文档库 最新最全的文档下载
当前位置:文档库 › 高等数学(下)知识点汇总

高等数学(下)知识点汇总

高等数学(下)知识点汇总
高等数学(下)知识点汇总

高等数学(下)知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

主要公式总结

第八章 空间解析几何与向量代数 1、

二次曲面

1)

椭圆锥面:2

2222z b

y a x =+ 2)

椭球面:122

222

2=++c

z b y a x 旋转椭球面:1222222=++c z a y a x 3)

单叶双曲面:122

222

2=-+c

z b y a x 双叶双曲面:1222222=--c z b y a x 4)

椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b

y a x =-22

22 5)

椭圆柱面:1222

2=+b y a x 双曲柱面:122

22=-b

y a x

6) 抛物柱面:

ay x =2

(二) 平面及其方程 1、

点法式方程:

0)()()(000=-+-+-z z C y y B x x A

法向量:),,(C B A n =ρ

,过点),,(000z y x

2、

一般式方程:

0=+++D Cz By Ax

截距式方程:

1=++c

z

b y a x 3、

两平面的夹角:),,(1111

C B A n =ρ

,),,(2222C B A n =ρ

22

22

22

21

21

21

2

12121cos C

B A

C B A C C B B A A ++?++++=

θ

?∏⊥∏21 0212121=++C C B B A A ;?∏∏21//

2

1

2121C C B B A A ==

4、

),,(0000z y x P 到平面0=+++D Cz By Ax 的距离:

2

2

2

000C

B A D

Cz By Ax d +++++=

(三) 空间直线及其方程 1、

一般式方程:?????=+++=+++0

22221111D z C y B x A D z C y B x A

2、

对称式(点向式)方程:

p

z z n y y m x x 0

00-=-=-

方向向量:),,(p n m s =ρ

,过点),,(000z y x

3、

两直线的夹角:),,(1111

p n m s =ρ

,),,(2222p n m s =ρ

22

22

22

21

21

21

212121cos p

n m p n m p p n n m m ++?++++=

?

?⊥21L L 0212121=++p p n n m m ;?21//L L

2

1

2121p p n n m m ==

4、

直线与平面的夹角:直线与它在平面上的投影的夹角,

2

2

2

2

2

2

sin p

n m C B A Cp

Bn Am ++?++++=

?

?∏//L 0=++Cp Bn Am ;?∏⊥L p

C n

B m

A ==

第九章 多元函数微分法及其应用 1、 连续:

),(),(lim

00)

,(),(00y x f y x f y x y x =→

2、

偏导数:

x

y x f y x x f y x f x x ?-?+=→?), (), (lim

),(00000

00 ;y y x f y y x f y x f y y ?-?+=→?)

,(),(lim ),(0000000

3、

方向导数:

βαcos cos y

f

x f l f ??+??=??其中

β

α,为

l

的方向角。

4、

梯度:),(y x f z =,则j y x f i y x f y x gradf y x ρ

ρ),(),(),(000000+=。

5、

全微分:设

),(y x f z =,则d d d z z z x y x y

??=

+?? (一) 性质 1、

函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:

2、 微分法

1) 复合函数求导:链式法则

(,),(,),(,)z f u v u u x y v v x y ===,则

z z u z v x u x v x ?????=?+??????,z z u z v y u y v y

?????=?+?????? (二) 应用

1)

求函数),(y x f z =的极值 解方程组 ?????==0

y x f f 求出所有驻点,对于每一个驻点),(00y x ,令

),(00y x f A xx =,),(00y x f B xy =,),(00y x f C yy =,

① 若02>-B AC ,0>A ,函数有极小值, 若02>-B AC ,0

② 若02<-B AC ,函数没有极值; ③ 若

02=-B AC ,不定。

2、 几何应用

1)

曲线的切线与法平面

曲线????

???===Γ)

()()

(:t z z t y y t x x ,则Γ上一点),,(000z y x M (对应参数为0t )处的

切线方程为:

)

()()(00

0000t z z z t y y y t x x x '-='-='-

法平面方程为:

0))(())(())((=-'+-'+-'z z t z y y t y x x t x

偏导数存在

函数可微

函数连续

偏导数连续

充分条件

必要条件

定义

1

2

2

3

4

2) 曲面的切平面与法线

曲面

0),,(:=∑z y x F ,则∑上一点),,(000z y x M 处的切平面方程为:

0))(,,())(,,())(,,(000000000000=-+-+-z z z y x F y y z y x F x x z y x F z y x 法线方程为:

)

,,(),,(),,(0000

00000000z y x F z z z y x F y y z y x F x x z y x -=-=-

第十章 重积分

(一) 二重积分 :几何意义:曲顶柱体的体积

1、 定义:

∑??=→?=n

k k k k

D

f y x f 1

),(lim d ),(σηξσλ

2、 计算: 1)

直角坐标

?

??

???≤≤≤≤=b x a x y x y x D )()(),(21??,

21()

()

(,)d d d (,)d b

x a

x D

f x y x y x f x y y φφ=???

?

?

??

???≤≤≤≤=d y c y x y y x D )()(),(21φφ, 21()()(,)d d d (,)d d y c y D f x y x y y f x y x ??=????

2)

极坐标

?

??

???≤≤≤≤=βθαθρρθρθρ)()(),(21D ,

21()

(

)

(,)d d (cos ,sin )d D

f x y x y d f β

ρθαρθ

θρθρθρρ=????

(二) 三重积分

1、 定义: ∑???

=→Ω

?=n

k k

k k k

v f v z y x f 1

),,(lim

d ),,(ζηξ

λ

2、 计算:

1)

直角坐标

???

???

