文档库 最新最全的文档下载
当前位置:文档库 › 线性规划的实际应用

线性规划的实际应用

线性规划的实际应用
线性规划的实际应用

线性规划的实际应用

摘 要:线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务. 关键词:研究性学习;线性规划,教学改革

随着当前基础教育的改革的深入,研究性学习成为当前基础教育的一个热点,引起了教育界和社会的广泛关注,也成为当前培养学生能力的一个崭新的课题。我们本着教学过程始于课内,终于课外的原则对线性规划的实际应用进行研究。主要是把实际问题抽象为数学模型,使其在约束条件下,找到最佳方案。也就是说求线性目标函数在线性约束条件下的最大值和最小值问题。

一. 线性规划问题

在实际社会活动中遇到这样的问题:一类是当一项任务确定后,如何统筹

安排,尽量做到最少的资源消耗去完成;另一类是在已有的一定数量的资源条件下,如何安排使用它们,才能使得完成的任务最多。

例如1-1:某工厂需要使用浓度为的硫酸10,而市场上只有浓度为,0080kg 00600

070和的硫酸出售,每千克价格分别为8元,10元,16元,问应购买各种浓度的硫酸各多0090少?才能满足生产需求,且所花费用最小?

设取浓度为,,的硫酸分别为千克,总费用为,则

006000700090321,,x x x Z

s.t

??

?=++=++8

9.07.06.010

321321x x x x x x

)

3,2,1,0(16108321=≥++=j x x x x Z j 例如1-2:某工厂生产甲,乙两种产品,已知生产甲产品需要种原料不超过3千克,但

A 每千克甲产品需要种原料为2千克;生产乙产品需要种原料不超过4.5千克,但每千克C

B 乙产品需要种原料为3千克。每千克甲产品的利润为3元,每千克乙产品的利润为4元,

C 工厂生产甲,乙两种产品的计划中要求所耗的种原料不超过15千克,甲,乙两种产品各应C 生产多少,能使的总利润最大?

设生产甲,乙两种产品分别为千克,利润总额为元,则

21,x x Z s.t ???????≥≤+≤≤0

,15325.43212121x x x x x x

2143x x Z +=二. 线性规划问题的模型

1.概念

对于求取一组变量使之既满足线性约束条件,又使具有线

),,3,2,1(n j x j ???=性目标函数取得最值的一类最优问题称为线性规划问题。

2.模型

max()1(min)2211n

n x c x c x c Z +???++=s.t ?????

????≥???≥=≤+???++??????????≥=≤+???++≥=≤+???++0

,,),()2(),(),(2122112222212111212111n m n mn m m n n n n x x x b x a x a x a b x a x a x a b x a x a x a 称之为线性规划问题的数学模型。其中(1)称为线性目标函数,(2)称为线性约束条件。 式中,称为目标函数,称为决策变量,称为价值系数Z ),,3,2,1(n j x j ???=),,2,1(n j c j ???=或目标函数系数,称为资源系数或约束右端常数,),,2,1(m i b i ???=),,2,1,,,2,1(n j m i a ij ???=???=称为技术系数或约束系数,,,均为常数。上述式子还可缩写为:

ij a j c i b

max(∑==n

j j j x c Z 1

min)

??

??????=≥???=≥=≤∑=n j x m i b x a t s j n

j i

j ij ,2,10,2,1),(.1

三. 线性规划问题的求解

1.图解法

在平面直角坐标系中,直线可以用二元一次方程来表示,点l 0=++C By Ax ),(o o y x p 在直线上的充要条件是;若不在直线上,则或

l 0=++C By Ax o o p 000>++C By Ax ,二者必居其一。

000<++C By Ax 直线将平面分为两个半平面和,位于同:l 0=++C By Ax 0>++C By Ax 0<++C By Ax 一个半平面内的点,其坐标必适合同一个不等式,要确定一个二元一次不等式所表示的半平面,可用“特殊点”法,如原点或坐标轴上的点来检验。另外有如下结论:

(1)若,则表示直线 右侧的半平面,

0>A 0>++C By Ax :l 0=++C By Ax 示直线 左侧的半平面。

0<++C By Ax :l 0=++C By Ax (2)若,则表示直线 上方的半平面,

0>B 0>++C By Ax :l 0=++C By Ax 示直线 下方的半平面。

0<++C By Ax :l 0=++C By Ax

例1-1中,设取浓度为,

00600070千克,总费用为,则

Z s.t ??

?

??=+-++≥+-≥8)](10

[9.07.06.00)(100,y x y x y x y x

6y -8x -160y)](x -16[1010y 8x Z =+++=即

令.

6y 8x Z -160+=6y 8x Z /+=要求的最小值,也就是求的最大值。

Z /Z ①式表示的公共区域为线段,如图(1AB 0经过点时,在轴上的截距最大,又的坐标为,所以的最大值为30。即B y B )5,0(/Z 5,0==y x 时,为最大,故。

/Z 13030160=-=Z 注:此题中原有三个未知量,在约束条件下,推出了第三个量的表达式,从而可用图解发法求解。

例1-2中,设生产甲,乙两种产品分别为x,y 利润总额为元,则

Z s.t ②

???????≥≤+≤≤0

,15325.43y x y x y x

y x Z 43+=求的最大值,如图(2)所示,

Z 当直线:向右上方移动,经过可行域上

0l 043=+y x 的点,此时直线距离原点最远,取得最大值。由 得点的坐标为

M Z ??=+1532y x M ,代入得, .

)3,3(y x Z 43+=21Z max =从图解法来看,它只适用线性约束条件中决策变量为二元一次线性规划问题的求解.对于

含有三个或三个以上的求解,用图解法无法下手.如何求多元线性规划问题的解呢?下面我们以例1-2为例,介绍单纯形法的求解方法.

