文档库 最新最全的文档下载
当前位置:文档库 › 2-matlab矩阵的代数运算 (1)

2-matlab矩阵的代数运算 (1)

2-matlab矩阵的代数运算 (1)
2-matlab矩阵的代数运算 (1)

乘法运算乘法运算符为”*”,运算规则和现行代数中矩阵乘法运算相同,即放在前面的矩阵的行元素,分别与放在后面的矩阵的各列元素对应相乘并相加。

1、两个矩阵相乘:必须满足前一矩阵的列数等于后一矩阵的行数。

2、矩阵的数乘:返回数与矩阵中每一个元素相乘后的矩阵

3、向量的点乘(内积):维数相同的两个向量的点乘;A.*B表示A与B对应的元素相乘,返回的是一个向量

4、向量点积:

(1)C=dot(A,B) %若A、B为向量,A与B长度相同;若为矩阵,则A与B有相同维数

(2)C=dot(A,B,dim) %在dim维数中给出A与B的点积

5、向量叉乘:在数学上,两向量的叉乘是一个过两向量交点且垂直于两向量所在平面的向量。

(1)C=cross(A,B) %若A、B为向量,则返回A与B的叉乘,即C=AXB;若为矩阵,则返回一个3Xn矩阵,其中列是A与B对应列的叉积,A、B都是3Xn矩阵

(2)C=cross(A,B,dim) %在dim维数中给出向量A与B的叉积注:A与B必须具有相同维数,size(A,dim)和size(B,dim)必须是3

6、矩阵卷积和多项式乘法:w=conv(u,v) (反褶积deconv(u,v))长度为m的向量序列u和长度为n的向量序列v的卷积定义为

=

+

=

k

1

j

j)

-1

u(j)v(k

)k(

w,其中w向量序列长度为(m+n-1)

多项式的乘法实际上是多项式系数向量间的卷积运算,举例如下:展开多项式(s2+2s+2)(s+4)(s+1)

>>w=conv([1,2,2],conv([1,4],[1,1]))

w = 1 7 16 18 8

>>p=poly2str(w,’s’) %将w表示成多项式

p=s^4 +7 s^3 +16 s^2 +18 s + 8

7、张量积

C=kron(A,B) %A为mxn矩阵,B为pxq矩阵,则C为mpxnq矩阵A与B的张量积定义为:

加、减运算加、减运算符为”+”、”--”。运算规则为对应元素相加、减

pow2函数命令:X=pow2(F,E),表示F*2E;命令:X=pow2(E),表示2E

矩阵的代数

运算

1、两集合的交集:

(1)c=intersect(a,b) %返回向量a 、b 的公共部分,即c=a ∩b (2)c= intersect(A,B,’rows ’) %A 、B 为相同列数的矩阵,返回元素相同的行

(3)[c,ia,ib]=intersect(…) %c 为a/A 、b/B 的公共元素,ia 表示公共元素在a/A 中的位置,ib 表示元素在b/B 中的位置

2、两集合的并集

(1)c=union(a,b) %返回a 、b 的并集,即c=a ∪b

(2)c= union(A,B,’rows ’) % A 、B 为相同列数的矩阵,返回A 、B 不同行向量构成的矩阵 (3)[c,ia,ib]= union(…) % ia 、ib 分别表示c 中行向量在原矩阵(向量)中的位置

3、两集合的差

(1)c=setdiff(a,b) %返回属于a 但不属于b 的不同元素的集合,即c=a-b

(2)c=setdiff(A,B,’rows ’) %返回属于A 但不属于B 的不同行 (3)[c,i]=setdiff(…) % i 表示c 中元素在a/A 中的位置

4、两集合交集的非(异或)

(1)c=setxor(a,b) %返回集合a 、b 交集的非

(2)c=setxor(A,B,’rows ’) %返回返回A 、B 交集的非,A 、B 有相同的列数 (3)[c,ia,ib]=setxor(…) % ia 、ib 表示c 中元素分别在a(或A)、b(或B)中的位置

5、检测集合中的元素

(1)k=ismember(A,S) %当A 中元素属于S 时k 取1,否则取0,结果为维数与A 相同的且由0、1组成的矩阵

(2)k=ismember(A,S,’rows ’) % A 、B 有相同的列,行相同k 取1,不同取0,同事结果为取值的列向量

6、取集合的单值元素

(1)b=unique(a) %取集合a (向量或矩阵)的不重复元素构成的向量

(2)b=unique(A,’rows ’) %返回A 不同行元素组成的矩阵

(3)[b,i,j]=unique(…) % i 、j 体现b 中元素在原向量(矩阵)中的位置

集合运算

矩阵的代数运算

矩阵的代数运算除法运算

(1)MATLAB提供了两种除法运算:左除(\)和右除(/)。

一般情况下,x=a\b是方程a*x=b的解,而x=a/b是方程x* a =b

的解。

(2)如果a为非奇异矩阵,则a\b和b/a可通过a的逆矩阵与b

阵得到:a\b=inv(a)*b, b/a=b*inv(a)。

矩阵乘方

乘方运算符:”^”