D

y x z y x z z z y x f y x v z y x f ),()

,(21d ),,(d d d ),,( -------------“先一后二”

??

????

Z

D b

a

y x z y x f z v z y x f d d ),,(d d ),,( -------------“先二后一”

2)

柱面坐标

????

???===z

z y x θρθ

ρsin cos ,

(,,)d (cos ,sin ,)d d d f x y z v f z z ρθρθρρθΩ

Ω

=???

???

3)

球面坐标

????

???===?

θ?θ?cos sin sin cos sin r z r y r x

2(,,)d (sin cos ,sin sin ,cos )sin d d d f x y z v f r r r r r φθφθφφφθ

Ω

Ω

=???

???

(三) 应用

曲面

D y x y x f z S ∈=),(,),(:的面积:

y x y

z x z A D

d d )()(

12

2??

??+??+=

第十一章 曲线积分与曲面积分 (一) 对弧长的曲线积分

1、 定义:0

1

(,)d lim (,)n

i i i L

i f x y s f s λξη→==??∑?

2、

计算:

),(y x f 在曲线弧L 上有定义且连续,L 的参数方程为)(),

(),

(βαψ?≤≤?????==t t y t x ,其中)(),(t t ψ?在]

,[βα上具有一阶连续导数,且

0)()(22≠'+'t t ψ?,则

22(,)d [(),()]()()d ,()L

f x y s f t t t t t βα

φψφψαβ''=+

?

(二) 对坐标的曲线积分 1、

定义:设 L 为

xoy 面内从 A 到 B 的一条有向光滑弧,函数)

,(y x P ,

),(y x Q 在 L 上有界,定义

∑?

=→?=n

k k

k k L

x P x y x P 1

),(lim d ),(ηξλ,

∑?=→?=n

k k

k k

L

y Q y y x Q 1

),(lim d ),(ηξλ

.

向量形式:??

+=?L

L

y y x Q x y x P r F d ),(d ),(d ρ

2、 计算:

设),(,),

(y x Q y x P 在有向光滑弧L 上有定义且连续, L 的参数方程为

):(),

(),(βαψ?→????

?==t t y t x ,其中)(),(t t ψ?在],[βα上具有一阶连续导数,且0)()(2

2≠'+'t t ψ?,则 (,)d (,)d {[(),()]()[(),()]()}d L

P x y x Q x y y P t t t Q t t t t β

α

φψφφψψ''+=+?

?

3、

两类曲线积分之间的关系:

设平面有向曲线弧为

?????==)

()( t y t x L ψ?:,L 上点),(y x 处的切向量的方向角为:βα,,

)

()()

(cos 22t t t ψ??α'+''=

,)

()()

(cos 22t t t ψ?ψβ

'+''=

则d d (cos cos )d L

L

P x Q y P Q s αβ+=+?

?.

(三) 格林公式 1、

格林公式:设区域 D 是由分段光滑正向曲线 L 围成,函数),(,),(y x Q y x P 在D 上具有连续一阶偏导数,

则有

???+=???? ????-??L

D y Q x P y x y P x Q d d d d

2、G 为一个单连通区域,函数),(,),(y x Q y x P 在G 上具有连续一阶偏导数,

y P

x Q ??=?? ?曲线积分 d d L

P x Q y +?

在G 内与路径无关

(四) 对面积的曲面积分 1、 定义:

∑为光滑曲面,函数),,(z y x f 是定义在∑上的一个有界函数,

定义 i i i i n

i S f S z y x f ?=∑??

=→∑

),,(lim d ),,(1

ζηξλ

2、

计算:———“一单二投三代入”

),(:y x z z =∑,xy D y x ∈),(,则

y x y x z y x z y x z y x f S z y x f y x D y

x d d ),(),(1)],(,,[d ),,(2

2++=??

??

(五) 对坐标的曲面积分

1、 定义:

为有向光滑曲面,函数

)

,,(),,,(),,,(z y x R z y x Q z y x P 是定义在

上的有界函数,定义

1

(,,)d d lim (,,)()n

i i i i xy i R x y z x y R S λξηζ∑

→==?∑??

同理,

1

(,,)d d lim (,,)()n

i i i i yz i P x y z y z P S λξηζ∑

→==?∑??

;0

1

(,,)d d lim (,,)()n

i i i i zx i Q x y z z x R S λξηζ∑

→==?∑??

2、

性质:

1)21∑+∑=∑,则

1

2

d d d d d d d d d d d d d d d d d d P y z Q z x R x y

P y z Q z x R x y P y z Q z x R x y

∑∑∑++=+++++??????

计算:——“一投二代三定号”

)

,(:y x z z =∑,

xy

D y x ∈),(,

)

,(y x z z =在

xy

D 上具有一阶连续偏导数,

)

,,(z y x R 在

上连续,则

(,,)d d [,,(,)]d d x y

D R x y z x y R x y z x y x y ∑

=±??

??

,∑为上侧取“ + ”

, ∑为下侧取“ - ”. 3、 两类曲面积分之间的关系:

()S R Q P y x R x z Q z y P d cos cos cos d d d d d d ????

++=++γβα

其中γβα,,为有向曲面∑在点),,(z y x 处的法向量的方向角。

(六) 高斯公式 1、 高斯公式:设空间闭区域Ω由分片光滑的闭曲面∑所围成, ∑的方向取外侧, 函数,,

P Q R 在Ω上有连续的一阶偏导数,

则有

?????∑Ω++=???

?