2.单纯形法

目标函数 max

2143x x Z +=线性约束条件

s.t

???????≥≤+≤≤0

,1532923212121x x x x x x 先将其标准化,就是把约束条件中的不等式增加新的变量,转化为等式.如下:

s.t

????

???≥=++=+=+0

,,,,1532923543215214231x x x x x x x x x x x x 则目标函数为:. 其中,把称为松弛变量.列如下5432100043max x x x x x Z ?+?+?++=543,,x x x 表:

显然,第一行中

的值最小,故选进基,将第一行乘以0加到第二行,再将第一行乘j

x b

1x 以-选进基,先将第三行乘以后,然后分别在乘以加到第二行,乘以加到第四行,

2x 3

2-4-乘以0加到第一行,得到下表:

3 4 0 0 0

B c B x j c j x b / b

j x 1x 2x 3x 4x 5x 3

3 1 0 1 0 0 第一行 1x 0 3 0 0 4/3

1 0 第二行 4x 4

3

0 1 /3

0 0 第三行 2x 2-

第四行

Z -21-3/1-

最终是将第四行中所对应的系数全部变为0,而引进的松弛变量所对应的系

21,x x 543,,x x x 数化为非正数,就找到了最优解。所以最优解为

,3,321==x x , 0,3,0543===x x x .21max =Z 四. 线性规划的简单应用 1.物资调运问题(产销平衡)

运输问题一般是某种物资有个产地,产量分别为个单位;有个销地

n i A ),,2,1(n i ???=i a m ,销量分别为个单位,与之间的单位运价为,问应如何安排运输j B ),,2,1(m j ???=j b i A j B ij c 的方案,才能使总运费最低?

[例] 甲、乙两地生产某种产品,它们可调出的数量分别为300t,750t ,A 、B 、C 三地的需要该产品得数量分别为200t,450t,400t ,甲地运往A 、B 、C 三地的费运分别为6元/t, 3元/t,5元/t ,乙地运往A 、B 、C 三地费运分别为5元/t,9元/t,6元/t ,问怎样调运,才能使总运费最低?

分析:

销地 产地 单位运费

到A 到B 到C 资源限额

甲 6 3 5 300t 乙

5 9

6 750t 销量(需要量) 200t 450t 400t

解法一(图解法):设甲地生产的某种产品运往 A 、B 、C 三地数量分别为t ,t, t, x y )300(y x --则乙地生产的产品运往A 、B 、C 三地数量分别为t, t,

)200(x -)450(y -t,据题意得:)]300(400[(y x ---??

?

??≤--≤≤≤≤≤300045002000y x y x

则 ,

715052+-=y x Z 即 。 )7150(5

1

52Z x y -+=

由图(3)可知:当最大时,最小。即过点(0,300)时,。 Z -7150Z 5650min =Z

注:我们要理顺题目中的各量之间的关系,设出未知数,列出约束条件,找到目标函数,如果是三个未知量用图解法是无法求解,因此在此题中我们只设产品运往A 、B 、两地的数量分别为t ,t ,然后利用,表示出运往C 地的量,再用图解法进行求解。

x y x y 解法二(最小元素法):从上表中看到,甲、乙运往A 、B 、C 三地的费运中,甲运往B 的费运最少,以3为顶点的矩形只有两个,如下:

③ ③

3+59+6 5+93+6

<>所以3为全优元素,而B 地的需求量为450吨,故将甲生产的300t 全部运往B 地,然后将表中的第一行元素划掉,如下:

甲 6 3 5

乙 5 9 6

则剩余的全部由乙地运往A 、B 、C 三地,即由乙运往A 地200 t ,运往B 地150 t ,运往C 地400 t ,总费运为

=5650。

4006150920053003?+?+?+?=Z 如果甲生产的产品运往B 之后有剩余,而且也满足B 地的需求量,我们应将B 所在的列的元素全部划掉,然后在剩余的元素中再找最小元素,依次类推。

2.合理下料问题

下料问题是加工业中常见的一种问题,其一般的提法是把一种尺寸规格已知的原料切割成给定尺寸的几种毛坯,问题是在零件毛坯数量给定的条件下,如何割才能使废料最少?

[例] 某工厂有一批长为2.5m 的条形钢材,要截成60cm 和42cm 的两种规格的零件毛坯,找出最佳的下料方案,并计算材料的利用率。

解法一:设每根钢材可截成60cm 长的毛坯 x 根,42cm 长的毛坯y 根,按题意得不等式

,画出直线: 5.242.06.0≤+y x l 5.242.06.0=+y x 的图象,如图(4)。

因为要截得的两种毛坯数的和必须为正整数。

所以,的解为坐标的点一定 5.242.06.0≤+y x 是第一象限内可行域的网格的交点。

如果直线l 料全部被利用,此方案就是最佳方案。从图上看直线不能过网格交点。在这种情况下,为了l 制定最佳方案应该找靠近直线的网格交点。当然不能在直线的右上方的半平面内找网格交

l l

点,右上方的半平面任何网格交点坐标都使。这时两种零件毛坯长度和超过5.242.06.0>+y x 原钢材的长度,这是不合理的,所以问题的最优解不能在这个区域找。

这样,下料的范围只能在表示的可行域内,在直线的左下方半平面内5.242.06.0<+y x l 找最靠近直线的网格交点,得点,就是所求的最优解。材料利用率为

)3,2(M 3,2==y x 。

004.985

.23

42.026.0=?+?解法二(列举法):

方案 所截 1

2 3 4 5 毛坯

根数

60cm 4

3

2

1

42cm 0 1 3 4 5 废料(cm ) 10 28 4 22 40 显然,方案3废料最少。 3.生产安排问题

生产安排问题是企业生产中常遇到的问题,用若干种原料生产某几种产品,原料供应有一定的限制,要求制定一个产品生产计划,使其在给定的资源限制条件下能得到最大收益。如前面的例1-2就是生产安排问题,我们不再举例。

本文着重研究线性规划的一些简单的应用及其求解方法。图解法是我们解决一些二维线性问题的最基本的方法,应该必须掌握,对于三维或三维以上的可利用单纯形法求解,单纯形法可以用来求一些比较复杂的线性规划的问题,有兴趣的同学可参阅《运筹学》。通过本文的介绍,要学会解决简单的应用问题,拓展解题思路,培养解决实际问题的能力。

参考文献:

[1] 袁小明.数学思想史导论[M].广西教育出版社,1991.

