文档库 最新最全的文档下载
当前位置:文档库 › 高数部分知识点总结

高数部分知识点总结

高数部分知识点总结
高数部分知识点总结

高数部分知识点总结

1 高数部分

1.1 高数第一章《函数、极限、连续》

求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法

0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0,

0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0,

1xx1x,1(1,x),e限,包括、、;4.夹逼定理。

(1,),exlimlimlimsinxxx,0,0x,,

1.2 高数第二章《导数与微分》、第三章《不定积分》、第四

章《定积分》

第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。

对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答,

案中少写这个C会失一分。所以可以这样建立起二者之间的联系以加

f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,,

f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了,

这1分。

第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下

a

f(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,a

aaa

f(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0

,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02

用方法。所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利

aaa

奇函数,0偶函数,2偶函数用性质、。在处理完积分上下,,,,a,a0

限的问题后就使用第三章不定积分的套路化方法求解。这种思路对于证明定积分等式的题目也同样有效。

1.3 高数第五章《中值定理的证明技巧》

由本章《中值定理的证明技巧》讨论一下证明题的应对方法。用

E、(AB)C、以下这组逻辑公式来作模型:假如有逻辑推导公式A:,,

DE)F,由这样一组逻辑关系可以构造出若干难易程度不等的(C::,

证明题,其中一个可以是这样的:条件给出A、B、D,求证F成立。

为了证明F成立可以从条件、结论两个方向入手,我们把从条件入手证明称之为正方向,把从结论入手证明称之为反方向。正方向入手时可能遇到的问题有以下几类:1.已知的逻辑推导公式太多,难以

E就从中找出有用的一个。如对于证明F成立必备逻辑公式中的A,可能有AH、A(IK)、(AB) M等等公式同时存在,有的逻辑::,,,

公式看起来最有可能用到,如(AB) M,因为其中涉及了题目所给:,

的3个条件中的2个,但这恰恰走不通; 2.对于解题必须的关键逻辑推导关系不清楚,在该用到的时候想不起来或者弄错。如对于模型中的(AB) C,如果不知道或弄错则一定无法得出结论。从反方向:,

入手证明时也会遇到同样的问题。

通过对这个模型的分析可以看出,对可用知识点掌握的不牢固、不熟练和无法有效地从众多解题思路中找出答案是我们解决不了证明题的两大原因。

针对以上分析,解证明题时其一要灵活,在一条思路走不通时必须迅速转换思路,而不应该再从头开始反复地想自己的这条思路是不是哪里出了问题;另外更重要的一点是如何从题目中尽可能多地获取信息。

当我们解证明题遇到困难时,最常见的情况是拿到题莫名其妙,感觉条件与欲证结论简直是风马牛不相及的东西,长时间无法入手;好不容易找到一个大致方向,在做若干步以后却再也无法与结论拉近距离了。从出题人的角度来看,这是因为没能够有效地从条件中获取信息。“尽可能多地从条件中获取信息”是最明显的一条解题思路,同时出题老师也正是这样安排的,但从题目的“欲证结论”中获取信息有时也非常有效。如在上面提到的模型中,如果做题时一开始就想到了公式(CDE) F再倒推想到 (AB) C、 AE就可以证明:::,,,了。

如果把主要靠分析条件入手的证明题叫做“条件启发型”的证明题,那么主要靠“倒推结论”入手的“结论启发型”证明题在中值定理证明问题中有很典型的表现。其中的规律性很明显,甚至可以以表格的形式表示出来。下表列出了中值定理证明问题的几种类型:

条件欲证结论可用定理

,A 关于闭区间存在一个使介值定理(结论部分为:存在一个

,上的连续函满足某f,k(,)得)

,数,常常是个式子零值定理(结论部分为:存在一个使

只有连续性f,0(,)得)

已知

,f,0B 条件包括函存在一个) 费尔马定理(结论部分为: (x)0

,,数在闭区间满足洛尔定理(结论部分为:存在一个使

n(),f,0f,0上连续、在(,) 得) (,)

开区间上可

C 条件包括函存在一个拉格朗日中值定理(结论部分为:存在

fb,fa()(),f,,数在闭区间满足,使得) 一个,b,a()

n()f,k,上连续、在柯西中值定理(结论部分为:存在一个(,)

开区间上可 ,f,()f(b),f(a),g(b),g(a)使得) ,g(,)导

另外还常利用构造辅助函数法,转化为

可用费尔马或洛尔定理的形式来证明

从上表中可以发现,有关中值定理证明的证明题条件一般比较薄弱,如表格中B、C的条件是一样的,同时A也只多了一条“可导性”而已;所以在面对这一部分的题目时,如果把与证结论与可能用到的几个定理的的结论作一比较,会比从题目条件上挖掘信息更容易找到入手处。故对于本部分的定理如介值、最值、零值、洛尔和拉格朗日中值定理的掌握重点应该放在熟记定理的结论部分上;如果能够做到f,k(,),想到介值定理时就能同时想起结论“存在一个使得”、看

f,k(,),到题目欲证结论中出现类似“存在一个使得”的形式时也

,f,0能立刻想到介值定理;想到洛尔定理时就能想到式子;而见(,)

,f,()f(b),f(a),g(b),g(a)到式子也如同见到拉格朗日中值定理一样,那么在处,g(,)

理本部分的题目时就会轻松的多,时常还会收到“豁然开朗”的效果。所以说,“牢记定理的结论部分”对作证明题的好处在中值定理的证

明问题上体现的最为明显。

综上所述,针对包括中值定理证明在内的证明题的大策略应该是“尽一切可能挖掘题目的信息,不仅仅要从条件上充分考虑,也要重视题目欲证结论的提示作用,正推和倒推相结合;同时保持清醒理智,降低出错的可能”。希望这些想法对你能有一点启发。不过仅仅弄明白这些离实战要求还差得很远,因为在实战中证明题难就难在答案中用到的变形转换技巧、性质甚至定理我们当时想不到;很多结论、性质和定理自己感觉确实是弄懂了、也差不多记住了,但是在做题时那种没有提示、或者提示很少的条件下还是无法做到灵活运用;这也就是自身感觉与实战要求之间的差别。