????+??+??y x R x z Q z y P z y x z R y Q x P d d d d d d d d d

()?????∑

Ω++=???? ????+??+??S R Q P z y x z R y Q x P d cos cos cos d d d γβα

2、

通量与散度

通量:向量场),,(R Q P A =ρ

通过曲面∑指定侧的通量为:??∑

++=Φy x R x z Q z y P d d d d d d

散度:z

R y Q x P A div ??+

??+??=ρ (七) 斯托克斯公式 1、

斯托克斯公式:设光滑曲面 ∑ 的边界 Γ是分段光滑曲线, ∑ 的侧与 Γ 的正向符合右手法则,

),,(),,,(),,,(z y x R z y x Q z y x P 在包含∑ 在内的一个空间域内具有连续一阶偏导数, 则有

???Γ∑++=???? ????-??+???? ????-??+???? ?

???-??z R y Q x P y x y P x Q x z x R z P z y z Q y R d d d d d d d d d

为便于记忆, 斯托克斯公式还可写作:

???

Γ∑

++=??

????z R y Q x P R

Q P z

y x y x x z z y d d d d d d d d d

2、

环流量与旋度

环流量:向量场),,(R Q P A =ρ

沿着有向闭曲线Γ的环流量为?Γ

++z R y Q x P d d d

旋度:???

?

????-????-????-??=y P x Q x R z P z Q y R A rot , , ρ

第十二章 无穷级数 (一) 常数项级数 1、

定义:

1)无穷级数:

Λ

Λ+++++=∑∞

=n n n

u u u u u

3211

部分和:n n

k k n

u u u u u S ++++==∑=Λ3211

正项级数:

∑∞

=1

n n

u

,0≥n

u

交错级数:

∑∞

=-1

)

1(n n n

u ,0≥n u

2)级数收敛:若S

S n

n =∞

→lim 存在,则称级数

∑∞

=1

n n

u

收敛,否则称级数

∑∞

=1

n n

u

发散

3)条件收敛:

∑∞

=1n n

u

收敛,而

∑∞

=1

n n

u

发散;

绝对收敛:

∑∞

=1

n n

u

收敛。

2、 性质:

1)

改变有限项不影响级数的收敛性;

2) 级数

∑∞=1

n n a ,∑∞

=1

n n

b

收敛,则

∑∞

=±1

)(n n n

b a

收敛;

3) 级数

∑∞

=1

n n

a

收敛,则任意加括号后仍然收敛;

4) 必要条件:级数

∑∞

=1

n n

u

收敛

?0lim =∞

→n n u .(注意:不是充分条件!)

3、

审敛法

正项级数:

∑∞

u

,0≥n

u

1)

定义:S

S n

n =∞

→lim 存在;

2)

∑∞

=1

n n u

收敛

?{}n

S 有界;

3) 比较审敛法:

∑∞

=1

n n

u

∑∞

=1

n n

v

为正项级数,且),3,2,1( Λ=≤n v u n n

∑∞

=1

n n

v

收敛,则

∑∞

=1n n

u

收敛;若

∑∞

=1

n n

u

发散,则

∑∞

=1

n n

v

发散.

4)

比较法的推论:∑∞

=1n n u ,∑∞=1n n

v 为正项级数,若存在正整数m ,当m n >时,n n kv u ≤,而∑∞

=1

n n

v

收敛,则

∑∞

=1

n n

u

收敛;若存在正整数

m ,当m n >时,n n kv u ≥,而∑∞=1

n n v 发散,则∑∞

=1

n n u 发散.

5)

比较法的极限形式:∑∞

=1n n u ,∑∞

=1n n v 为正项级数,若)0( lim +∞<≤=∞→l l v u n

n

n ,而∑∞=1n n v 收敛,则∑∞=1n n u 收敛;若0lim >∞→n

n

n v u 或+∞=∞→n n n v u lim ,而∑∞=1n n v 发散,则

∑∞

=1

n n

u

发散.

6)

比值法:∑∞

=1n n u 为正项级数,设l u u n

n n =+∞→1

lim ,则当1l 时,级数∑∞

=1

n n u 发散;

1=l 时,级数∑∞

=1

n n u 可能收敛也可能发散.

7) 根值法:

∑∞

=1

n n

u

为正项级数,设l u n

n n =∞

→lim

,则当1

=1

n n u 收敛;则当1>l 时,级数∑∞

=1

n n u 发散;当1

=l 时,级数

∑∞

=1

n n

u

可能收敛也可能发散.

8)

极限审敛法:∑∞

=1

n n u 为正项级数,若0lim >?∞→n n u n 或+∞=?∞

→n n u n lim ,则级数∑∞

=1

n n u 发散;若存在1>p ,使得

)0( lim +∞<≤=?∞

→l l u n n p

n ,则级数∑∞

=1

n n u 收敛.

交错级数:

莱布尼茨审敛法:交错级数:∑∞

=-1

)1(n n n

u ,0≥n

u 满足:),3,2,1( 1Λ=≤+n u u n n ,且0lim =∞

→n n u ,则级数∑∞

=-1

)1(n n n u 收敛。

任意项级数:

∑∞

=1

n n

u

绝对收敛,则

∑∞

=1

n n

u

收敛。

常见典型级数:几何级数:?????≥<∑∞

=1 1 0q q aq n n

发散,

收敛, ; p -级数:?????≤>∑

∞=1p 1 11发散,收敛,p n n p (二) 函数项级数 1、

定义:函数项级数

∑∞

=1

)(n n

x u

,收敛域,收敛半径,和函数;

2、 幂级数:

∑∞

=0

n n

n x

a

3、

收敛半径的求法:ρ=+∞→n

n n a a 1

lim

,则收敛半径 ???

?

?????=∞++∞=+∞<<=0 , ,00 ,1

ρρρρR 4、 泰勒级数

n n n x x n x f x f )

(!