[2] 王林全, 林国泰.中学数学思想与方法[M].济南大学出版社,2000.

[3] 韦莉, 张兵. 2009年高考创新题的欣赏与品味[J]. 数学教学研究,2009,28(11):42-45.

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题 [ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2. 了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一线性规划中的基本概念 知识点二线性规划问题 1.目标函数的最值 线性目标函数 z=ax+by (b≠0)对应的斜截式直线方程是 y=-a x+z,在 y 轴上的 截距是z, b b b 当 z 变化时,方程表示一组互相平行的直线. 当 b>0,截距最大时, z 取得最大值,截距最小时, z 取得最小值; 当 b<0,截距最大时, z 取得最小值,截距最小时, z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点 (或边界 )便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.

知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C 三种 材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一求线性目标函数的最值 y≤2, 例 1 已知变量 x,y 满足约束条件 x+y≥1,则 z=3x+y 的最大值为 ( ) x-y≤1, A . 12 B .11 C .3 D .- 1 答案 B 解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点 的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z 经 y=2,x= 3,

线性规划案例

附录2 线性规划案例 Appendix 2 Projects of Linear Programming 案例1 食油生产问题(1) 食油厂精炼两种类型的原料油——硬质油和软质油,并将精制油混合得到一种食油产品。硬质原料油来自两个产地:产地1和产地2,而软质原料油来自另外三个产地:产地3,产地4和产地5。据预测,这5种原料油的价格从一至六月分别为: 产品油售价为200元/吨。 硬质油和软质油需要由不同的生产线来精炼。硬质油生产线的每月最大处理能力为200吨,软质油生产线最大处理能力为250吨/月。五种原料油都备有贮罐,每个贮罐的容量均为1000吨,每吨原料油每月的存贮费用为5元。而各种精制油以及产品无油罐可存贮。精炼的加工费用可略去不计。产品的销售没有任何问题。 产品食油的硬度有一定的技术要求,它取决于各种原料油的硬度以及混合比例。产品食油的硬度与各种成份的硬度以及所占比例成线性关系。根据技术要求,产品食油的硬度必须不小于3.0而不大于6.0。各种原料油的硬度如下表(精制过程不会影响硬度):

假设在一月初,每种原料油都有500吨存贮而要求在六月底仍保持这样的贮备。 问题1:根据表1预测的原料油价格,编制逐月各种原料油采购量、耗用量及库存量计划,使本年内的利润最大。 问题2:考虑原料油价格上涨对利润的影响。据市场预测分析,如果二月份硬质原料油价格比表1中的数字上涨X%,则软质油在二月份的价格将比表1中的数字上涨2X%,相应地,三月份,硬质原料油将上涨2X%,软质原料油将上涨4X%,依此类推至六月份。试分析X从1到20的各情况下,利润将如何变化? 案例2 食油生产问题(2) 在案例1中,附加以下条件,求解新的问题: 1.每一个月所用的原料油不多于三种。 2.如果在某一个月用一种原料油,那么这种油不能少于20吨。 3.如果在一个月中用了硬质油1或硬质油2,则在这个月中就必须用软质油5。案例3 机械产品生产计划问题 机械加工厂生产7种产品(产品1到产品7)。该厂有以下设备:四台磨床、两台立式钻床、三台水平钻床、一台镗床和一台刨床。每种产品的利润(元/件,在这里,利润定义为销售价格与原料成本之差)以及生产单位产品需要的各种设备的工时(小时)如下表。表中的短划表示这种产品不需要相应的设备加工。

第五章运筹学 线性规划在管理中的应用案例

第五章线性规划在管理中的应用 5.1 某企业停止了生产一些已经不再获利的产品,这样就产生了一部分剩余生产力。管理层考虑将这些剩余生产力用于新产品Ⅰ、Ⅱ、Ⅲ的生产。可用的机器设备是限制新产品产量的主要因素,具体数据如下表: 量,使得公司的利润最大化。 1、判别问题的线性规划数学模型类型。 2、描述该问题要作出决策的目标、决策的限制条件以及决策的总绩效测度。 3、建立该问题的线性规划数学模型。 4、用线性规划求解模型进行求解。 5、对求得的结果进行灵敏度分析(分别对最优解、最优值、相差值、松驰/剩余量、对偶价格、目标函数变量系数和常数项的变化范围进行详细分析)。 6、若销售部门表示,新产品Ⅰ、Ⅱ生产多少就能销售多少,而产品Ⅲ最少销售18件,请重新完成本题的1-5。 解: 1、本问题是资源分配型的线性规划数学模型。 2、该问题的决策目标是公司总的利润最大化,总利润为: 0.5x1+ 0.2x2+ 0.25x3 决策的限制条件: 8x1+ 4x2+ 6x3≤500 铣床限制条件 4x1+ 3x2≤350 车床限制条件 3x1+ x3≤150 磨床限制条件 即总绩效测试(目标函数)为: max z= 0.5x1+ 0.2x2+ 0.25x3 3、本问题的线性规划数学模型 max z= 0.5x1+ 0.2x2+ 0.25x3 S.T.8x1+ 4x2+ 6x3≤500 4x1+ 3x2≤350 3x1+ x3≤150 x1≥0、x2≥0、x3≥0 4、用Excel线性规划求解模板求解结果:最优解(50,25,0),最优值:30元。 5、灵敏度分析