这就像在记英语单词时,看到英语能想到汉语与看到汉语能想到英语的掌握程度是不同的一样,对于考研数学大纲中“理解”和“掌握”这两个词的认识其实是在做题的过程中才慢慢清晰的。我们需要做的就是靠足量、高效的练习来透彻掌握定理性质及熟练运用各种变形转换技巧,从而达到大纲的相应要求,提高实战条件下解题的胜算。依我看,最大的技巧就是不依赖技巧,做题的问题必须要靠做题来解决。

1.4 高数第六章《常微分方程》

本章常微分方程部分的结构简单,陈文灯复习指南对一阶微分方程、可降阶的高阶方程、高阶方程都列出了方程类型与解法对应的表格。历年真题中对于一阶微分方程和可降阶方程至少是以小题出现的,也经常以大题的形式出现,一般是通过函数在某点处的切线、法线、积分方程等问题来引出;从历年考察情况和大纲要求来看,高阶部分不太可能考大题,而且考察到的类型一般都不是很复杂。

对于本章的题目,第一步应该是辨明类型,实践证明这是必须放在第一位的;分清类型以后按照对应的求解方法按部就班求解即可。这是因为其实并非所有的微分方程都是可解的,在大学高等数学中只讨论了有限的可解类型,所以出题的灵活度有限,很难将不同的知识点紧密结合或是灵活转换。这样的知识点特点就决定了我们可以采取相对机械的“辨明类型——〉套用对应方法求解”的套路,而且各种类型的求解方法正好也都是格式化的,便于以这样的方式使用。

先讨论一下一阶方程部分。这一部分结构清晰,对于各种方程的通式必须牢记,还要能够对易混淆的题目做出准确判断。各种类型都有自己对应的格式化解题方法,这些方法死记硬背并不容易,但有规律可循——这些方法最后的目的都是统一的,就是把以各种形式出现的方程都化为f(x)dx=f(y)dy这样的形式,再积分得到答案。对于可

f(x)g(y)dx,f(x)g(y)dy,0分离变量型方程,就是变形为1122

yf(x)g(y)12,y,f()dxdy=-,再积分求解;对于齐次方程则做变量xf(x)g(y)21 yduu,,u,xyu和x替换,则化为,原方程就可化为关于的可分xdx

,y,p(x)y,q(x)离变量方程,变形积分即可解;对于一阶线性方程

dy,y,p(x)y,0,,p(x)dx第一步先求的通解,然后将变形得到的y

,y,p(x)y,q(x)积分,第二步将通解中的C变为C(x)代入原方程解

n,y,p(x)y,q(x)y出C(x)后代入即可得解;对于贝努利方程,先

1,nz,y做变量代换代入可得到关于z、x的一阶线性方程,求解以后将z还原即可;全微分方程M(x,y)dx+N(x,y)dy比较特殊,因为其有

,M,N,条件,而且解题时直接套用通解公式,y,x

xy. M(x,y)dx,N(x,y)dy,C0,,xy00

所以,对于一阶方程的解法有规律可循,不用死记硬背步骤和最后结果公式。对于求解可降阶的高阶方程也有类似的规律。对于

(n,1)(n)(n),yyZ,y,f(x)型方程,就是先把当作未知函数Z,则

dz,f(x)dx原方程就化为的一阶方程形式,积分即得;再对(n,2)(n,3)yy、依次做上述处理即可求解;

y,,,y,f(x,y) 叫不显含的二阶方程,解法是通过变量替换 ,,,,y,py,p、 (p 为x的函数)将原方程化为一阶方程;,,,,y,f(y,y)y,p叫不显含x的二阶方程,变量替换也是令(但

dpdydp,,,y,,p,pp此中的p为y的函数),则,也可化为一dydxdy

阶形式。

所以就像在前面解一阶方程部分记“求解齐次方程就用变量替换

y1,nz,y,u”,“求解贝努利方程就用变量替换”一样,在这里也x ,,,,y,py,p要记住“求解不显含y的二阶方程就用变量替换、”、

,,,,y,ppy,p“求解不显含x的二阶方程就用变量替换、”。

大纲对于高阶方程部分的要求不高,只需记住相应的公式即可。其中二阶线性微分方程解的结构定理与线性代数中线性方程组解的结构定理非常相似,可以对比记忆:

y(x)若齐次方程组Ax=0的基础解系有y(x)若、是齐次方程12

,,y,p(x)y,q(x)y,0(n-r)个线性无关的解向量,则齐次方的两个线性无

关的特解,则该齐次方程的通解为程组的通解为

x,ky,ky,,,,,ky,(x),cy(x),cy(x) 1122n,rn,r1122

非齐次方程非齐次方程组Ax=b的一个通解等于,,y,p(x)y,q(x)y,f(x)Ax=b 的一个特解与其导出组齐次方程的通解为

,y,cy(x),cy(x),y(x)Ax=0的通解之和,其中11221

,y(x)是非齐次方程的一个特解,1

cy(x),cy(x)是对应齐次方程1122

,,y,p(x)y,q(x)y,0的通解

y(x)y(x)r若非齐次方程有两个特解,r12、是方程组Ax=b的两个特解,若12 则对应齐次方程的一个解为rr则(-)是其对应齐次方程组Ax=012

y(x),y(x),y(x)的解 12

由以上的讨论可以看到,本章并不应该成为高数部分中比较难办的章节,因为这一章如果有难点的话也仅在于“如何准确无误地记忆各种方程类型及对应解法”,也可以说本章难就难在记忆量大上。

1.5 高数第七章《一元微积分的应用》

本章包括导数应用与定积分应用两部分,其中导数应用在大题中出现较少,而且一般不是题目的考察重点;而定积分的应用在历年真题的大题中经常出现,常与常微分方程结合。典型的构题方式是利用变区间上的面积、体积或弧长引出积分方程,一般需要把积分方程中

xx

f(t)dtf(t)dt的变上限积分单独分离到方程的一端形成“,,,aa?”的形式,在两边求导得到微分方程后套用相关方程的对应解法求解。

对于导数应用,有以下一些小知识点:

1. 利用导数判断函数的单调性和研究极、最值。其中判断函数增减

性可用定义法或求导判断,判定极、最值时则须注意以下两点: A.

xxf(x)极值的定义是:对于的邻域内异于的任一点都有,00

f(x)f(x)f(x)或,,注意是,或, 而不是?或?; B. 极00

值点包括图1、图2两种可能,

所以只有在

,xxf(x)f(x),0在处可导且在处取极值时才有。以上两点都00

是实际做题中经常忘掉的地方,故有必要加深一下印象。 2. 讨论方程根的情况。这一部分常用定理有零值定理(结论部分

,f,0f,0为)、洛尔定理(结论部分为);常用到构造辅助(,)(,)

函数法;在作题时,画辅助图会起到很好的作用,尤其是对于讨论方程根个数的题目,结合函数图象会比较容易判断。 3. 理解区分函数图形的凸凹性和极大极小值的不同判定条件:A.若

,,f(x)f(x),0f(x)在区间I上的,则在I上是凸的;若函数

,,f(x)f(x),0f(x)f(x)在I上的,则在I上是凹的;B.若在

,,,,,f,0xf(x),0f(x),0f(x)点处有且,则当时为(x)0000

,,f(x),0f(x)极大值,当时为极小值。 00

,f(x)其中,A是判断函数凸凹性的充要条件,根据导数定义,

,f,0,,,f(x)f(x)f(x)是的变化率,是的变化率。可以说明(x)

,,f(x),0函数是增函数,典型图像是;

f(x)可以说明函数的变化率在区间I上是递减的,包括以下两种可能:

,f(x)xa.此时为正,且随变大而变小(大小关系可参考图3);

,f(x)xb.此时为负,随变大而变

小(大小关系可参考图3);

,,f(x),0同样,也只有两种对应图像:

,f(x)xc.此时为正,随着变大而变大;

,f(x)xd.此时为负,随变大而变大。

,,f(x),0所以,当时,对应或的函数图

,,f(x),0像,是凸的;当时,对应或的函数图像,是凹的。

相比之下,判断函数极大极小值的充分条件比判断函数凸凹

,,,f,0f(x),0性的充要条件多了“且”,这从图像上也很容易(x)0

,,f(x),0理解:满足的图像必是凸的,即或,当

,,,f,0f(x),0且时不就一定是的情况吗。 (x)0

对于定积分的应用部分,首先需要对微元法熟练掌握。在历年考研真题中,有大量的题是利用微元法来获得方程式的,微元法的熟练应用是倍受出题老师青睐的知识点之一;但是由于微元法这种方法本身有思维上的跳跃,对于这种灵活有效的方法必须通过足量的练习才能真正体会其思想。在此结合函数图像与对应的微元法核心式来归纳微元法的三种常见类型:

1. 薄桶型. 本例求的是由平面图型a?x?

b,0?y?f(x)绕y轴旋转所形成的旋转体体积。方法是在旋转体

上取一薄桶型形体(如上图阴影部分所示),则根据微元法思想可

dv,2,xf(x)dxf(x)得薄桶体积 ,其中是薄桶的高,

2,xf(x)dx是薄桶展开变成薄板后的底面积,就是薄板的厚度;

二者相乘即得体积。

V,2,xf(x)dxdv,2,xf(x)dx对积分可得。在这个例,

子中,体现微元法特色的地方在于:1.虽然薄桶的高是个变化量,

f(x)dx但却用来表示;2.用表示薄桶的厚度;3.核心式

dv,2,xf(x)dx。

2y,x2. 薄饼型.本例求的是由抛物线及

2y,4xyH绕轴旋转形成的高的旋转体体积,方法是取如上图阴影部分所示的一个薄饼型形体,可得微元法核心式

yydv,,(y,)dy,(y,)。其中是薄饼的底面积,薄饼与 44

22y,xr,x,r 旋转面相交的圆圈成的面积是 ,?,?

222,,yy,4x,r,,x;同理薄饼与旋转面相交的圆圈成的

,ydy面积是,二者相减即得薄饼底面积。核心式中的是薄4

饼的高。这个例子中的薄饼其实并不是上下一般粗的圆柱,而是上大下小的圆台,但将其视为上下等粗来求解,这一点也体现了微元法的特色。

R3. 薄球型.本例求球体质量,半径为,

2,,rr密度,其中指球内任意一点到球心的距离。方法是

rdr取球体中的一个薄球形形体,其内径为厚度为,对于这

22dv,4,rrdr4,rdr个薄球的体积有,其中是薄球表面积,是厚度。该核心式可以想象成是将薄球展开、摊平得到一个薄面以

dr后再用底面积乘高得到的。由于很小,故可认为薄球内质量均

2224,,rdm,4,r,rdr,4,rdr匀,为,则薄球质量,积分

24,rdr可得结果。本例中“用内表面的表面积乘以薄球厚度得

dv到核心式”、“将内的薄球密度视为均匀”体现了微元法的特色。

通过以上三个例子谈了一下了我对微元法特点的一点认识。这种方法的灵活运用必须通过自己动手做题体会才能实现,因为其中一些逻辑表面上并不符合常规思维,但也许这正是研究生入学考试出题老师喜欢微元法的原因。

关于定积分的应用,以下补充列出了定积分各种应用的公式表格:

求平面图

形面积

b

s,f(x)dx ,a

求旋转体

体积(可

用微元法

也可用公x左图中图形绕轴旋转体的

b式) 2Vx,,f(x)dxy体积,绕轴旋转体得体积,a b

Vy,2,xf(x)dx ,a

x左图中图形绕轴旋转体的体

b22Vx,,[f(x),f(x)]dxy积,绕轴旋转体得体21,a b

Vy,2,x[f(x),f(x)]dx积 21,a

已知平行

截面面积

求立体体

b

V,s(x)dx ,积 a求平面曲

线的弧长

b2,l,1,(y)dx ,a

1.6 高数第九章《矢量代数与空间解析几何》

本章并不算很难,但其中有大量的公式需要记忆,故如何减少记忆量是复习本章时需要重点考虑的问题。抓住本章前后知识点的联系来复习是一种有效的策略,因为这样做既可以避免重复记忆、减少记忆量,又可以保证记忆的准确性。同时,知识点前后联系密切也正是本章的突出特点之一。以下列出本章中前后联系的知识点:

a) 矢量间关系在讨论线线关系、线面关系中的应用。这个联系很明显,举例来说,平面与直线平行时,平面的法矢量与直线的方向矢量相互垂直,而由矢量关系性质知此时二矢量的数积为0,若直线方

xxyyzz,,,000,,Ax,By,Cz,D,0程为,平面方程为,则lmn

Al,Bm,Cn,0有。同理可对线面、线线、面面关系进行判定。

b) 数积定义与求线线、线面、面面夹角公式的联系。数积定义式

,,,,,,abcos,,,,ab,|a||b|cos,为,故有,这个式子是所有线线、线|a||b|

面、面面夹角公式的源公式。举例来说,设直线

xxyyzzxxyyzz,,,,,,111222l:,,l:,,11,直线,则二直线lmnlmn111222

,,,,ll,mm,nnab121212,,,,,ab222222夹角,其中、分别是两条直线的方

l,m,n,l,m,n111222|a||b|

向矢量。对于线面、面面夹角同样适用,只需注意一点就是线面夹角

cos,,,,,sin,,,,,公式中不是而是,因为如右图所示

由于直线的方向矢量与直线的走向平行,而

,,,是两矢量夹角的余平面的法矢量却与平面垂直,所以线面夹角

,,,,,,90sin,角,即,故求夹角公式的左端是。对于线线夹角和面面夹角则无此问题。

c) 平面方程各形式间的相互联系。平面方程的一般式、点法式、三点式、截距式中,点法式和截距式都可以化为一般式。点法式A(x,x),B(y,y),

C(z,z),0(x,y,z)(点为平面上已000000

{A,B,C}知点,为法矢量)可变形为

Ax,By,Cz,(Ax,By,Cz),0,符合一般式000

yxz,,,1Ax,By,Cz,D,0a,b,c的形式;截距式(为平面abc

bcx,acy,abz,abc,0在三个坐标轴上的截距)可变形为,也符合一般式的形式。这样的转化不仅仅是为了更好地记公式,更主要是因为在考试中可能需要将这些式子相互转化以方便答题(这种情况在历年真题中曾经出现过)。

同样,直线方程各形式之间也有类似联系,直线方程的参数形式

x,x,lt,0

,y,y,mt,0和标准式之间可以相互转化。直线方程的参数形式,z,z,nt0, (x,y,z){l,m,n}(是平面上已知点,为方向矢量)可变形为000

,xx0,,tl,,yy0xxyyzz,,,000,t,m,,,即为标准式;标准式lmn,zz,0,tn,

xxyyzzxxyyzz,,,,,,000000,,,,,t若变形为则也可以lmnlmn

转化为参数形式。这个转化在历年真题中应用过不止一次。

d) 空间曲面投影方程、柱面方程、柱面准线方程之间的区别与联

F(x,y,z),0系。关于这些方程的基础性知识包括:表示的是一个空间曲面;由于空间曲线可视为由两个空间曲面相交而得到的,故空

F(x,y,z),0,1222,x,y,R间曲面方程为;柱面方程如圆柱面、Fxyz(,,),02, 22xy

,,1f(x,y),0椭圆柱面可视为是二元函数在三维坐标系22ab

中的形式。

f(x,y),0,

,在这些基础上分析,柱面方程的准线方程如可视为z,0,

z,0是由空间曲面——柱面与特殊的空间曲面——坐标平面相交形成的空间曲线,即右图中的曲线2;而空间曲线的投影方程与柱面准线方程其实是一回事,如上图中曲线1的投影是由过曲线1的投影柱面与坐标平面相交得到的,所以也就是图

F(x,y,z),0,1

,中的柱面准线。在由空间曲线方程求投影方程时,Fxyz(,,),02,

zz需要先从方程组中消去得到一个母线平行于轴的柱面方程;;再

f(x,y,z),0,

,z,0联立即可得投影方程。与z,0,

1.7 高数第十章《多元函数微分学》

复习本章内容时可以先将多元函数各知识点与一元函数对应部分作对比,这样做即可以将相似知识点区别开以避免混淆,又可以通过与一元函数的对比来促进对二元函数某些地方的理解。本章主要内容可以整理成一个大表格: 二元函数的定义(略) 相一元函数的定义(略)

二元函数的连续性及极限: 一元函数的连续性及极限:

,(x,y) 一元函数的极限与路径无关,由二元函数的极限要求点以任何

limf(x),AP(x,y)不方向、任何路径趋向时均有00xx,0

等价式x,xy,yf(x,y),A,f(x),f(x),A同 (、)。00,0,0

limf(x,y)即可判断。如果沿不同路径的不相等,x,x0

y,y0

limf(x,y)则可断定不存在。 x,x0

y,y0

P(x,y)xz,f(x,y)y,f(x) 二元函数在点处在点处连一元函数000

limf(x,y)limf(x)相连续性判断条件为:存在且续性判断条件为且等x,xx,x00 y,y0似

f(x,y)f(x)等于于 000

二元函数的偏导数定义一元函数的导数定义

z,f(x,y)y,f(x) 二元函数的偏导数定义一元函数的导数定义:

fx,,x,fx()(),y00相

(,)(,)fx,,xy,fxy,z,limlim0000limlim,,x,0,x,0,x,x0,x,0,x,,x,x 似

分段函数在分界点处求导数需要分段函数在分界点处求偏导数要用

用导数定义

偏导数的定义

二元函数的全微分: 一元函数的全微分:

z,f(x,y)y,f(x) 简化定义为:对于函数,若在简化定义为:若函数

P(x,y),yx相点处的增量可表示为,z其在点处的增量可表示为00

,z,A,x,B,y,o(,)o(,),y,A,x,d似 d,x,其中,其中是的

f(x,y),高阶无穷小,则函数在该点可微,为的高阶无穷小,则函数在

P(x,y)dy,A,x即,一般有处可微,全微分为00

,z,zdz,dx,dy,dy,f(x)dxA,x,B,y ,一般有 ,x,y

二元函数可微、可导、连续三角关系图二元函数可微、可导、连续三角

连续可导不关系图

同连续可导

可微

可微

多元函数的全导数一元函数没有“全导数”这个概z,f(u,v,w)u,g(t)v,h(t)不念,但是左边多元函数的全导数设,,,

w,k(t)z同其实可以从“一元复合函数”的t且都可导,则对的全导数

dz,fdu,fdv,fdw角度理解。一元复合函数是指,,, dt,udt,vdt,wdt

y,f(u)u,g(x)、时有

dydydu,。与左边的多元函数dxdudx

全导数公式比较就可以将二式统

一起来。

多元复合函数微分法一元复合函数求导公式如上格所

z,f(u,v,w) 示,与多元复合函数求导公式相复合函数求导公式:设、

dz,z与的不似,只需分清式子中u,j(x,y)v,h(x,y) 、、dx,xw,k(x,y)同即可,则有

,z,z,u,z,v,z,w, ,,,,,,,,,x,u,x,v,x,w,x。对于多,,z,z,u,z,z,z,w 相,,,,,,,,,y,u,y,v,y,w,y,

元复合函数求导,在考研真题中有一个

z百出不厌的点就是函数对中间变量

,z,z,zu,v,w的偏导数、、仍是以,u,w,v

u,v,w为中间变量的复合函数,此时在

求偏导数时还要重复使用复合函数求导

法。这是需要通过足量做题来熟练掌握

的知识点,在后面的评题中会就题论题

作更充分的论述。

多元隐函数微分法一元复合函数、参数方程微分法

F(x,y,z),0对一元隐函数求导常采用两种方求由方程确定的隐含数

,dyF(x,y)Z,Z(x,y)x的偏导数,可用公式: ,,法:1.公式 ,dxF(x,y)y

,,F(x,y,z)F(x,y,z),z,zyx视为的函数,在方2.将yx,,,,,对

于,,,xF(x,y,z),yF(x,y,z)zzx程两边同时对求导

F(x,y,z),0,

,由方程组确定的隐含数一元参数方程微分法:若有G(x,y,z),0,

高等数学知识点总结 (1)

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ, ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (三) 空间直线及其方程 1、 一般式方程:?????=+++=+++0 022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程: p z z n y y m x x 0 00-=-=-

同济六版高等数学(下)知识点整理

第八章 1、向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1) 1(+- x x b a y y b a k =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+22 22; (旋转抛物面:z a y x =+2 22(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面:122 2 22=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 222=-+c z a y x (把 xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转))

高数部分知识点总结

高数部分知识点总结 1 高数部分 1.1 高数第一章《函数、极限、连续》 求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法 0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0, 0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0, 1xx1x,1(1,x),e限,包括、、;4.夹逼定理。 (1,),exlimlimlimsinxxx,0,0x,, 1.2 高数第二章《导数与微分》、第三章《不定积分》、第四 章《定积分》 第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。 对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答, 案中少写这个C会失一分。所以可以这样建立起二者之间的联系以加 f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,, f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了, 这1分。

第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下 a f(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,a aaa f(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0 ,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02 用方法。所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利 aaa 奇函数,0偶函数,2偶函数用性质、。在处理完积分上下,,,,a,a0 限的问题后就使用第三章不定积分的套路化方法求解。这种思路对于证明定积分等式的题目也同样有效。 1.3 高数第五章《中值定理的证明技巧》 由本章《中值定理的证明技巧》讨论一下证明题的应对方法。用 E、(AB)C、以下这组逻辑公式来作模型:假如有逻辑推导公式A:,, DE)F,由这样一组逻辑关系可以构造出若干难易程度不等的(C::, 证明题,其中一个可以是这样的:条件给出A、B、D,求证F成立。 为了证明F成立可以从条件、结论两个方向入手,我们把从条件入手证明称之为正方向,把从结论入手证明称之为反方向。正方向入手时可能遇到的问题有以下几类:1.已知的逻辑推导公式太多,难以 E就从中找出有用的一个。如对于证明F成立必备逻辑公式中的A,可能有AH、A(IK)、(AB) M等等公式同时存在,有的逻辑::,,,

大一高数知识点总结

大一高数知识点总结 &初等函数 一、函数的概念 1、函数的定义 函数是从量的角度对运动变化的抽象表述,是一种刻画运动变化中变化量相依关系的数学模型。 设有两个变量x与y,如果对于变量x在实数集合D内的每一个值,变量y按照一定的法则都有唯一的值与之对应,那么就称x是自变量,y是x的函数,记作y=f,其中自变量x取值的集合D叫函数的定义域,函数值的集合叫做函数的值域。 2、函数的表示方法解析法 即用解析式表示函数。如y=2x+1, y=︱x︱,y=lg,y=sin3x等。便于对函数进行精确地计算和深入分析。列表法 即用表格形式给出两个变量之间函数关系的方法。便于差的某一处的函数值。图像法 即用图像来表示函数关系的方法 非常形象直观,能从图像上看出函数的某些特性。 分段函数——即当自变量取不同值时,函数的表达式不一样,如 1??2x?1, x?0?xsin, f?x???y??x

?2x?1,x?0???0 x?0 x?0 隐函数——相对于显函数而言的一种函数形式。所谓显函数,即直接用含自变量的式子表示的函数,如y=x2+2x+3,这是常见的函数形式。而隐函数是指变量x、y之间的函数关系式是由一个含x,y的方程F=0给出的,如2x+y-3=0,e 可得y=3-2x,即该隐函数可化为显函数。 参数式函数——若变量x,y之间的函数关系是通过参数式方程? x?y 而由2x+y-3=0?x?y?0等。 ?x???t?, ?t?T?给出的,??y??t? 这样的函数称为由参数方程确定的函数,简称参数式方程,t称为参数。 反函数——如果在已给的函数y=f中,把y看作自变量,x也是y的函数,则所确定的函数x=∮叫做y=f的反函数,记作x=fˉ1或y= fˉ1. 二、函数常见的性质 1、单调性 2、奇偶性=f;奇:关于y轴对称,f=-f.) 3、周期性