)()(00

0)(-=∑

= ? 0)(!)1()(lim )(lim 10)1(=-+=++∞→∞→n n n n n x x n f x R ξ 展开步骤:(直接展开法) 1) 求出Λ

,3,2,1 ),()(=n x f n ; 2)

求出

Λ

,2,1,0 ),(0)(=n x f n ;

3) 写出

n n n x x n x f )(!

)

(00

0)(-∑

=; 4)

验证0)(!

)1()(lim )(lim 10)1(=-+=++∞→∞→n n n n n x x n f x R ξ是否成立。

间接展开法:(利用已知函数的展开式) 1)),( ,!

10+∞-∞∈=

∑∞

=x x n e n n

x ; 2)),( ,!

)12(1

)1(sin 0

121

+∞-∞∈+-=∑∞

=++x x n x

n n n ;

3)),( ,)!

2(1)1(cos 0

21

+∞-∞∈-=∑∞

=+x x n x

n n

n ; 4)

)1 ,1( ,11

-∈=-∑∞

=x x x n n ; 5))1 ,1( ,)1(110

-∈-=+∑∞

=x x x n n n

6)]1 ,1( ,1

)1()1ln(01

-∈+-=+∑∞

=+x x n x n n n

7)

)1 ,1( ,)1(11

22

-∈-=+∑∞

=x x x n n n 8))1 ,1( ,!)1()1(1)1(1

-∈+--+=+∑

=x x n n m m m x n n

m Λ

5、 傅里叶级数 1)

定义:

正交系:Λ

Λnx nx x x x x cos ,sin ,,2cos ,2sin ,cos ,sin ,1函数系中任何不同的两个函数的乘积在区间] ,[ππ-上积分

为零。 傅里叶级数:

)sin cos (2)(1

0nx b nx a a x f n n n ++=∑∞

=

系数:???

???

?====??--),3,2,1(d sin )(1)

,2,1,0(d cos )(1ΛΛn x nx x f b n x nx x f a n n ππππππ

2)

收敛定理:(展开定理)

设 f (x ) 是周期为2π的周期函数, 并满足狄利克雷( Dirichlet )条件: 1) 在一个周期内连续或只有有限个第一类间断点; 2) 在一个周期内只有有限个极值点, 则 f (x ) 的傅里叶级数收敛 , 且有

()??

???+=++-

+∞

=∑为间断点

为连续点x x f x f x x f nx b nx a a n n n ,2)()( ),(sin cos 21

0 3) 傅里叶展开:

①求出系数:???

???

?

====??--),3,2,1(d sin )(1)

,2,1,0(d cos )(1ΛΛn x nx x f b n x nx x f a n n ππππππ;

②写出傅里叶级数

)sin cos (2)(1

0nx b nx a a x f n n n ++=∑∞

=;

③根据收敛定理判定收敛性。

同济六版高等数学(下)知识点整理

第八章 1、向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1) 1(+- x x b a y y b a k =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+22 22; (旋转抛物面:z a y x =+2 22(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面:122 2 22=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 222=-+c z a y x (把 xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转))

高等数学知识点总结 (1)

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ, ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (三) 空间直线及其方程 1、 一般式方程:?????=+++=+++0 022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程: p z z n y y m x x 0 00-=-=-

_《高等数学》(下)复习提纲(本科)

《高等数学》(下册)复习提纲 复 习 题 1.求与平面230x +y +z +=1π:及2310x +y z +=-2π:都平行且过点(1,0,1)P -的直线方程。 2.求与直线240,:2320. x +y z +=l x +y +z =-?? -?垂直,且过点P(-1,0,1)的平面方程。 3.函数) 1ln(4)2arcsin(2 2 2 y x y x x z ---+ =的定义域为 。 4.求极限:xy xy y x 42lim +- →→。 5.证明极限 2 (,)(0,) lim x y x y x →- 0不存在。 6.计算偏导数:(1)x y z arcsin =,求 2 2 z x ??; (2)设 ),(2 x y x f y z =,求 z z x y ????,。 7.求x y e z =在点(1,2)的全微分。 8.设y z z x ln =,求 , z z x y ????。 9.求曲面3=+-xy z e z 在点)0,1,2(处的切平面及法线方程。 10.求曲线22230, 23540.x y z x x y z ?++-=?-+-=? 在点)1,1,1(处的切线和法平面方程。 11.求函数222u x y z =++在曲线32 , ,t z t y t x ===点)1,1,1(处沿曲线在该点的切线正向的 方向导数。 12.求(,,)sin()f x y z xyz xyz =的梯度。 13.求椭圆2225160x xy y y ++-=到直线80x y +-=的最短距离。 14.交换积分次序:? ?-2 2 1 0 ),(y y dx y x f dy 。 15.计算积分:(1)sin D x dxdy x ?? ,其中D 是由直线y x =及抛物线2 y x =所围成的区域; (2)dxdy y x D ?? +2 2,D :}2|),{(2 2 y y x y x ≤+; (3)???Ω +dv z x )(, Ω:球面2224x y z ++=与抛物面22 3x y z +=所围成的区域。 16.设)(x f 连续,2)(10 =?dx x f ,求??10 1 )()(x dy y f x f dx 。 17 .求曲面2z =-2 2 y x z +=所围的立体体积。 18.计算积分:(1)?+L ds y x )(2 2 ,L 为下半圆周21x y --=; (2)dy y x dx y xy L )()(2 2++-?,L 为抛物线2 x y =从(0,0)到(1,1)的一段有向弧; (3)dy x y e dx y x y e x L x )cos ()sin (-+--?,其中L 是在圆周2 2x x y -= 上由点 (2,0)到(0,0)的一段弧。