目标函数最优值为 : 30 变量最优解相差值 x1 50 0 x2 25 0 x3 0 .083 约束松弛/剩余变量对偶价格 1 0 .05 2 75 0 3 0 .033 目标函数系数范围 : 变量下限当前值上限 x1 .4 .5 无上限 x2 .1 .2 .25 x3 无下限 .25 .333 常数项数范围 : 约束下限当前值上限 1 400 500 600 2 275 350 无上限 3 37.5 150 187.5 (1)最优生产方案: 新产品Ⅰ生产50件、新产品Ⅱ生产25件、新产品Ⅲ不安排。最大利润值为30元。 (2)x3 的相差值是0.083意味着,目前新产品Ⅲ不安排生产,是因为新产品Ⅲ的利润太低,若要使新产品Ⅲ值得生产,需要将当前新产品Ⅲ利润0.25元/件,提高到0.333元/件。 (3)三个约束的松弛/剩余变量0,75,0,表明铣床和磨床的可用工时已经用完,而车床的可用工时还剩余75个工时; 三个对偶价格0.05,0,0.033表明三种机床每增加一个工时可使公司增加的总利润额。 (4)目标函数系数范围 表明新产品Ⅰ的利润在0.4元/件以上,新产品Ⅱ的利润在0.1到0.25之间,新产品Ⅲ的利润在0.333以下,上述的最佳方案不变。 (5)常数项范围 表明铣床的可用条件在400到600工时之间、车铣床的可用条件在275工时以上、磨铣床的可用条件在37.5到187.5工时之间。各自每增加一个工时对总利润的贡献0.05元,0元,0.033元不变。 6、若产品Ⅲ最少销售18件,修改后的的数学模型是: max z= 0.5x1+ 0.2x2+ 0.25x3 S.T.8x1+ 4x2+ 6x3≤500 4x1+ 3x2≤350 3x1+ x3≤150 x3≥18 x1≥0、x2≥0、x3≥0 这是一个混合型的线性规划问题。 代入求解模板得结果如下: 最优解(44,10,18),最优值:28.5元。 灵敏度报告: 目标函数最优值为 : 28.5 变量最优解相差值 x1 44 0 x2 10 0

线性规划的实际应用

线性规划的实际应用 摘 要:线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务. 关键词:研究性学习;线性规划,教学改革 随着当前基础教育的改革的深入,研究性学习成为当前基础教育的一个热点,引起了教育界和社会的广泛关注,也成为当前培养学生能力的一个崭新的课题。我们本着教学过程始于课内,终于课外的原则对线性规划的实际应用进行研究。主要是把实际问题抽象为数学模型,使其在约束条件下,找到最佳方案。也就是说求线性目标函数在线性约束条件下的最大值和最小值问题。 一. 线性规划问题 在实际社会活动中遇到这样的问题:一类是当一项任务确定后,如何统筹 安排,尽量做到最少的资源消耗去完成;另一类是在已有的一定数量的资源条件下,如何安排使用它们,才能使得完成的任务最多。 例如1-1:某工厂需要使用浓度为的硫酸10,而市场上只有浓度为,0080kg 00600 070和的硫酸出售,每千克价格分别为8元,10元,16元,问应购买各种浓度的硫酸各多0090少?才能满足生产需求,且所花费用最小? 设取浓度为,,的硫酸分别为千克,总费用为,则 006000700090321,,x x x Z s.t ?? ?=++=++8 9.07.06.010 321321x x x x x x ) 3,2,1,0(16108321=≥++=j x x x x Z j 例如1-2:某工厂生产甲,乙两种产品,已知生产甲产品需要种原料不超过3千克,但 A 每千克甲产品需要种原料为2千克;生产乙产品需要种原料不超过4.5千克,但每千克C B 乙产品需要种原料为3千克。每千克甲产品的利润为3元,每千克乙产品的利润为4元, C 工厂生产甲,乙两种产品的计划中要求所耗的种原料不超过15千克,甲,乙两种产品各应C 生产多少,能使的总利润最大? 设生产甲,乙两种产品分别为千克,利润总额为元,则 21,x x Z s.t ???????≥≤+≤≤0 ,15325.43212121x x x x x x 2143x x Z +=二. 线性规划问题的模型 1.概念 对于求取一组变量使之既满足线性约束条件,又使具有线 ),,3,2,1(n j x j ???=性目标函数取得最值的一类最优问题称为线性规划问题。

简单的线性规划 习题含答案

线性规划教案 1.若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 2.不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为 () A、4 B、1 C、5 D、无穷大解:如图,作出可行域,△ABC的面 积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选 B 3.满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥ ? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D 四、求线性目标函数中参数的取值范围 4.已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使 z=x+ay(a>0)取得最小值的最优解有无数个,则a的值 为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函 数z=x+ay(a>0)取得最小值的最优解有无数个,则将 l向右上方平移后与直线x+y=5重合,故a=1,选 D 5.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m3,第二种有56m3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产

