文档库 最新最全的文档下载
当前位置:文档库 › PCR

PCR

PCR
PCR

做Real Time PCR时,用于SYBR Green I/Eva Green 法时的一对引物与一般PCR的引物,在引物设计上所要求的参数是不同的。引物设计的要求:

① Tm=55-65℃

② GC=30-80%

③ PCR扩增产物长度:引物的产物大小不要太大,一般在80-300bp之间都可。

④引物的退火温度要高,一般要在60℃以上。

要特别注意避免引物二聚体和非特异性扩增的存在。而且引物设计时应该考虑到引物要有不受基因组DNA污染影响的能力,即引物应该跨外显子,最好是引物能跨外显子的接头区,这样可以更有效的不受基因组DNA污染的影响。

由于RNA纯化后得率不同、RNA反转录为cDNA的效率不同等客观因素,用于定量分析的初始样品浓度不同,因此,在进行基因表达调控研究中都会用一些看家基因来标准化,以校正因样品初始浓度不同而造成的差异。常用的看家基因有beta-actin,GAPDH,18SrRNA等。因此,在做基因表达调控分析时至少要做两个基因,目的基因和一个看家基因。

一般而言,荧光扩增曲线可以分成三个阶段:荧光背景信

号阶段,荧光信号指数扩增阶段和平台期,其形状是一条平滑的S型曲线。

如果在荧光背景信号阶段出现很多拐点,可能的原因是体系未混匀或者存在固态杂质;

如果向下探头后又很快抬头然后又向下探头,可能原因是体系中模板量太高,建议模板稀释后再用。

如果引物二聚体存在则阴性对照会出现抬头现象,这在Real-Time PCR中很难避免;

若是阴性对照的溶解曲线出现和样品中同样的峰,说明体系配置中存在污染,则实验结果不可用。

在溶解曲线中出现双峰有三种可能:

①引物峰,引物峰通常是两峰中的前面一个,消除的办法是降低体系中的引物量或重新设计引物;

②在做基因表达差异时容易出现DNA被扩增峰(只在引物跨内含子时存在),出现原因是提取RNA时存在DNA污染,可以通过电泳验证,这时要重新消化RNA样品中的DNA;

③扩增非特异,这时要重新摸扩增条件或重新设计并验

证引物。

1. Real-time QPCR常见参数

基线(baseline)

通常是3-15个循环的荧光信号

同一次反应中针对不同的基因需单独设置基线

阈值(threshold)

自动设置是3-15个循环的荧光信号的标准偏差的10倍

手动设置:置于指数扩增期,刚好可以清楚地看到荧光信号明显增强。

同一次反应中针对不同的基因可单独设置阈值,但对于同一个基因扩增一定要用同一个阈值。

Ct值:与起始浓度的对数成线性关系。

分析定量时候一般取Ct:15-35。太大或者太小都会导致定量的不准确。

Rn(Normalized reporter)是荧光报告基团的荧光发射强

度与参比染料的荧光发射强度的比值。

△Rn:△Rn是Rn扣除基线后得到的标准化结果(△Rn=Rn-基线)。

2.影响Ct值的关键因素

模板浓度

模板浓度是决定Ct的最主要因素。控制在一个合适范围内,使Ct在15-35之间。

反应液成分的影响

任何分子的荧光发射都受环境因素影响----比如溶液的pH值和盐浓度。

pcr反应的效率

PCR反应的效率也会影响Ct值。在pcr扩增效率低的条件下进行连续梯度稀释扩增,与PCR扩增效率高的条件下相比,可能会所产生斜率不同的标准曲线。PCR效率取决于实验、反应混合液性能和样品质量。一般说来,反应效率在90-110%之间都是可以接受的。

3. 如何评估实时定量PCR反应的效果

PCR扩增效率:为了正确地评估PCR扩增效率,至少需要做3次平行重复,至少做5个数量级倍数(5logs)连续梯度稀释模板浓度。

How to design primer

简并引物设计的方法(包括实际操作步骤)

简并引物是指用来编码一段短肽序列的不同碱基序列的混合物。主要用来同源克隆未知的基因,或用来分析某一种基因多态性的一种方法。

简并引物设计的常见程序如下:

1. 利用NCBI搜索不同物种中同一目的基因的蛋白或cDNA编码的氨基酸序列。

因为密码子的关系,不同的核酸序列可能表达的氨基酸序列是相同的,所以氨基酸序列才是真正保守的。首先利用NCBI的Entrez检索系统,查找到一条相关序列即可。随后利用这一序列使用BLASTp(通过蛋白查蛋白),在整个Nr数据库中中查找与之相似的氨基酸序列。

2. 对所找到的序列进行多序列比对。

将搜索到的同一基因的不同氨基酸序列进行多序列比对,最好采用局部比对程序如BLOCK,也可选工具Clustal W,也可在线分析https://www.wendangku.net/doc/0c15591024.html,/clustalw.