高数知识点总结

高数重点知识总结 1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。 3、无穷小:高阶+低阶=低阶 例如:1lim lim 020==+→→x x x x x x x 4、两个重要极限:()e x e x x x x x x x x =?? ? ??+=+=∞ →→→11lim 1lim )2(1 sin lim )1(1 0 经验公式:当∞→→→)(,0)(,0x g x f x x ,[] ) ()(lim ) (0 )(1lim x g x f x g x x x x e x f →=+→ 例如:()33lim 10 031lim -? ? ? ? ?-→==-→e e x x x x x x 5、可导必定连续,连续未必可导。例如:||x y =连续但不可导。 6、导数的定义:()00 00 ') ()(lim ) (') ()(lim x f x x x f x f x f x x f x x f x x x =--=?-?+→→? 7、复合函数求导: [][])(')(')(x g x g f dx x g df ?= 例如:x x x x x x x y x x y ++=++ = +=2412221 1', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx 例如:y x dx dy ydy xdx y x y yy x y x - =?+- =?=+=+22,),2('0'22,),1(1 22左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若?? ?==) ()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[] ) (')('/)('/)/(/22 t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ??=-?+ 例如:计算 ?31sin

高等数学下册知识点

高等数学下册知识点 《高等数学C2》考试大纲 一、考试内容与重点分布 1、向量代数与空间解析几何 (1) 空间向量的数量积与向量积计算方法(☆); (判断题2分, 计算题6分) ,,cos 是一个数量z z y y x x b a b a b a b a b a ++=?=?θ ,是个向量 注意:两者的运算律要会。 (2) 空间曲面方程的识别; (选择题3分) 几种常见的二次曲面 (3) 平面与直线方程及其求法(☆). (判断2分, 填空题3分, 计算题6分) Ⅰ、平面的几种方程形式: (1)点法式:过点),,(000z y x ,法向量为}C B,A,{=n 的平面方程: k j i x a y a z a x b y b z b =?b a

-+-y B x x A ()(00)()00=-+z z C y ; (2) 一般式:0=+++D Cz By Ax ,其中},,{C B A =n ; (3) 截距式: 1=++c z b y a x ,其中平面与坐标轴交点),0,0(),0,,0(),0,0,(c b a ; (4) 三点式:002020 2010 101000 =---------z z y y x x z z y y x x z z y y x x , 其中),,(000z y x ,),,(111z y x ,),,(222z y x 为平面上不在一条直线上的三点. Ⅱ 、 直线的几种方程形式: (1) 点向式:p z z n y y m x x 000-=-=-,其中),,(000z y x 为 直线上定点,},,{p n m =s 为直线的方向向量; (2) 参数式:?? ???+=+=+=;pt z z nt y y m t x x 000,, (3) 两点式:1 21121121z z z z y y y y x x x x --=--=--, 其中),,(111z y x ,),,(222z y x 为直线上不重合的两点; (4) 一般式:???=+++=+++,0, 02222 1111D z C y B x A D z C y B x A 其中此二平面不平行. 注:线与线、线与面、面与面垂直或平行时直线的方向向量和平面的法向量之间的关系。 2、多元函数的微分学 (1) 二元函数极限求法(☆); (选择题3分, 计算题6分)

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

同济六版高等数学(下)知识点整理

第八章 1、 向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、 两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1)1(+- x x b a y y b a k ) =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、 二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+2222; (旋转抛物面: z a y x =+2 2 2(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面: 122 222=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 222=-+c z a y x (把 xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转) )

专升本高等数学知识点汇总

专升本高等数学知识点汇总 常用知识点: 一、常见函数的定义域总结如下: (1) c bx ax y b kx y ++=+=2 一般形式的定义域:x ∈R (2)x k y = 分式形式的定义域:x ≠0 (3)x y = 根式的形式定义域:x ≥0 (4)x y a log = 对数形式的定义域:x >0 二、函数的性质 1、函数的单调性 当21x x <时,恒有)()(21x f x f <,)(x f 在21x x ,所在的区间上是增加的。 当21x x <时,恒有)()(21x f x f >,)(x f 在21x x ,所在的区间上是减少的。 2、 函数的奇偶性 定义:设函数)(x f y =的定义区间D 关于坐标原点对称(即若D x ∈,则有D x ∈-) (1) 偶函数)(x f ——D x ∈?,恒有)()(x f x f =-。 (2) 奇函数)(x f ——D x ∈?,恒有)()(x f x f -=-。 三、基本初等函数 1、常数函数:c y =,定义域是),(+∞-∞,图形是一条平行于x 轴的直线。 2、幂函数:u x y =, (u 是常数)。它的定义域随着u 的不同而不同。图形过原点。 3、指数函数

定义: x a x f y ==)(, (a 是常数且0>a ,1≠a ).图形过(0,1)点。 4、对数函数 定义: x x f y a log )(==, (a 是常数且0>a ,1≠a )。图形过(1,0)点。 5、三角函数 (1) 正弦函数: x y sin = π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (2) 余弦函数: x y cos =. π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (3) 正切函数: x y tan =. π=T , },2 )12(,|{)(Z R ∈+≠∈=k k x x x f D π , ),()(+∞-∞=D f . (4) 余切函数: x y cot =. π=T , },,|{)(Z R ∈≠∈=k k x x x f D π, ),()(+∞-∞=D f . 5、反三角函数 (1) 反正弦函数: x y sin arc =,]1,1[)(-=f D ,]2 ,2[)(π π- =D f 。 (2) 反余弦函数: x y arccos =,]1,1[)(-=f D ,],0[)(π=D f 。 (3) 反正切函数: x y arctan =,),()(+∞-∞=f D ,)2 ,2()(π π- =D f 。 (4) 反余切函数: x y arccot =,),()(+∞-∞=f D ,),0()(π=D f 。 极限 一、求极限的方法 1、代入法 代入法主要是利用了“初等函数在某点的极限,等于该点的函数值。”因此遇到大部分简单题目的时候,可以直接代入进行极限的求解。 2、传统求极限的方法 (1)利用极限的四则运算法则求极限。 (2)利用等价无穷小量代换求极限。 (3)利用两个重要极限求极限。 (4)利用罗比达法则就极限。