线性规划案例分析

2.某市柴油机厂年度产品生产计划的优化研究 1)问题的提出 某市柴油机厂是我国生产中小功率柴油机的重点骨干企业之一,主要产品有2105柴油机、 X2105柴油机、X4105柴油机、X4110柴油机、X6105柴油机、X6110柴油机,产品市场占 有率大,覆盖面广,广泛用于农业机械、工程机械、林业机械、船舶、发电机组等。在同行 业中占有一定的优势。但另一方面,也确实存在管理方法陈旧、管理手段落后的实际问题, 尤其是随着经济体制改革的深入,以前在计划经济体制下生存的国营企业越来越不适应市场 经济的要求。为改变这种不利局面,厂领导决定实行科学管理,其中努力提高企业编制产品 生产计划的科学性是一个重要的目标。 2)生产现状及资料分析 柴油机的主要生产过程为原材料经过锻造、铸造或下料,再进行热处理、机加工工序,进入 总装,最后试车、装箱、入成品库。该厂将毛坯生产工艺,即锻造、铸造或下料过程渐渐向 外扩散,形成专业化生产,以达到规模效益,故该厂柴油机生产过程主要可以分三大类:热 处理、机加工、总装。与产品生产有关的数据资料如下: 每种产品的单位产值如下表: 序号产品型号及产品名称单位产值(元) 1 2105柴油机5400 2 X2105柴油机6500 3 X4105柴油机12000 4 X4110柴油机14000 5 X6105柴油机18500 6 X6110柴油机20000 每件产品所需的热处理、机加工、总装工时及全厂能提供的三种总工时如下表:序号产品型号及产品名称热处理(工时) 机加工(工时) 总装(工时) 1 2105柴油机10.58 14.58 17.08 2 X2105柴油机11.0 3 7.05 150 3 X4105柴油机20.11 23.96 29.37 4 X4110柴油机32.26 27.7 33.38 5 X6105柴油机37.68 29.3 6 55.1 6 X6110柴油机40.84 40.43 53.5 全年提供总工时120000 95000 180000 产品原材料主要是生铁、焦碳、废钢、钢材四大类资源,供应科根据历年的统计资 料及当年的原材料市场情况,给出了各种原材料的最大供应量如下表: 原材料名称生铁(吨) 焦碳(吨) 废钢(吨) 钢材(吨) 最大供应量1562 951 530 350 单位产品原材料消耗情况如下表: 序号产品型号及名称生铁(吨) 焦碳(吨) 废钢(吨) 钢材(吨) 1 2105柴油机0.18 0.11 0.06 0.04 2 X2105柴油机0.19 0.12 0.06 0.04 3 X4105柴油机0.35 0.22 0.12 0.08 4 X4110柴油机0.36 0.23 0.13 0.09 5 X6105柴油机0.54 0.33 0.18 0.12

高二数学简单线性规划知识点

高二数学简单线性规划知识点 导读:我根据大家的需要整理了一份关于《高二数学简单线性规划知识点》的内容,具体内容:数学这一学科知识积累的越多,掌握的就会越熟练,下面是我给大家带来的,希望对你有帮助。归纳1.在同一坐标系上作出下列直线:2x+y=0;2x+y=1;2x+y=-... 数学这一学科知识积累的越多,掌握的就会越熟练,下面是我给大家带来的,希望对你有帮助。 归纳 1.在同一坐标系上作出下列直线: 2x+y=0;2x+y=1;2x+y=-3;2x+y=4;2x+y=7xYo简单线性规划(1)-可行域 上的最优解2y 问题1:x 有无最大(小)值? 问题2:y 有无最大(小)值? 问题3:2x+y 有无最大(小)值? 2.作出下列不等式组的所表示的平面区域3二.提出问题 把上面两个问题综合起来: 设z=2x+y,求满足 时,求z的最大值和最小值.4y 直线L越往右平移,t随之增大. 以经过点A(5,2)的直线所对应的t值最大;经过点B(1,1)的直线所对应的t值最小.

可以通过比较可行域边界顶点的目标函数值大小得到。 思考:还可以运用怎样的方法得到目标函数的最大、最小值?5线性规划问题:设z=2x+y,式中变量满足 下列条件: 求z的最大值与最小值。 目标函数 (线性目标函数)线性约束条件 象这样关于x,y一次不等式组的约束条件称为线性约束条件 Z=2x+y称为目标函数,(因这里目标函数为关于x,y的一次式,又称为线性目标函数6线性规划 线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. 可行解:满足线性约束条件的解(x,y)叫可行解; 可行域:由所有可行解组成的集合叫做可行域; 最优解:使目标函数取得最大或最小值的可行解叫线性规划问题的最优解。可行域2x+y=32x+y=12(1,1)(5,2)7 线性目标函数 线性约束条件 线性规划问题 任何一个满足不等式组的(x,y)可行解可行域所有的最优解 目标函数所表示的几何意义——在y轴上的截距或其相反数。8线性规划

线性规划的实际应用举例

线性规划的实际应用举例 即两为了便于同学们掌握线性规划的一般理论和方法,本文拟就简单的线性规划( 的实际应用举例加以说明。个变量的线性规划) 1 物资调运中的线性规划问题 万个40万个和30万个,由于抗洪抢险的需要,现需调运1 A,B两仓库各有编织袋50例/元万个、180/万个到乙地。已知从A仓库调运到甲、乙两地的运费分别为120元到甲地,20元/万个。问如何调运,能150/万个、万个;从B仓库调运到甲、乙两地的运费分别为100元? ?总运费的最小值是多少使总运费最小仓库调Bz元。那么需从x万个到甲地,y万个到乙地,总运费记为解:设从A仓库调运40-x万个到甲 地,调运运万个到乙地。20-y 从而有 。z=120x+180y+100(40-x)+150·(20-y)=20x+30y+7000 1)(图,即可行域。作出以上不等式组所表示的平面区域 z'=z-7000=20x+30y. 令 :20x+30y=0,作直线l 且与原点距离最小,0),,l的位置时,直线经过可行域上的点M(30l把直线向右上方平移至l y=0时,即x=30,亦取得最小值,取得最小值,从而z=z'+7000=20x+30y+7000z'=20x+30y 元)。30+30×z=20× 0+7000=7600(min 万个到乙地,可使总万个到甲地,20B30万个到甲地,从仓库调运10A答:从仓库调运元。运费最小,且总运费的最小值为7600 2 产品安排中的线性规划问题 吨,麦麸0.4吨需耗玉米某饲料厂生产甲、乙两种品牌的饲料,已知生产甲种饲料2例1O.4