(1)当A为方阵,P为大于0的整数时,A^P表示A的P次方,

即A自乘P次;P为小于0的整数时,A^P表示A-1的P次方

(2)当A为方阵,P为非整数时,则

p

11

d 0

A^P=V

……V-1

0 …p

nn

d,其中V为A的特征向量

11

d 0

………为特征值对角矩阵。如果有

0 …

nn

d重根,以上指令不成立。

(3)标量的矩阵乘方P A,标量的矩阵乘方定义为

p11

d 0

P A=V ………V-1 ,其中V、D取自特征

0 …p nn

d值分解AV=AD

(4)标量的数组乘方P^A,标量的数组乘方定义为

p11

a…p

n1

a

P^V ………V-1 ,数组乘方A^P,表示A

p1m

a…p

m n

a的每个元素的P次乘方

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

2-matlab矩阵的代数运算 (1)

乘法运算乘法运算符为”*”,运算规则和现行代数中矩阵乘法运算相同,即放在前面的矩阵的行元素,分别与放在后面的矩阵的各列元素对应相乘并相加。 1、两个矩阵相乘:必须满足前一矩阵的列数等于后一矩阵的行数。 2、矩阵的数乘:返回数与矩阵中每一个元素相乘后的矩阵 3、向量的点乘(内积):维数相同的两个向量的点乘;A.*B表示A与B对应的元素相乘,返回的是一个向量 4、向量点积: (1)C=dot(A,B) %若A、B为向量,A与B长度相同;若为矩阵,则A与B有相同维数 (2)C=dot(A,B,dim) %在dim维数中给出A与B的点积 5、向量叉乘:在数学上,两向量的叉乘是一个过两向量交点且垂直于两向量所在平面的向量。 (1)C=cross(A,B) %若A、B为向量,则返回A与B的叉乘,即C=AXB;若为矩阵,则返回一个3Xn矩阵,其中列是A与B对应列的叉积,A、B都是3Xn矩阵 (2)C=cross(A,B,dim) %在dim维数中给出向量A与B的叉积注:A与B必须具有相同维数,size(A,dim)和size(B,dim)必须是3 6、矩阵卷积和多项式乘法:w=conv(u,v) (反褶积deconv(u,v))长度为m的向量序列u和长度为n的向量序列v的卷积定义为 ∑ = + = k 1 j j) -1 u(j)v(k )k( w,其中w向量序列长度为(m+n-1) 多项式的乘法实际上是多项式系数向量间的卷积运算,举例如下:展开多项式(s2+2s+2)(s+4)(s+1) >>w=conv([1,2,2],conv([1,4],[1,1])) w = 1 7 16 18 8 >>p=poly2str(w,’s’) %将w表示成多项式 p=s^4 +7 s^3 +16 s^2 +18 s + 8 7、张量积 C=kron(A,B) %A为mxn矩阵,B为pxq矩阵,则C为mpxnq矩阵A与B的张量积定义为: 加、减运算加、减运算符为”+”、”--”。运算规则为对应元素相加、减 pow2函数命令:X=pow2(F,E),表示F*2E;命令:X=pow2(E),表示2E 矩阵的代数 运算

线性代数---特殊行列式及行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 11112112,1221222,1 1,21,1 1,11 2 ,1 (1)2 12,11 000000 00 000 0000 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------== =- 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????==? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????==-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式; 3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算 ——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法)

【常见的化简行列式的方法】 1. 利用行列式定义直接计算特殊行列式 例1 (2001年考研题) 00010002000199900 02000000 002001 D = 分析:该行列式的特点是每行每列只有一个元素,因此很容易联想到直接利用行列式定义进行计算。 解法一:定义法 (1,2,...,2,1,)012...19990(1)2001!(1)2001!2001!n n n D τ--+++++=-=-= 解法二:行列式性质法 利用行列式性质2把最后一行依次与第n -1,n -2,…,2,1行交换(这里n =2001),即进行2000次换行以后,变成副对角行列式。 2001(20011) 20011 20011 2 000020010 001000200(1) (1) (1)2001!2001!0199900 02000 000D ?---=-=--= 解法三:分块法 00010002000199900 02000000 002001 D = 利用分块行列式的结果可以得到