高等数学知识点归纳

第一讲: 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *010 2()(), ()x x f x F x x x f x ≤?=? >?; *0 0()(),x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () () x x t y y t =?? =? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞ ; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ±→) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()m a x (,,)n n n n a b c a b c ++→, ()00! n a a n >→ 1(0)x x →→∞, 0lim 1x x x + →=, l i m 0n x x x e →+∞=, ln lim 0n x x x →+∞=,

高等数学下册知识点

高等数学下册知识点 第七章 空间解析几何与向量代数 一、填空与选择 1、已知点A (,,)321-和点B (,,)723-,取点M 使MB AM 2=,则向量OM =。 2 已知点A (,,)012和点B =-(,,)110,则AB = 。 3、设向量与三个坐标面的夹角分别为ξηζ,,,则cos cos cos 2 2 2 ξηζ++= 。 4、设向量a 的方向角απ β= 3 ,为锐角,γπβ=-4=,则a = 。 5、向量)5,2,7(-=a 在向量)1,2,2(=b 上的投影等于。 6、过点()121 -,,P 且与直线1432-=-=+-=t z t y t x ,,, 垂直的平面方程为_____________________________. 7、已知两直线方程是13021 1: 1--=-=-z y x L ,11122:2 z y x L =-=+,则过1L 且平行2L 的平面方程为____________________ 8、设直线182511:1+=--=-z y x L ,???=-+=--0320 6:2z y y x L ,则1L 与2L 的夹角为( ) (A ). 6π (B ).4π (C ).3π (D )2 π . 9、平面Ax By Cz D +++=0过x 轴,则( ) (A )A D ==0 (B )B C =≠00, (C )B C ≠=00, (D )B C ==0 10、平面3510x z -+=( ) (A )平行于zox 平面 (B )平行于y 轴(C )垂直于y 轴 (D )垂直于x 轴 11、点M (,,)121到平面x y z ++-=22100的距离为( ) (A )1 (B )±1 (C )-1 (D )1 3 12、与xoy 坐标平面垂直的平面的一般方程为 。 13、过点(,,)121与向量k j S k j i S --=--=21,32平行的平面方程为 。 14、平面0218419=++-z y x 和0428419=++-z y x 之间的距离等于?????? 。 15、过点(,,)024且与平面x z +=21及y z -=32都平行的直线方程为。 16、过点(,,)203-并与x y z x y z -+-=+-+=??? 2470 35210垂直的平面的方程为???????????? 。 二、完成下列各题 1、设)(,82,13-=-=-=λ与 b 是不平行的非零向量,求λ的值,使C B A 、、三点在 同一直线上。 2、已知不平行的两向量a 和b ,求它们的夹角平分线上的单位向量。 3、设点)1,0,1(-A 为矢量,10=与x 轴、y 轴的夹角分别为 45,60==βα,试求: (1)AB 与z 轴的夹角v ;(2)点B 的坐标。 4、求与向量k j i a 22+-=共线且满足18-=?x a 的向量x 。 5、若平面过x 轴,且与xoy 平面成 30的角,求它的方程。 第八章 空间解析几何与向量代数 (一) 向量及其线性运算 1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面;

高等数学(下)知识点总结

主要公式总结 第八章空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111 C B A n =ρ ,),,(2222C B A n =ρ , 22 22 22 21 21 21 2 12121cos C B A C B A C C B B A A ++?++++= θ ?∏⊥∏210212121=++C C B B A A ;? ∏∏21//2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 2 2 2 000C B A D Cz By Ax d +++++= (三) 空间直线及其方程

高数下册知识点

高等数学(下)知识点 高等数学下册知识点 第八章 空间解析几何与向量代数 (一) 向量及其线性运算 1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面; 2、 线性运算:加减法、数乘; 3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式; 4、 利用坐标做向量的运算:设),,(z y x a a a a = , ),,(z y x b b b b = , 则 ),,(z z y y x x b a b a b a b a ±±±=± , ),,(z y x a a a a λλλλ= ; 5、 向量的模、方向角、投影: 1) 向量的模: 2 22z y x r ++= ; 2) 两 点 间 的 距 离 公式: 212212212)()()(z z y y x x B A -+-+-= 3) 方向角:非零向量与三个坐标轴的正向的夹角 γβα,, 4) 方 向 余 弦 : r z r y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα

高等数学(下)知识点 5) 投影:?cos Pr a a j u =,其中?为向量a 与u 的夹角。 (二) 数量积,向量积 1、 数量积:θ cos b a b a =? 1)2a a a =? 2)?⊥b a 0=?b a z z y y x x b a b a b a b a ++=? 2、 向量积:b a c ?= 大小:θsin b a ,方向:c b a ,,符合右手规 则 1)0 =?a a 2)b a //?0 =?b a z y x z y x b b b a a a k j i b a =? 运算律:反交换律 b a a b ?-=? (三) 曲面及其方程 1、 曲面方程的概念:0),,(:=z y x f S 2、 旋转曲面:

考研高等数学知识点总结

高等数学知识点总结 导数公式: 基本积分表: 三角函数的有理式积分: 222 2 12211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +- ='+= '--='-='? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+= -++-=-+=++-=++=+=+-=? ???????arcsin ln 21ln 21 1csc ln csc sec ln sec sin ln cos ln 2 2 2 22 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0π π