吨,其余添加剂0.2. 吨甲种1吨,其余添加剂0.2吨。每吨;生产乙种饲料1吨需耗玉米0.5吨,麦麸0.3元。可供饲料厂生产的玉米供应500元,每1吨乙种饲料的利润是饲料的利润是400吨。问甲、乙300吨,麦麸供应量不超过500吨,添加剂供应量不超过量不超过600 ? ?最大利润是多少两种饲料应各生产多少吨(取整数),能使利润总额达到最大 1。分析:将已知数据列成下表 2表1例表 元,那么吨、y吨,利润总额为z解:设生产甲、乙两种饲料分别为x z=400x+500y。 即可行域。(图2)作出以上不等式组所表示的平面区域 平行,所以线段l4x+5y=6000与。并把400x+500y=0l向右上方平移,由于l:作直线l:1。,N(0,1200)M(250MN上所有坐标都是整数的点(整点)都是最优解。易求得,1000) ,y=1000时,1000)取整点M(250,,即x=250 。元1000=600000()=60(万元)=400×z250+500×max 吨,能使利润总额达到最大。最大利润为1000可安排生产甲种饲料250吨,乙种饲料答:万元。60 使我们认识到最优解的个数还例2课本题中出现的线性规划问题大都有唯一的最优解。注:有其他可能,这里不再深入探究。

简单的线性规划练习-附答案详解

简单的线性规划练习 附答案详解 一、选择题 1.在平面直角坐标系中,若点(-2,t )在直线x -2y +4=0的上方,则t 的取值范围是( ) A .(-∞,1) B .(1,+∞) C .(-1,+∞) D .(0,1) 2.若2m +2n <4,则点(m ,n )必在( ) A .直线x +y -2=0的左下方 B .直线x +y -2=0的右上方 C .直线x +2y -2=0的右上方 D .直线x +2y -2=0的左下方 3.不等式组???? ? x ≥0x +3y ≥4 3x +y ≤4 所表示的平面区域的面积等于( ) A.32 B.23 C.43 D.3 4 4.不等式组???? ? x +y ≥22x -y ≤4 x -y ≥0所围成的平面区域的面积为( )A .3 2 B .6 2 C .6 D .3 5.设变量x ,y 满足约束条件???? ? y ≤x x +y ≥2 y ≥3x -6,则目标函数z =2x +y 的最小值为( )A .2 B .3 C .5 D .7 6.已知A (2,4),B (-1,2),C (1,0),点P (x ,y )在△ABC 内部及边界运动,则z =x -y 的最大值及最小值分别是( ) A .-1,-3 B .1,-3 C .3,-1 D .3,1 7.在直角坐标系xOy 中,已知△AOB 的三边所在直线的方程分别为x =0,y =0,2x +3y =30,则△AOB 内部和边上整点(即坐标均为整数的点)的总数为( )A .95 B .91

C .88 D .75 8.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是( )A .12万元 B .20万元 C .25万元 D .27万元 9.已知实数x ,y 满足???? ? x -y +6≥0x +y ≥0 x ≤3,若z =ax +y 的最大值为3a +9,最小值为3a -3,则实数a 的取值范围为( ) A .a ≥1 B .a ≤-1 C .-1≤a ≤1 D .a ≥1或a ≤-1 10.已知变量x ,y 满足约束条件???? ? x +4y -13≥02y -x +1≥0 x +y -4≤0,且有无穷多个点(x ,y )使目标函数 z =x +my 取得最小值,则m =( ) A .-2 B .-1 C .1 D .4 11.当点M (x ,y )在如图所示的三角形ABC 区域内(含边界)运动时,目标函数z =kx +y 取得最大值的一个最优解为(1,2),则实数k 的取值范围是( ) A .(-∞,-1]∪[1,+∞) B .[-1,1] C .(-∞,-1)∪(1,+∞) D .(-1,1) 12.已知x 、y 满足不等式组???? ? y ≥x x +y ≤2 x ≥a ,且z =2x +y 的最大值是最小值的3倍,则a =( )

线性规划应用案例

线性规划应用案例

市场营销应用 案例一:媒体选择 在媒体选择中应用线性规划的目的在于帮助市场营销经理将固定的广告预算分配到各种广告媒体上,可能的媒体包括报纸、杂志、电台、电视和直接邮件。在这些媒体中应用线性规划,目的是要使宣传范围、频率和质量最大化。对于应用中的约束条件通常源于对公司政策、合同要求及媒体的可用性。在下面的应用中,我们将介绍如何应用线性规划这一工具来建立模型进而解决媒体选择问题。 REL发展公司正在私人湖边开发一个环湖社区。湖边地带和住宅的主要市场是距离开发区100英里以内的所有中上收入的家庭。REL公司已经聘请BP&J 来设计宣传活动。 考虑到可能的广告媒体和要覆盖的市场,BP&J建议将第一个月的广告局限于5种媒体。在第一个月末,BP&J将依据本月的结果再次评估它的广告策略。BP&J已经收集到了关于受众数量、广告单价、各种媒体一定周期内可用的最大次数以及评定5种媒体各自宣传质量的数据。质量评定是通过宣传质量单位来衡量的。宣传质量单位是一种用于衡量在各个媒体中一次广告的相对价值的标准,它建立于BP&J在广告业中的经验,将众多因素考虑在内,如受众层次(年龄、收入和受众受教育的程度)、呈现的形象和广告的质量。表4-1列出了收集到的这些信息。 表4-1 REL发展公司可选的广告媒体