其结果如下图所示,所有序列的共有部分将会显示出来。“*”表示保守,“:”表示次保守。

3. 确定合适的保守区域。

设计简并引物至少需要上下游各有一个保守区域,且两个保守区域相距50~400个氨基酸为宜,使得pcr产物在

150~1200bp之间,最重要的是每一个保守区域至少有6个氨基酸,因为每条引物至少18bp左右。

若比对结果保守性不是很强很可能找不到6个氨基酸的保守区域,这时可以根据物种的亲缘关系,选择亲缘相近的物种进行二次比对,若保守性仍达不到要求,则需进行三次比对。总之,究竟要选多少序列来比对,要根据前一次比对的结果反复调整。最终目的就是至少有两个6个氨基酸且两者间距离合适的保守区域。

4. 利用软件设计引物。

当得到保守区域后,就可以利用专业的软件来设计引物了,如利用pp5进行简并引物的设计。将参与多序列比对的序列中的任一条导入pp5中,再将其翻译成核苷酸序列,有密码子简并性,其结果是有n多条彼此只相差一个核苷酸的序列群,该群可用一条有简并性的核苷酸链来表示(其中

R=A/G,Y=C/T,M=A/C,K=G/T,S=C/G,W=A/T,H=A/C/T,

B=C/G/T,V=A/C/G, D=A/G /T,N=A/C/G/T),该具有简并性的核苷酸链必然包含上一步中找到的氨基酸保守区域的对应部分,在pp5中修改参数,令其在两个距离合适的保守的nt区域内寻找引物对,总之要保证上下游引物都落在该简并链的保守区域内,结果会有数对,分数越高越好。

最好使用专门的简并引物设计方法如

:CODEHOP

bioinformatics.weizmann.ac.il/blocks/codehop.html GeneFisher2

bibiserv.techfak.uni-bielefeld.de/genefisher2/ 在这里我们特别值得说明的是CODEHOP方法,该方法要求的保守区较短,而且能有效的降低引物的兼并度,是一种非常有效的方法。该方法主要是通过将简并区放在3′末端,并在5′端设计一个一致性的区域来降低兼并度。

5. 对引物的修饰

若得到的引物为:5-NAGSGNGCDTTANCABK-3,则其简并度=4×2×4×3×4×3×2=2304,很明显该条引物的简并度太高不利于pcr。我们可以通过用次黄嘌呤代替N(因为次黄嘌呤能很好的和4种碱基配对)和根据物种密码子偏好这两种方法来降低简并度。

注意:该方法设计出来简并引物对,适用于用于比对的氨基酸序列所属物种及与这些物种分类地位相同的其他物种。

引物中符号说明:

A代表A

C 代表C

G代表 G

T 代表T

M 代表A or C

R 代表A or G

W代表 A or T

S代表 C or G

Y代表 C or T

K代表 G or T

V 代表A or C or G

H 代表A or C or T

D代表 A or G or T

B 代表

C or G or T

N代表 G or A or T or C

由于引物的简并性的问题,所设计的引物通常简并性过高,导致有效引物利用率降低,PCR产物非特异性增高。

虽然减少简并引物长度可以相对减少简并性,但随之而来的问题是引物的Tm值过低,有时不得不设计第二对引物对PCR产物进行二次扩增,即巢式PCR,或者需要与Touchdown PCR相结合使用。

与通常设计的简并引物不同,利用CodeHop方法设计简并引物。引物由两部分组成:引物3’端为根据4-5个保守氨基酸设计的核心简并区(3’core region),长度只有11-15个碱基;引物5’端为非简并性夹板结构(5’consensus clamp region)。5’端夹板结构是根据密码子偏向性设计的一致性序列,它最大程度的预测了保守性氨基酸的编码序列,其长度取决于所需的退火温度。这样设计的优点在于既减少了引物的简并度,又提高了引物的退火温度,保障了PCR产物的特异性。标准简并PCR在聚合反应的晚期,随着产物的增多,引物的非特异性结合的现象增多;而CodeHop PCR的晚期,这种现象大为减少。实验结果表明,按这种方法设计的简并引物非特异性扩增减少,是一种快捷方便的简并引物设计方案。

PCR反应中基本成分(引物、dNTP、模板等)的作用

日期:2012-05-10 来源:互联网

【摘要】:PCR(聚合酶链式反应)反应包括三个基本步骤,即:模板DNA的变性、模板DNA与引物的退火复性、引物的延伸。PCR反应体系包括5种基本成分,依次为:引物、DNA 聚合酶、dNTP、模板DNA、Mg2+。