高数知识点总结

高数重点知识总结 1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。 3、无穷小:高阶+低阶=低阶 例如:1lim lim 020==+→→x x x x x x x 4、两个重要极限:()e x e x x x x x x x x =?? ? ??+=+=∞ →→→11lim 1lim )2(1 sin lim )1(1 0 经验公式:当∞→→→)(,0)(,0x g x f x x ,[] ) ()(lim ) (0 )(1lim x g x f x g x x x x e x f →=+→ 例如:()33lim 10 031lim -? ? ? ? ?-→==-→e e x x x x x x 5、可导必定连续,连续未必可导。例如:||x y =连续但不可导。 6、导数的定义:()00 00 ') ()(lim ) (') ()(lim x f x x x f x f x f x x f x x f x x x =--=?-?+→→? 7、复合函数求导: [][])(')(')(x g x g f dx x g df ?= 例如:x x x x x x x y x x y ++=++ = +=2412221 1', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx 例如:y x dx dy ydy xdx y x y yy x y x - =?+- =?=+=+22,),2('0'22,),1(1 22左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若?? ?==) ()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[] ) (')('/)('/)/(/22 t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ??=-?+ 例如:计算 ?31sin

高一数学知识点归纳

集合与函数概念 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 2.集合的表示方法:列举法与描述法。 注意啊:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作aA 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{xR| x-3>2}或{x| x-3>2} 4、集合的分类: 1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2.“相等”关系(5≥5,且5≤5,则5=5) 实例:设A={x|x2-1=0} B={-1,1} “元素相同” 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B 的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

同济六版高等数学(下)知识点整理

第八章 1、 向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、 两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1)1(+- x x b a y y b a k ) =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、 二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+2222; (旋转抛物面: z a y x =+2 2 2(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面: 122 222=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 222=-+c z a y x (把 xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转) )

大学高数全册知识点整理

大学高等数学知识点整理 公式,用法合集 极限与连续 一 . 数列函数 : 1. 类型 : (1) 数列 : * ; * (2) 初等函数 : (3) 分段函数 : * ; * ;* (4) 复合 ( 含) 函数 : (5) 隐式 ( 方程 ): (6) 参式 ( 数一 , 二 ): (7) 变限积分函数 : (8) 级数和函数 ( 数一 , 三 ): 2. 特征 ( 几何 ): (1) 单调性与有界性 ( 判别 ); ( 单调定号 ) (2) 奇偶性与周期性 ( 应用 ). 3. 反函数与直接函数 : 二 . 极限性质 : 1. 类型 : * ; * ( 含); * ( 含) 2. 无穷小与无穷大 ( 注 : 无穷量 ):

3. 未定型 : 4. 性质 : * 有界性 , * 保号性 , * 归并性 三 . 常用结论 : , , , , , , , , 四 . 必备公式 : 1. 等价无穷小 : 当时 , ; ; ; ; ; ; ; 2. 泰勒公式 : (1) ; (2) ; (3) ; (4) ; (5) . 五 . 常规方法 :

前提 : (1) 准确判断( 其它如 : ); (2) 变量代换( 如 : ) 1. 抓大弃小, 2. 无穷小与有界量乘积 ( ) ( 注 : ) 3. 处理 ( 其它如 : ) 4. 左右极限 ( 包括): (1) ; (2) ; ; (3) 分段函数 : , , 5. 无穷小等价替换 ( 因式中的无穷小 )( 注 : 非零因子 ) 6. 洛必达法则 (1) 先” 处理”, 后法则 ( 最后方法 ); ( 注意对比 : 与) (2) 幂指型处理 : ( 如 : ) (3) 含变限积分 ; (4) 不能用与不便用 7. 泰勒公式 ( 皮亚诺余项 ): 处理和式中的无穷小 8. 极限函数 : ( 分段函数 ) 六 . 非常手段 1. 收敛准则 : (1) (2) 双边夹 : * , * (3) 单边挤 : * * * 2. 导数定义 ( 洛必达 ?):

高等数学知识点归纳

第一讲: 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *010 2()(), ()x x f x F x x x f x ≤?=? >?; *0 0()(),x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () () x x t y y t =?? =? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞ ; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ±→) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()m a x (,,)n n n n a b c a b c ++→, ()00! n a a n >→ 1(0)x x →→∞, 0lim 1x x x + →=, l i m 0n x x x e →+∞=, ln lim 0n x x x →+∞=,

高中数学:选修1-1知识点总结

高中数学:选修1-1知识点总结 第一章简单逻辑用语 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论. 3、原命题:“若p,则q”逆命题:“若q,则p” 否命题:“若p?,则q?”逆否命题:“若q?,则p?” 4、四种命题的真假性之间的关系: (1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系. ?,则p是q的充分条件,q是p的必要条件. 5、若p q ?,则p是q的充要条件(充分必要条件). 若p q A?,则A是B的充分条件或B是A的必要条件; 利用集合间的包含关系:例如:若B 若A=B,则A是B的充要条件; 6、逻辑联结词:⑴且(and) :命题形式p q ∨; ∧;⑵或(or):命题形式p q ⑶非(not):命题形式p?. 7、⑴全称量词——“所有的”、“任意一个”等,用“?”表示; 全称命题p:)( M x? p ∈ ?。 M ,x p x∈ ?;全称命题p的否定?p:)( ,x

⑵存在量词——“存在一个”、“至少有一个”等,用“?”表示; 特称命题p :)(,x p M x ∈?; 特称命题p 的否定?p :)(,x p M x ?∈?; 第二章 圆锥曲线 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称 离心率 ()2 2101c b e e a a ==-<<

高等数学(下)知识点总结

主要公式总结 第八章空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111 C B A n =ρ ,),,(2222C B A n =ρ , 22 22 22 21 21 21 2 12121cos C B A C B A C C B B A A ++?++++= θ ?∏⊥∏210212121=++C C B B A A ;? ∏∏21//2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 2 2 2 000C B A D Cz By Ax d +++++= (三) 空间直线及其方程

(完整版)高数知识点总结(上册)