REL发展公司提供给BP&J第一个月广告活动的预算是30000美元。而且,REL公司对BP&J如何分配这些资金设置了如下限制:至少要使用10次电视广告,达到的受众至少要有50000人,并且电视广告的费用不得超过18000美元。应当推荐何种广告媒体选择计划呢? 案例二:市场调查 公司开展市场营销调查以了解消费者个性特点、态度以及偏好。专门提供此种信息的市场营销调查公司,经常为客户机构开展实际调查。市场营销调查公司提供的典型服务包括涉及计划、开展市场调查、分析收集数据、提供总结报告和对客户提出意见。在调查设计阶段,应当对调查对象的数量和类型设定目标或限额。市场营销调查公司的目标是以最小的成本满足客户要求。 市场调查公司(MSI)专门评定消费者对新的产品、服务和广告活动的反映。一个客户公司要求MSI帮助确定消费者对一种近期推出的家具产品的反应。在与客户会面的过程中,MSI统一开展个人入户调查,以从有儿童的家庭和无儿童的家庭获得回答。而且MSI还同意同时开展日间和晚间调查。尤其是,客户的合同要求依据以下限制条款进行1000个访问: ●至少访问400个有儿童的家庭; ●至少访问400个无儿童的家庭; ●晚间访问的家庭数量必须不少于日间访问的家庭数量; ●至少40%有儿童的家庭必须在晚间访问; ●至少60%无儿童的家庭必须在晚间访问。 因为访问有儿童的家庭需要额外的访问时间,而且晚间访问者要比日间访问者获得更多收入,所以成本因访问的类型不同而不同。基于以往的调查研究,预计的访问费用如下表所示: 以最小总访问成本满足合同要求的家庭——时间访问计划是什么样的

线性规划知识复习、题型总结

线性规划 基础知识: 一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=0 2. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<0 3. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>0 2.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0 二.二元一次不等式表示平面区域: ①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不. 包括边界; ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界; 注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域 原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断 Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。 方法二:利用规律: 1.Ax+By+C>0,当B>0时表示直线Ax+By+C=0上方(左上或右上), 当B<0时表示直线Ax+By+C=0下方(左下或右下); 2.Ax+By+C<0,当B>0时表示直线Ax+By+C=0下方(左下或右下) 当B<0时表示直线Ax+By+C=0上方(左上或右上)。 四、线性规划的有关概念: ①线性约束条件: ②线性目标函数: ③线性规划问题: ④可行解、可行域和最优解: 典型例题一--------画区域 1. 用不等式表示以)4,1(A ,)0,3(-B ,)2,2(--C 为顶点的三角形内部的平面区域. 分析:首先要将三点中的任意两点所确定的直线方程写出,然后结合图形考虑三角形内部区域应怎样表示。 解:直线AB 的斜率为:1) 3(104=---=AB k ,其方程为3+=x y . 可求得直线BC 的方程为62--=x y .直线AC 的方程为22+=x y . ABC ?的内部在不等式03>+-y x 所表示平面区域内,同时在不等式062>++y x 所表示的平面区域内,同时又在不等式022<+-y x 所表示的平面区域内(如图). 所以已知三角形内部的平面区域可由不等式组?? ???<+->++>+-022, 062,03y x y x y x 表示. 说明:用不等式组可以用来平面内的一定区域,注意三角形区域内部不包括边界线. 2 画出332≤<-y x 表示的区域,并求所有的正整数解),(y x . 解:原不等式等价于???≤->.3,32y x y 而求正整数解则意味着x ,y 还有限制条件,即求??? ??? ?≤->∈∈>>.3, 32, ,,0,0y x y z y z x y x .

线性规划模型在生活中的实际应用

线性规划模型在生活中的实际应用 一、线性规划的基本概念 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变量、约束条件、目标函数是线性规划的三要素. 二、线性规划模型在实际问题中的应用 (1)线性规划在企业管理中的应用范围 线性规划在企业管理中的应用广泛,主要有以下八种形式: 1.产品生产计划:合理利用人力、物力、财力等,是获利最大. 2.劳动力安排:用最少的劳动力来满足工作的需要. 3.运输问题:如何制定运输方案,使总运费最少. 4.合理利用线材问题:如何下料,使用料最少. 5.配料问题:在原料供应的限制下如何获得最大利润. 6.投资问题:从投资项目中选取方案,是投资回报最大. 7.库存问题:在市场需求和生产实际之间,如何控制库存量从而获得更高利益. 8.最有经济计划问题:在投资和生产计划中如何是风险最小 . (2)如何实现线性规划在企业管理中的应用 在线性规划应用前要建立经济与金融体系的评价标准及企业的计量体系,摸清企业的资

源.首先通过建网、建库、查询、数据采集、文件转换等,把整个系统的各有关部分的特征进行量化,建立数学模型,即把组成系统的有关因素与系统目标的关系,用数学关系和逻辑关系描述出来,然后白较好的数学模型编制成计算机语言,输入数据,进行计算,不同参数获取的不同结果与实际进行分析对比,进行定量,定性分析,最终作出决策.

简单的线性规划问题附答案

简单的线性规划问题 [学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一 线性规划中的基本概念 1.目标函数的最值 线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是z b , 当z 变化时,方程表示一组互相平行的直线. 当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤 在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,

可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域. (2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案. 知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题 例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题 例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题 例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小? 2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.

线性规划的应用(简介和案例)

线性规划的应用 线性规划是运筹学中一个重要分支,它是研究线性约束条件下线性目标函数的极值问题的数学理论和方法。广泛应用于军事作战、经济分析、经营管理和工程技术等方面。如:经济管理、交通运输、工农业生为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。 线性规划作为运筹学的一个研究较早、发展较快、应用广泛、方法较成熟的重要分支,它在日常生活中的典型应用主要有:1合理利用线材问题:如何下料使用材最少 2配料问题:在原料供应量的限制下如何获取最大利润 3投资问题:从投资项目中选取方案,使投资回报最大 4产品生产计划:合理利用人力、物力、财力等,使获利最大 5劳动力安排:用最少的劳动力来满足工作的需要 6运输问题:如何制定调动方案,使总运费最小 其实,也就是说,线性规划在运筹学中的研究对象主要是在有一定的人力、财力、资源条件下,如何合理安排使用,效益最高和在某项任务确定后,如何安排人、财、物,使之最省。 例如: 某公司现有三条生产线来生产两种新产品,其主要数据如表1.1所示。请问如何生产可以让公司每周利润最大?