线性代数的基本运算

111 第5章 线性代数的基本运算 本章学习的主要目的: 1 复习线性代数中有关行列式、矩阵、矩阵初等变换、向量的线性相关性、线性方程组的求解、相似矩阵及二次型的相关知识. 2学会用MatLab 软件进行行列式的计算、矩阵的基本运算、矩阵初等变换、向量的线性相关性的判别、线性方程组的求解、二次型化标准形的运算. 5.1 行列式 5.1.1 n 阶行列式定义 由2n 个元素),,2,1,(n j i a ij 组成的记号 D=nn n n n n a a a a a a a a a 212222111211 称为n 阶行列式.其值是所有取自不同行不同列的n 个元素的乘积n np 2p 21p 1a a a 的代数和,各项的符号由n 级排列n p p p 21决定,即

112 D= ∑ -n p p p n p p p 21n np 2 p 21 p 1) 21( a a a )1(τ, 其中 ∑n p p p 21表示对所有n 级排列求和, ) ,,,(21n p p p τ是排列 n p p p 21的逆序数. 5.1.2 行列式的性质 (1) 行列式与它的转置行列式相等. (2) 互换行列式的两行(列),行列式变号. (3) 若行列式有两行(列)完全相同,则此行列式为零. (4) 行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k 乘此行列式. (5) 若行列式有两行(列)元素成比例,则此行列式为零. (6) 若行列式的某一列(行)的元素是两数的和,则此行列式等 于对应两个行列式之和.即 nn n n ni n n i i nn n n ni n n i i nn n n ni ni n n i i i i a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a 21'2 1 '22221 '11211212 1 22221 112 1121'2 1 '222221'111211+ =+++ (7) 若行列式的某一行(列)的各元素乘以同一数加到另一行(列)对应的元素上去,行列式不变.

矩阵代数基本知识

附录I 矩阵代数基本知识 矩阵和行列式是研究多元统计分析的重要工具,这里针对本书的需要,对有关矩阵代数的基本知识作回顾性的介绍,其中有些内容是过去教学计划中没有涉及到的。 一、 向量矩阵的定义 将n p ?个实数111212122212,,,,,,,,,,,,p p n n np a a a a a a a a a 排成如下形式的矩形数表,记为A 111212122212p p n n np a a a a a a a a a ?? ??? ?=???????? A 则称A 为n p ?阶矩阵,一般记为()ij n p a ?=A ,称ij a 为矩阵A 的元素。当 n p =时,称A 为n 阶方阵;若1p =,A 只有一列,称其为n 维列向量, 记为 1121 1n a a a ???????????? 若1n =,A 只有一行,称其为 p 维行向量,记为 () 11121,,,p a a a

当A 为n 阶方阵,称1122,,,nn a a a 为A 的对角线元素,其它元素称为非对角元素。若方阵A 的非对角元素全为0,称A 为对角阵,记为 11221122(,,,)nn nn a a diag a a a a ??????==???????? A 进一步,若11221nn a a a ==== ,称A 为n 阶单位阵,记为n I 或 =A I 。 如果将n p ?阶矩阵A 的行与列彼此交换,得到的新矩阵是p n ?的矩阵,记为 112111222212n n p p np a a a a a a a a a ????? ?'=???????? A 称其为矩阵A 的转置矩阵。 若A 是方阵,且'= A A ,则称A 为对称阵; 若方阵()ij n n A a ?=,当 对一切i j <元素0ij a =,则称 112122 12 n n nn a a a a a a ???? ??=??????A 为下三角阵;若'A 为下三角阵,则称A 为上三角阵。

线性代数之行列式的性质及计算

第二节 行列式的性质与计算 § 行列式的性质 考虑111212122212 n n n n nn a a a a a a D a a a = 将它的行依次变为相应的列,得 112111222212n n T n n nn a a a a a a D a a a = 称T D 为D 的转置行列式 . 性质1 行列式与它的转置行列式相等.(T D D =) 事实上,若记1112 12122212 n n T n n nn b b b b b b D b b b = 则(,1,2, ,)ij ji b a i j n == 12 12 () 12(1)n n p p p T p p np D b b b τ∴=-∑12 12() 12(1).n n p p p p p p n a a a D τ=-=∑ 说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立. 性质2 互换行列式的两行(i j r r ?)或两列(i j c c ?),行列式变号. 例如 123 123086351.351 086 =- 推论 若行列式D 有两行(列)完全相同,则0D =. 证明: 互换相同的两行, 则有D D =-, 所以0D =. 性质3 行列式某一行(列)的所有元素都乘以数k ,等于数k 乘以此行列式,即 111211112 11212 1 2 12 n n i i in i i in n n nn n n nn a a a a a a ka ka ka k a a a a a a a a a =