高数知识点总结(上册) 函数: 绝对值得性质: (1)|a+b|≤|a|+|b| (2)|a -b|≥|a|-|b| (3)|ab|=|a||b| (4)|b a |=)0(||||≠b b a 函数的表示方法: (1)表格法 (2)图示法 (3)公式法(解析法) 函数的几种性质: (1)函数的有界性 (2)函数的单调性 (3)函数的奇偶性 (4)函数的周期性 反函数: 定理:如果函数)(x f y =在区间[a,b]上是单调的,则它的反函数)(1 x f y -=存在,且是单 值、单调的。 基本初等函数: (1)幂函数 (2)指数函数 (3)对数函数 (4)三角函数 (5)反三角函数 复合函数的应用 极限与连续性: 数列的极限: 定义:设 {}n x 是一个数列,a 是一个定数。如果对于任意给定的正数ε(不管它多么小) , 总存在正整数N ,使得对于n>N 的一切n x ,不等式 ε <-a x n 都成立,则称数a 是数列 {}n x 的 极限,或称数列{}n x 收敛于a ,记做a x n n =∞ →lim ,或 a x n →(∞→n ) 收敛数列的有界性: 定理:如果数列 {}n x 收敛,则数列{}n x 一定有界 推论:(1)无界一定发散(2)收敛一定有界 (3)有界命题不一定收敛 函数的极限: 定义及几何定义 函数极限的性质: (1)同号性定理:如果A x f x x =→)(lim 0 ,而且A>0(或A<0),则必存在0x 的某一邻域,当x 在该邻域内(点0 x 可除外),有0)(>x f (或0)(

专升本高等数学知识点汇总

专升本高等数学知识点汇总 常用知识点: 一、常见函数的定义域总结如下: (1) c bx ax y b kx y ++=+=2 一般形式的定义域:x ∈R (2)x k y = 分式形式的定义域:x ≠0 (3)x y = 根式的形式定义域:x ≥0 (4)x y a log = 对数形式的定义域:x >0 二、函数的性质 1、函数的单调性 当21x x <时,恒有)()(21x f x f <,)(x f 在21x x ,所在的区间上是增加的。 当21x x <时,恒有)()(21x f x f >,)(x f 在21x x ,所在的区间上是减少的。 2、 函数的奇偶性 定义:设函数)(x f y =的定义区间D 关于坐标原点对称(即若D x ∈,则有D x ∈-) (1) 偶函数)(x f ——D x ∈?,恒有)()(x f x f =-。 (2) 奇函数)(x f ——D x ∈?,恒有)()(x f x f -=-。 三、基本初等函数 1、常数函数:c y =,定义域是),(+∞-∞,图形是一条平行于x 轴的直线。 2、幂函数:u x y =, (u 是常数)。它的定义域随着u 的不同而不同。图形过原点。 3、指数函数

定义: x a x f y ==)(, (a 是常数且0>a ,1≠a ).图形过(0,1)点。 4、对数函数 定义: x x f y a log )(==, (a 是常数且0>a ,1≠a )。图形过(1,0)点。 5、三角函数 (1) 正弦函数: x y sin = π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (2) 余弦函数: x y cos =. π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (3) 正切函数: x y tan =. π=T , },2 )12(,|{)(Z R ∈+≠∈=k k x x x f D π , ),()(+∞-∞=D f . (4) 余切函数: x y cot =. π=T , },,|{)(Z R ∈≠∈=k k x x x f D π, ),()(+∞-∞=D f . 5、反三角函数 (1) 反正弦函数: x y sin arc =,]1,1[)(-=f D ,]2 ,2[)(π π- =D f 。 (2) 反余弦函数: x y arccos =,]1,1[)(-=f D ,],0[)(π=D f 。 (3) 反正切函数: x y arctan =,),()(+∞-∞=f D ,)2 ,2()(π π- =D f 。 (4) 反余切函数: x y arccot =,),()(+∞-∞=f D ,),0()(π=D f 。 极限 一、求极限的方法 1、代入法 代入法主要是利用了“初等函数在某点的极限,等于该点的函数值。”因此遇到大部分简单题目的时候,可以直接代入进行极限的求解。 2、传统求极限的方法 (1)利用极限的四则运算法则求极限。 (2)利用等价无穷小量代换求极限。 (3)利用两个重要极限求极限。 (4)利用罗比达法则就极限。

高中数学必修1-5知识点归纳

必修1数学知识点 第一章、集合与函数概念 §1.1.1、集合 1、 把研究的对象统称为元素,把一些元素组成的总 体叫做集合。集合三要素:确定性、互异性、无序性。 2、 只要构成两个集合的元素是一样的,就称这两个 集合相等。 3、 常见集合:正整数集合:*N 或+N ,整数集合: Z ,有理数集合:Q ,实数集合:R . 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系 1、 一般地,对于两个集合A 、B ,如果集合A 中任 意一个元素都是集合B 中的元素,则称集合A 是 集合B 的子集。记作B A ?. 2、 如果集合B A ?,但存在元素B x ∈,且A x ?, 则称集合A 是集合B 的真子集.记作:A B. 3、 把不含任何元素的集合叫做空集.记作:?.并规定: 空集合是任何集合的子集. 4、 如果集合A 中含有n 个元素,则集合A 有n 2个子集. §1.1.3、集合间的基本运算 1、 一般地,由所有属于集合A 或集合B 的元素组成 的集合,称为集合A 与B 的并集.记作:B A . 2、 一般地,由属于集合A 且属于集合B 的所有元素 组成的集合,称为A 与B 的交集.记作:B A . 3、全集、补集?{|,}U C A x x U x U =∈?且 §1.2.1、函数的概念 1、 设A 、B 是非空的数集,如果按照某种确定的对应 关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记 作:()A x x f y ∈=,. 2、 一个函数的构成要素为:定义域、对应关系、值 域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法 1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、 注意函数单调性证明的一般格式: 解:设[]b a x x ,,21∈且21x x <,则: ()()21x f x f -=… §1.3.2、奇偶性 1、 一般地,如果对于函数()x f 的定义域内任意一个 x ,都有()()x f x f =-,那么就称函数()x f 为 偶函数.偶函数图象关于y 轴对称. 2、 一般地,如果对于函数()x f 的定义域内任意一个 x ,都有()()x f x f -=-,那么就称函数()x f 为 奇函数.奇函数图象关于原点对称. 第二章、基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算 1、 一般地,如果a x n =,那么x 叫做a 的n 次方根。 其中+∈>N n n ,1. 2、 当n 为奇数时,a a n n =; 当n 为偶数时,a a n n =. 3、 我们规定: ⑴m n m n a a = () 1,,,0* >∈>m N n m a ; ⑵()01 >= -n a a n n ; 4、 运算性质:

小学1—6年级数学知识点归纳

数和数的运算 一、概念 (一)整数 1、整数的意义 自然数和0都是整数。 2、自然数 我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。 3、计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。 每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。 4、数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5、数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。 如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a 的因数)。倍数和约数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。 个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。 一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。 能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。 一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。 每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如把28分解质因数 几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。 公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况: 1和任何自然数互质。 相邻的两个自然数互质。 两个不同的质数互质。 当合数不是质数的倍数时,这个合数和这个质数互质。

《高等数学》-各章知识点总结——第1章

第1章 函数与极限总结 1、极限的概念 (1)数列极限的定义 给定数列{x n },若存在常数a ,对于任意给定的正数ε (不论它多么小), 总存在正整数N , 使得对于n >N 时的一切n , 恒有 |x n-a |<ε 则称a 是数列{x n }的极限, 或者称数列{x n }收敛于a , 记为 a x n n =∞ →lim 或xn →a (n→∞). (2)函数极限的定义 设函数f (x)在点x 0的某一去心邻域内(或当0x M >>)有定义,如果存在常数A , 对于任意给定的正数ε (不论它多么小), 总存在正数δ,(或存在X ) 使得当x满足不等式0<|x -x0|<δ 时,(或当x X >时) 恒有 |f (x)-A |<ε , 那么常数A就叫做函数f (x)当0x x →(或x →∞)时的极限, 记为 A x f x x =→)(lim 0 或f (x )→A (当x →x0).( 或lim ()x f x A →∞ =) 类似的有:如果存在常数A ,对0,0,εδ?>?>当00:x x x x δ-<<(00x x x δ<<-)时,恒有()f x A ε-<,则称A 为()f x 当0x x →时的左极限(或右极限)记作 00 lim ()(lim ())x x x x f x A f x A - +→→==或 显然有0 lim ()lim ()lim ())x x x x x x f x A f x f x A -+→→→=?== 如果存在常数A ,对0,0,X ε?>?>当()x X x X <->或时,恒有()f x A ε-<,则称A 为()f x 当x →-∞(或当x →+∞)时的极限 记作lim ()(lim ())x x f x A f x A →-∞ →+∞ ==或 显然有lim ()lim ()lim ())x x x f x A f x f x A →∞ →-∞ →+∞ =?== 2、极限的性质 (1)唯一性 若a x n n =∞ →lim ,lim n n x b →∞ =,则a b = 若0() lim ()x x x f x A →∞→=0() lim ()x x x f x B →∞→=,则A B = (2)有界性 (i)若a x n n =∞ →lim ,则0M ?>使得对,n N + ?∈恒有n x M ≤

考研高等数学知识点总结

高等数学知识点总结 导数公式: 基本积分表: 三角函数的有理式积分: 222 2 12211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +- ='+= '--='-='? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+= -++-=-+=++-=++=+=+-=? ???????arcsin ln 21ln 21 1csc ln csc sec ln sec sin ln cos ln 2 2 2 22 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0π π

高等数学 各章知识点总结——第9章

一、多元函数的极限与连续 1、n 维空间 2R 为二元数组),(y x 的全体,称为二维空间。3R 为三元数组),,(z y x 的全体,称为三 维空间。 n R 为n 元数组),,,(21n x x x 的全体,称为n 维空间。 n 维空间中两点1212(,,,),(,,,)n n P x x x Q y y y L L 间的距离: ||PQ 邻域: 设0P 是n R 的一个点, 是某一正数, 与点0P 距离小于 的点P 的全体称为点0P 的 邻域,记为),(0 P U ,即00(,){R |||}n U P P PP 空心邻域: 0P 的 邻域去掉中心点0P 就成为0P 的 空心邻域,记为 0(,)U P o =0{0||}P PP 。 内点与边界点:设E 为n 维空间中的点集,n P R 是一个点。如果存在点P 的某个邻域 ),( P U ,使得E P U ),( ,则称点P 为集合E 的内点。 如果点P 的任何邻域内都既有 属于E 的点又有不属于E 的点,则称P 为集合E 的边界点, E 的边界点的全体称为E 的边界. 聚点:设E 为n 维空间中的点集,n P R 是一个点。如果点P 的任何空心邻域内都包含E 中的无穷多个点,则称P 为集合E 的聚点。 开集与闭集: 若点集E 的点都是内点,则称E 是开集。设点集n E R , 如果E 的补集 n E R 是开集,则称E 为闭集。 区域与闭区域:设D 为开集,如果对于D 内任意两点,都可以用D 内的折线(其上的点都属于D )连接起来, 则称开集D 是连通的.连通的开集称为区域或开区域.开区域与其边界的并集称为闭区域. 有界集与无界集: 对于点集E ,若存在0 M ,使得(,)E U O M ,即E 中所有点到原点的距离都不超过M ,则称点集E 为有界集,否则称为无界集. 如果D 是区域而且有界,则称D 为有界区域. 有界闭区域的直径:设D 是n R 中的有界闭区域,则称1212,()max{||}P P D d D PP 为D 的直径。

人教版高一数学知识点总结

高一数学知识总结 必修一 一、集合 一、集合有关概念 集合的含义 集合的中元素的三个特性: 元素的确定性如:世界上最高的山 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 集合的表示方法:列举法与描述法。 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 列举法:{a,b,c……} 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2} 语言描述法:例:{不是直角三角形的三角形} Venn图: 4、集合的分类: 有限集含有有限个元素的集合 无限集含有无限个元素的集合 空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 A?有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 注意:B ?/B或B?/A 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A) ③如果A?B, B?C ,那么A?C ④如果A?B 同时B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 有n个元素的集合,含有2n个子集,2n-1个真子集

相关文档
相关文档 最新文档