PCR(聚合酶链式反应)反应包括三个基本步骤,即:模板DNA的变性、模板DNA与引物的退火复性、引物的延伸。PCR反应体系包括5种基本成分,依次为:引物、DNA聚合酶、dNTP、模板DNA、Mg2+。

1、引物

引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。

设计引物应遵循以下原则:

①引物长度:15-30bp,常用为20bp左右。

②引物扩增跨度:以200-500bp为宜,特定条件下可扩增长至10kb的片段。

③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。

④避免引物内部出现二级结构,避免两条引物间互补,特别是3’端的互补,否则会形成引物二聚体,产生非特异的扩增条带。

⑤引物3’端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。

⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。

⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。引物量:每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会。

2、酶

目前有两种Taq DNA聚合酶供应,一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶。催化一典型的PCR反应约需酶量2.5U(指总反应体积为100ul 时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少。

3、dNTP

dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP 粉呈颗粒状,如保存不当易变性失去生物学活性。dNTP溶液呈酸性,使用时应配成高浓度后,以1M NaOH或1M Tris。HCL的缓冲液将其PH调节到7.0~7.5,小量分装,-20℃冰冻保存。多次冻融会使dNTP降解。在PCR反应中,dNTP 应为50~200umol/L,尤其是注意4种dNTP的浓度要相等( 等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配。浓度过低又会降低PCR产物的产量。dNTP能与Mg2+结合,使游离的Mg2+浓度降低。

dNTP储存液:dNTP溶于pH为7.0的NaOH贮存液中,最初的贮存液可稀释到10mol/L,分装后存放在-20℃冰箱中。dNTP使用浓度在20~200 μmol/L之间。4种dNTP?必须等浓度配合以减少错配误差。

dNTP使用浓度:在PCR反应中,使用低dNTP浓度,?可减少非靶位置启动和延伸时的核苷酸错误掺入。一般可根据靶序列的长度和组成来决定最低dNTP浓度。例如在100μl?的反应体系中,4种dNTP的浓度为20μmol/L,可基本满足合成2.6μg DNA或?10pmol/L?的400bp序列。使用低dNTP 浓度(每种dNTP浓度为2μmol/L),能够高度灵敏地(1/107)?扩增ras基因点突变的等位基因。

4、模板

模板核酸的量与纯化程度,是PCR成败与否的关键环节

之一,传统的DNA纯化方法通常采用SDS和蛋白酶K来消化处理标本。SDS的主要功能是:溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS 还能与蛋白质结合而沉淀;蛋白酶K能水解消化蛋白质,特别是与DNA结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀核酸。提取的核酸即可作为模板用于PCR反应。一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接用于PCR扩增。RNA模板提取一般采用异硫氰酸胍或蛋白酶K法,要防止RNase降解RNA。

5、Mg2+浓度

Mg2+对PCR扩增的特异性和产量有显著的影响,在一般的PCR反应中,各种dNTP浓度为200umol/L时,Mg2+浓度为1.5~2.0mmol/L为宜。Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq DNA聚合酶的活性,使反应产物减少。

引物是PCR特异性反应的关键,不好的引物严重影响实验的质量,好的引物可以事倍功半;酶的选择一般是看实验的目的,例如克隆长片段,可能就需要高保真的聚合酶;dNTP 浓度和Mg2+浓度高了会影响PCR反应特异性。DNA模板中还有蛋白质也会严总影响PCR质量,因此上述5个基本成

分质量和浓度必须合理。

逆转录PCR的原理及操作注意事项

日期:2012-06-08 来源:互联网

【摘要】:逆转录PCR (RT-PCR)具有较高的灵敏性、操作简单等优点,常用于基因定量分析、生物学检测等,此外常用逆转录PCR克隆目的基因。本文主要讲述了逆转录PCR 的原理、重要参数以及操作注意事项。

逆转录PCR(RT-PCR)的原理

逆转录PCR (RT-PCR)具有较高的灵敏性、操作简单等优点,常用于基因定量分析、生物学检测等,此外常用逆转录PCR克隆目的基因。本文主要讲述了逆转录PCR的原理、重要参数以及操作注意事项。

cDNA的合成是RT-PCR的重要环节。以mRNA为模板,在逆转录酶的催化下,随机引物、oligo(dT)或基因特异性引物的引导下合成互补的DNA(complementary DNA,cDNA),再按照普通PCR的方法用两条引物以cDNA为模板,则可扩增出不含内含子的可编码完整基因的序列。