推论:(1) D 中某一行(列)所有元素的公因子可提到行列式符号的外面; (2) D 中某一行(列)所有元素为零,则0D =; 性质4: 行列式中如果有两行(列)元素对应成比例, 则此行列式等于零. 性质5: 若行列式某一行(列)的所有元素都是两个数的和,则此行列式等于两个行列式的和.这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)的元素与原行列式相同 .即 1112111221 2 n i i i i in in n n nn a a a a b a b a b a a a +++=1112112 12n i i in n n nn a a a a a a a a a +1112112 12 n i i in n n nn a a a b b b a a a . 证: 由行列式定义 12 12() 12(1)()n i i n p p p p p ip ip np D a a a b a τ=-+∑ 12 12 12 12() () 1212(1)(1).n n i n i n p p p p p p p p ip np p p ip np a a a a a a b a ττ=-+-∑∑ 性质6 行列式D 的某一行(列)的各元素都乘以同一数k 加到另一行(列)的相应元素上,行列式的值不变()i j r kr D D +=,即 11121121 2 i j n r kr i i in n n nn a a a a a a a a a +=1112111221 2 n i j i j in jn n n nn a a a a ka a ka a ka a a a +++ 计算行列式常用方法: 利用性质2,3,6, 特别是性质6把行列式化为上(下)三角形行列式, 从而, 较容易的计算行列式的值. 例1: 计算行列式 2 324311112321311 (1)(2) 323 4 11310 4 25 1113 D --= -

行列式与矩阵幂迹的代数关系

行列式与矩阵幂迹的代数关系 计算]det[xB A +的公式 (1)递归推导法: ∑=+=i i i x C xB A w ]det[]det[ ... ]det[)(]det[)(]det[]det[)()ln (]det[21)(ln )(ln w v v w w v w ww w w w w tr tr tr tr e tr e x x x tr x tr x x +?=?=?=?=?=?- 001)](det[]det[)(!==+?=?=x i x x n x i tr i C v w w ... 2)()()()()()(3 1 1 1 1 1 1 1 11122111v ww ww ww w w ww ww w w ww w w w w v v w w ww w w v -=???-??-?=???+???=?-=?-?=??=?-------------x x x x x x x x x x x x x x x x x x )()1)..(1)(()(n m m n x tr n m m m tr ++-----=?v v () m x m n m m n m n x x i x i i i i tr tr tr n m m m tr m tr tr i C x C x )()()()1)..(1)(()()(1)(! det ]det[100 B A v v v v v A B A -=+==+-----=-=?+?= =+∑ (2)直接展开法

∑ ∏∑∑ ∏∑∑∏ ∑∑∏∑∏∑∑∏∑∑∑∑∑=-+∞ ==+∞ ==∞===∞==∞=+=∞ =+--∑ -=+∑ -=∑=∑==∑=≡-=-=+=++≡+=+=+n jm m m i m i m i n n n jm m m i m i m i n n n jm m i m i n n m i m i jm m i im m i m m m m i im m i m i i i m m i i i i m i i i i j j i i i i i j j i i i i i j j i i i i i i j j i i i i i i i i i i m tr x x i m tr x m P x m P x m x P m x P P x m i tr x m i tr x x tr x x x x x }, {)1(0 }, {)1(0 },{0}{}{0},{1 01101 1!)))((()1(]det[]det[!))(()1(!!!!) (!1))()1((!1) ) ()1(exp())ln(exp(]det[]det[det ]det[det ]det[det ]det[B A A B A D D D D δD δD δA B A δA B A δA B A 111 按照分配

线性代数教案 第二章 矩阵及其运算

1 2 m m mn a a a 矩阵。为了表示它是一个整体,总是加一个括号将它界起来,并通常用大写字母表示它。记做 12m m mn a a a ? ?12 m m mn a a a a ??? 。切记不允许使用11 12121 22 212 n n m m mn a a a a a a a a a = A 。 矩阵的横向称行,纵向称列。矩阵中的每个数称为元素,所有元素都是实数的矩阵称为实矩阵,所有元素都是复数的矩阵称为复矩阵。本课中的矩阵除特殊说明外,都指12n n nn a a a ?? 不是方阵没有主对角线。在方阵中,

00nn a ?? 1121 2212000n n nn a a a a a a ?????? (主对角线以上均为零)1122 00000 0nn a a a ????? ???? (既}nn a . 对角元素为1的对角矩阵,记作E 或001???? ()11a ,此时矩阵退化为一个数矩阵的引进为许多实际的问题研究提供方便。 a x +)1(+?n 矩阵: 12 m m mn m a b a a a b ?? 任何一个方程组都可以用这样一个矩阵来描述;反之,一个矩阵也完全刻划了一个方

1 22 m m m mn mn b a b a b ? +++? ? ? ? ???-=4012B ,计算 B A +。 122 m m m mn mn b a b a b ? ---? 与矩阵n m ij a A ?=}{的乘积(称之为数乘),

12 m m mn a a a λλ?? 以上运算称为矩阵的线性运算,它满足下列运算法则:

相关文档
相关文档 最新文档