完成渣、铁口和各种炉前专用设备的维护工作。 3、制作和修补撇渣器、出铁主沟及渣、铁沟。 4、更换风、渣口等冷却设备及清理渣铁运输线等一系列与出渣出铁相关的工作。 二、高炉不能及时出净渣铁,会带来以下不利影响: 1、影响炉缸料柱的透气性,造成压差升高,下料速度变慢,严重时还会导致崩料、悬料以及风口灌渣事故。 2、炉缸内积存的渣铁过多,造成渣中带铁,烧坏渣口甚至引起爆炸。 3、上渣放不好,引起铁口工作失常。 4、铁口维护不好。铁口长期过浅,不仅高炉不易出好铁,引起跑大流、漫铁道等炉前事故,直至烧坏炉缸冷却壁,危及高炉的安全生产,有的还会导致高炉长期休风检修,损失惨重。 三、炉前操作平台 1.风口平台 ◆概念:在风口下方沿炉缸四周设置的高度距风口中心线1150~1250mm的工作平台,称为风口平台。 ◆作用:为便于观察风口和检查冷却设备以及进行更换风、渣口等冷却设备的操作。 ◆要求:宽敞平坦;留有一定的泄水坡度;设有环形吊车。 2.出铁场 出铁场的要求: ◆采用环形或矩形出铁场。 ◆上空设有天棚。 ◆设有排烟机和除尘装置。 ◆设有各种出铁设备。 ◆铺设有铁水主沟。 铁水主沟是从铁口泥套外至撇渣器的铁水沟,铁水和下渣都经此流至撇渣器,一般坡度为5%~l0%。各种类型高炉主沟长度数据见表4—8。 表4—8各种类型高炉主沟长度参考 数据 大型高炉一般采用贮铁式主沟,沟内经常贮存一定深度的铁水(450~600 mm),使铁水流射落时不致直接冲击沟底,见图4—5。贮铁式主沟的另一个优点是可避免大幅度急冷急热的破坏作用,延长主沟的寿命。

高炉炼铁仿真操作系统操作规程

高炉炼铁仿真操作系统实训指导书 绪论 高炉炼铁仿真操作系统功能 实训项目 实训目标

实训项目1 高炉炼铁工艺流程实训 任务按照要求熟练打开仿真操作系统的操作界面 任务熟练说出高炉炼铁车间构筑物的名称及作用 任务熟练说出高炉炼铁车间主要设备的名称及作用 知识链接 高炉内型尺寸

实训项目2 高炉上料实训 仿真实训条件: (一)高炉槽下筛分、称量、运输系统的组成 高炉槽下系统由矿槽、焦槽以及皮带机三部分组成,矿槽采用双排,设有大小矿槽12个,大矿槽测为6个烧结矿槽,小矿槽侧由2个普通球团矿槽、2个块矿槽、2个熔剂或锰矿槽构成设有5个焦槽,各矿槽下均设给料机、振动筛、称量漏斗等设备。配置一个矿石中间称量漏斗与一个焦炭中间称量漏斗,矿焦通过中间称量漏斗、经皮带上炉顶。同时拥有小块焦回收系统,1A-6A按烧结矿考虑,1B-6B按球团矿、锰矿熔剂、生矿考虑。 4.1.1 各高炉矿槽、焦槽配备(见表4—1) 表4—1 各高炉矿槽配备情况 项目 炉别矿槽数(个)焦槽数(个) 烧结矿槽球团矿槽块矿槽焦丁槽 1、2号高炉6×m3 2×m3 2×m3

1×m3 4×m3 储存时间(h):焦炭:8h;烧结矿:12h;球团矿:12h;碎焦:8h;碎矿:8h。 槽下筛分、秤量设备(见表4—2,表4—3) 表4—2 筛分设备表4—3 秤量 类别 规格焦炭筛烧结矿筛类别 名称矿焦 型式BTS-150-330 BTS-150-330 称量物烧结矿 球团矿 块矿焦炭 能力(t/h) 200 250 筛面尺寸(mm) 筛分效率秤容积(m3) 装料制度OC或C OL(大粒度矿)、OS(小粒度矿) (二)主要控制功能 矿焦槽所有入炉原料采用分散筛分、分散称量+集中称量流程。按预先设定的排料程序,

相关文档