《高等数学》-各章知识点总结——第1章

第1章 函数与极限总结 1、极限的概念 (1)数列极限的定义 给定数列{x n },若存在常数a ,对于任意给定的正数ε (不论它多么小), 总存在正整数N , 使得对于n >N 时的一切n , 恒有 |x n-a |<ε 则称a 是数列{x n }的极限, 或者称数列{x n }收敛于a , 记为 a x n n =∞ →lim 或xn →a (n→∞). (2)函数极限的定义 设函数f (x)在点x 0的某一去心邻域内(或当0x M >>)有定义,如果存在常数A , 对于任意给定的正数ε (不论它多么小), 总存在正数δ,(或存在X ) 使得当x满足不等式0<|x -x0|<δ 时,(或当x X >时) 恒有 |f (x)-A |<ε , 那么常数A就叫做函数f (x)当0x x →(或x →∞)时的极限, 记为 A x f x x =→)(lim 0 或f (x )→A (当x →x0).( 或lim ()x f x A →∞ =) 类似的有:如果存在常数A ,对0,0,εδ?>?>当00:x x x x δ-<<(00x x x δ<<-)时,恒有()f x A ε-<,则称A 为()f x 当0x x →时的左极限(或右极限)记作 00 lim ()(lim ())x x x x f x A f x A - +→→==或 显然有0 lim ()lim ()lim ())x x x x x x f x A f x f x A -+→→→=?== 如果存在常数A ,对0,0,X ε?>?>当()x X x X <->或时,恒有()f x A ε-<,则称A 为()f x 当x →-∞(或当x →+∞)时的极限 记作lim ()(lim ())x x f x A f x A →-∞ →+∞ ==或 显然有lim ()lim ()lim ())x x x f x A f x f x A →∞ →-∞ →+∞ =?== 2、极限的性质 (1)唯一性 若a x n n =∞ →lim ,lim n n x b →∞ =,则a b = 若0() lim ()x x x f x A →∞→=0() lim ()x x x f x B →∞→=,则A B = (2)有界性 (i)若a x n n =∞ →lim ,则0M ?>使得对,n N + ?∈恒有n x M ≤

高数知识点总结(上册)

高数知识点总结(上册) 函数: 绝对值得性质: (1)|a+b|≤|a|+|b| (2)|a-b|≥|a|-|b| (3)|ab|=|a||b| (4)|b a |=)0(||||≠b b a 函数的表示方法: (1)表格法 (2)图示法 (3)公式法(解析法) 函数的几种性质: (1)函数的有界性 (2)函数的单调性 (3)函数的奇偶性 (4)函数的周期性 反函数: 定理:如果函数)(x f y =在区间[a,b]上是单调的,则它的反函数)(1 x f y -=存在,且是单 值、单调的。 基本初等函数: (1)幂函数 (2)指数函数 (3)对数函数 (4)三角函数 (5)反三角函数 复合函数的应用 极限与连续性: 数列的极限: 定义:设 {}n x 是一个数列,a 是一个定数。如果对于任意给定的正数ε(不管它多么小) , 总存在正整数N ,使得对于n>N 的一切n x ,不等式 ε <-a x n 都成立,则称数a 是数列 {}n x 的 极限,或称数列{}n x 收敛于a ,记做a x n n =∞ →lim ,或 a x n →(∞→n ) 收敛数列的有界性: 定理:如果数列 {}n x 收敛,则数列{}n x 一定有界 推论:(1)无界一定发散(2)收敛一定有界 (3)有界命题不一定收敛 函数的极限: 定义及几何定义 函数极限的性质: (1)同号性定理:如果A x f x x =→)(lim 0 ,而且A>0(或A<0),则必存在0x 的某一邻域,当x 在该邻域内(点0 x 可除外),有0)(>x f (或0)(

高等数学 各章知识点总结——第9章

一、多元函数的极限与连续 1、n 维空间 2R 为二元数组),(y x 的全体,称为二维空间。3R 为三元数组),,(z y x 的全体,称为三 维空间。 n R 为n 元数组),,,(21n x x x 的全体,称为n 维空间。 n 维空间中两点1212(,,,),(,,,)n n P x x x Q y y y L L 间的距离: ||PQ 邻域: 设0P 是n R 的一个点, 是某一正数, 与点0P 距离小于 的点P 的全体称为点0P 的 邻域,记为),(0 P U ,即00(,){R |||}n U P P PP 空心邻域: 0P 的 邻域去掉中心点0P 就成为0P 的 空心邻域,记为 0(,)U P o =0{0||}P PP 。 内点与边界点:设E 为n 维空间中的点集,n P R 是一个点。如果存在点P 的某个邻域 ),( P U ,使得E P U ),( ,则称点P 为集合E 的内点。 如果点P 的任何邻域内都既有 属于E 的点又有不属于E 的点,则称P 为集合E 的边界点, E 的边界点的全体称为E 的边界. 聚点:设E 为n 维空间中的点集,n P R 是一个点。如果点P 的任何空心邻域内都包含E 中的无穷多个点,则称P 为集合E 的聚点。 开集与闭集: 若点集E 的点都是内点,则称E 是开集。设点集n E R , 如果E 的补集 n E R 是开集,则称E 为闭集。 区域与闭区域:设D 为开集,如果对于D 内任意两点,都可以用D 内的折线(其上的点都属于D )连接起来, 则称开集D 是连通的.连通的开集称为区域或开区域.开区域与其边界的并集称为闭区域. 有界集与无界集: 对于点集E ,若存在0 M ,使得(,)E U O M ,即E 中所有点到原点的距离都不超过M ,则称点集E 为有界集,否则称为无界集. 如果D 是区域而且有界,则称D 为有界区域. 有界闭区域的直径:设D 是n R 中的有界闭区域,则称1212,()max{||}P P D d D PP 为D 的直径。