表1 产品组合问题的数据表 此问题是在生产线可利用时间受到限制的情形下寻求每周利润最大化的产品组合问题。 在建立产品组合模型的过程中,以下问题需要得到回答: (1)要做出什么决策? (2)做出的决策会有哪些条件限制? (3)这些决策的全部评价标准是什么? (1)变量的确定 要做出的决策是两种新产品的生产水平,记x1为每周生产产品甲的产量,x2为每周生产产品乙的产量。一般情况下,在实际问题中常常称为变量(决策变量)。 (2)约束条件 求目标函数极值时的某些限制称为约束条件。如两种产品在相应生产线上每周生产时间不能超过每条生产线的可得时间,对于生产线一,有x1≤4,类似地,其它生产线也有不等式约束。 (3)目标函数 对这些决策的评价标准是这两种产品的总利润,即目标函数是要求每周的生产利润(可记为z,以百元为计量单位)为最大 这样,可以把产品组合问题抽象地归结为一个数学模型: max z = 3x1+5x2 s.t. x1 ≤4 2x2 ≤12 3x1+ 2x2 ≤18 x1≥0,x2 ≥0

《简单的线性规划》知识点及题型归总

二元一次不等式(组)与简单的线性规划问题 一、考点、热点回顾 1.二元一次不等式表示的平面区域 (1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线,以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线. (2)对于直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可断定Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域. 2.线性规划相关概念 名称意义 约束条件由变量x,y组成的一次不等式 线性约束条件由x,y的一次不等式(或方程)组成的不等式组 目标函数欲求最大值或最小值的函数 线性目标函数关于x,y的一次解析式 可行解满足线性约束条件的解 可行域所有可行解组成的集合 最优解使目标函数取得最大值或最小值的可行解 线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题 3.重要结论 画二元一次不等式表示的平面区域的直线定界,特殊点定域: (1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线. (2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证. 知识拓展 1.利用“同号上,异号下”判断二元一次不等式表示的平面区域 对于Ax+By+C>0或Ax+By+C<0,则有 (1)当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方; (2)当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方. 2.最优解和可行解的关系 最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个. 二、典型例题 例1、(1)分别画出不等式x+2y-4>0和y≥x+3所表示的平面区域;

线性规划的实际应用

密封线 线性规划的实际应用 摘要线性规划模型是科学与工程领域广泛应用的数学模型。本文应用线性规划模型,以 某水库输水管的选择为研究对象,以实现输水管的选择既能保证供水,又能使造价最低为 目标,根据水库的特点和实际运行情况,分析了其输水管选择过程中线性规划模型的建立 方法,并分别通过单纯形法和MATLAB软件进行求解。 关键词线性规划模型单纯形法 MATLAB 一、专著背景简介 《最优化方法》介绍最优化模型的理论与计算方法,其中理论包括对偶理论、非线性规划的最优性理论、非线性半定规划的最优性理论、非线性二阶锥优化的最优性理论;计算方法包括无约束优化的线搜索方法、线性规划的单纯形方法和内点方法、非线性规划的序列二次规划方法、非线性规划的增广Lagrange方法、非线性半定规划的增广Lagrange方法、非线性二阶锥优化的增广Lagrange方法以及整数规划的Lagrange松弛方法。《最优化方法》注重知识的准确性、系统性和算法论述的完整性,是学习最优化方法的一本入门书。 最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。本章将介绍最优化方法的研究对象、特点,以及最优化方法模型的建立和模型的分析、求解、应用。主要是线性规划问题的模型、求解(线性规划问题的单纯形解法)及其应用-运输问题;以及动态规划的模型、求解、应用-资源分配问题。 二、专著的主要结构内容 《最优化方法》是一本着重实际应用又有一定理论深度的最优化方法教材,内容包括线

《线性规划与基本不等式》的案例分析

高考考点:《不等关系、线性规划与基本不等式》的案例分析 一、高考要求 1.不等关系 了解现实世界和日常生活中的不等关系,了解不等式组的实际背景。 2.一元二次不等式 (1)会从实际背景中抽象出一元二次不等式模型。 (2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系。 (3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。 3.二元一次不等式组与简单的线性规划问题 (1)会从实际情境中抽象出二元二次不等式组。 (2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。 (3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。 4.基本不等式: (1)了解基本不等式的证明过程。 (2)会用基本不等式解决简单的最大(小)值问题。 二、规律分析

【规律总结】 全面分析这六年来的试题,可以看出,山东卷全面落实考纲对这一部分的规定,考查不等式的解法、线性规划和基本不等式的应用,每年的考查形式稍有变化,但总体上考点不变。具体来说,有这样的规律: (1)文科几乎每年涉及一元二次不等式的解法。理科涉及绝对值不等式的解法较多,一般与集合、函数的定义域求解结合较多,以选择题为主。 (2)几乎每年都考查线性规划问题,并且基本上都是以填空题和选择题的形式出现,只有2010年在填空题中考查了基本不等式,分析发现2010年以前山东高考是填空题的形式进行考查,2011年之后,则改为以选择题的形式考查。 (2)从2011年开始,山东高考考查线性规划的比重和难度在逐渐增加,2011年只是考查求线性规划的最大值问题,2012年的高考既考查求最大值又增加了求最小值,这两年都设计一个小题,2013则是设计了两个小题,并且与解析几何相结合,难度教以往有所增加。2014年将线性规划问题文科放在了第10,理科在9,难度再次增大。

相关文档
相关文档 最新文档