高等数学知识点(重点)

高等数学知识点总结 空间解析几何与向量代数 一、重点与难点 1、重点 ①向量的基本概念、向量的线性运算、向量的模、方向角; ②数量积(是个数)、向量积(是个向量);(填空选择题中考察) ③几种常见的旋转曲面、柱面、二次曲面;(重积分求体积时画图需要) ④平面的几种方程的表示方法(点法式、一般式方程、三点式方程、截距式方程),两平面的夹角;(一般必考) ⑤空间直线的几种表示方法(参数方程、对称式方程、一般方程、两点式方程), 两直线的夹角、直线与平面的夹角;(一般必考) 空间解析几何和向量代数: 。 代表平行六面体的体积为锐角时, 向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。 与是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22 2 2 2 2 2 212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k j i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M M d z y x z y x z y x z y x z y x z y x z y x z z y y x x z z y y x x u u ??==??=?=?==?=++?++++=++=?=?+=+=-+-+-==

(马鞍面)双叶双曲面:单叶双曲面:、双曲面: 同号) (、抛物面:、椭球面:二次曲面: 参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程: 1 1 3,,2221 1};,,{,1 30 2),,(},,,{0)()()(122 222222 22222 222 22220000002 220000000000=+-=-+=+=++??? ??+=+=+===-=-=-+++++= =++=+++==-+-+-c z b y a x c z b y a x q p z q y p x c z b y a x pt z z nt y y m t x x p n m s t p z z n y y m x x C B A D Cz By Ax d c z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A 多元函数微分法及应用 z y z x y x y x y x y x F F y z F F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u x v v z x u u z x z y x v y x u f z t v v z t u u z dt dz t v t u f z y y x f x y x f dz z dz z u dy y u dx x u du dy y z dx x z dz - =??-=??=? -?? -??=-==??+??=??+??= ==??? ??+?????=??=?????+?????==?+?=≈???+??+??=??+??= , , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 : 多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22

(完整版)高数下册常用常见知识点

高等数学(下)知识点 高等数学下册常用常见知识点 第八章 空间解析几何与向量代数 (一) 向量及其线性运算 1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面; 2、 线性运算:加减法、数乘; 3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式; 4、 利用坐标做向量的运算:设),,(z y x a a a a =ρ ,),,(z y x b b b b =ρ, 则 ),,(z z y y x x b a b a b a b a ±±±=±ρ ρ, ),,(z y x a a a a λλλλ=ρ; 5、 向量的模、方向角、投影: 1) 向量的模: 2 22z y x r ++=ρ ; 2) 两点间的距离公式: 2 12212212)()()(z z y y x x B A -+-+-= 3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,, 4) 方向余弦:r z r y r x ρρρ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα 5) 投影:?cos Pr a a j u ρρρ=,其中?为向量a ρ与u ρ的夹角。 (二) 数量积,向量积 1、 数量积:θcos b a b a ρ ρρρ=? 1)2 a a a ρρρ=? 2)?⊥b a ρρ0=?b a ρ ρ z z y y x x b a b a b a b a ++=?ρ ρ 2、 向量积:b a c ρ ρρ?= 大小:θsin b a ρρ,方向:c b a ρ ρρ,,符合右手规则 1)0ρρρ=?a a

高等数学(下)知识点 2)b a ρρ//? 0ρρρ=?b a z y x z y x b b b a a a k j i b a ρρρρ ρ=? 运算律:反交换律 b a a b ρ ρρρ?-=? (三) 曲面及其方程 1、 曲面方程的概念: 0),,(:=z y x f S 2、 旋转曲面:(旋转后方程如何写) yoz 面上曲线0),(:=z y f C , 绕y 轴旋转一周: 0),(22=+±z x y f 绕 z 轴旋转一周: 0),(22=+±z y x f 3、 柱面:(特点) 0),(=y x F 表示母线平行于z 轴,准线为?????==0 0),(z y x F 的柱面 4、 二次曲面(会画简图) 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 2222=++c z b y a x 旋转椭球面:122 2222=++c z a y a x 3) *单叶双曲面:122 2222=-+c z b y a x

高等数学高数知识点总结

高数重点总结 1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。 3、无穷小:高阶+低阶=低阶 例如:1lim lim 020==+→→x x x x x x x 4、两个重要极限:()e x e x x x x x x x x =?? ? ??+=+=∞ →→→11lim 1lim )2(1 sin lim )1(1 0 经验公式:当∞→→→)(,0)(,0x g x f x x ,[] ) ()(lim ) (0 )(1lim x g x f x g x x x x e x f →=+→ 例如:()33lim 10 031lim -?? ? ??-→==-→e e x x x x x x 5、可导必定连续,连续未必可导。例如:||x y =连续但不可导。 6、导数的定义:()00 00 ') ()(lim ) (') ()(lim x f x x x f x f x f x x f x x f x x x =--=?-?+→→? 7、复合函数求导: [][])(')(')(x g x g f dx x g df ?= 例如:x x x x x x x y x x y ++=++ = +=2412221 1', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx 例如:y x dx dy ydy xdx y x y yy x y x - =?+-=?=+=+22,),2('0'22,),1(1 22左右两边同时微分法左右两边同时求导 解:法 9、由参数方程所确定的函数求导:若?? ?==) ()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[] ) (')('/)('/)/(/22 t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ??=-?+ 例如:计算 ?31sin

相关文档
相关文档 最新文档