逆转录PCR重要参数

不同mRNA拷贝成cDNA的效率不同;因此,适合于一种

mRNA拷贝的条件可能对另一种mRNA不适合。一般来说,从事不均一mRMA群体时,所使用的条件是导致cDNA合成的终产量达到最大,下述参数十分重要。

1.逆转录酶有两种不同的逆转录酶可以催化以mRNA为模板,oligo(dT)作为引物,合成与mRNA互补的cDNA链。一种来自纯化的禽成髓细胞瘤病毒(AMV),由两条肽链组成,具有聚合酶活性和很强的RNA酶H活性,它最适温度是42℃,最适pH8.3。在高反应温度时可消除mRNA的二级结构对逆转录的阻碍,然而高水平的RNA酶H的活性既抑制cDNA产生也限制其长度。另外,禽源逆转录酶制剂可被能切割DNA的核酸内切酶污染。另一种来源于鼠白血病病毒(Mo-MLV),是单肽链的,有rna聚合酶活性和相对较弱的RNA酶H活性,最适温度37℃,最适pH7.6,较弱的RNA 酶H活性对获得2-3kb的mRNA的全长cDNA有很大好处。在第一链反应前可用氢氧化甲基汞处理,破坏mRNA的二级结构,这一步对于最适反应温度较低(37)℃的鼠源逆转录酶催化的反应可能更为重要。临合成cDNA第一链之前加入过量的巯基试剂,可以使氢氧化甲基汞从RNA上解离。

2.单价阳离子离子条件基本上影响各种模板的转录效率。用钾比用钠离子可获得较长的转录产物。对于c DNA长度的最适钾离子浓度为140-150mM。

3.二价阳离子对于反转录酶活性来说,二价阳离子是必

需的。低于4mM Mg2 未能观察到活性;产生全长转录产物的最适浓度是6-10mM。

4.脱氧核苷三磷酸使用四种脱氧核苷三磷酸(dNTP)中每一种的高浓度对于有效合成cDNA是特别重要的。如果其中只有一种的浓度下降到10-50微摩尔以下,全长转录物的产量将明显下降。常用的dNTP的浓度为200-250微摩尔。

材料与方法

1 材料

RNA样品

2 仪器、用具

PCR仪、电泳仪等、0.2mlPCR管(1个)、移液器、碎冰

3 试剂

RNase Free dH2O;5×RT Buffer (含25mM Mg2 );dNTP (10mM each);RNase Inhibitor(10U/μl );Oligo (dT)20 (10μmol/L);ReverTra Ace

4 方法

(1) 以总RNA为模板,合成cDNA第一链,体系如下:

(2) 反转录反应条件为:30℃ 10min,42℃ 30min ,99℃5min,4℃ 5min。反应结束后冰

浴5min。

注意事项:

① cDNA第一链合成的反应液冰上配制。

使用ReverTra Ace、RNase Inhibitor 等酶类时,应轻轻混匀,避免起泡;由于酶保存液

中含有50%的甘油,粘度高,分取时应慢慢吸取。

逆转录PCR时,提取RNA是关键,收集RNA沉淀时,离心速度不要低于13000rpm,在离心前的沉淀也尽可能在低温下条件下操作,此外逆转录酶可以选择MMLV逆转录酶,主要是因为这个条件比较容易掌握。

qPCR实验操作流程

日期:2012-04-25 来源:未知

【摘要】:实验前准备,每天早上到实验室后,先把超净工作台的紫外灯打开15-20分钟。②超净台前做实验,需佩戴干净的橡胶手套/一次性薄膜手套,RNA抽提需带口罩。③取EP管/枪头时需用镊子,不可以用使用过的手套直接取用。取完EP管/枪头后,袋子及时封好。④橡胶手套须放入超净台照射紫外,实验操作过程中不得带出超净台,移液器在一天工作结束后调至最大量程,并用75%乙醇清洁移

相关专题

QPCR

Q-PCR实验流程

一、①实验前准备,每天早上到实验室后,先把超净工作台的紫外灯打开15-20分钟。②超净台前做实验,需佩戴干净的橡胶手套/一次性薄膜手套,RNA抽提需带口罩。③取EP管/枪头时需用镊子,不可以用使用过的手套直接取用。取完EP管/枪头后,袋子及时封好。④橡胶手套须放入超净台照射紫外,实验操作过程中不得带出超净台,移液器在一天工作结束后调至最大量程,并用75%乙醇清洁移液器,枪头盒及超净台面。⑤实验进行的过程中或观看实验时,没有带口罩不要在超净台前讲话。

二、总rna抽提

1)细胞培养皿中细胞样品用1*PBS洗两次后,用1ml枪将PBS吸干净,加入1ml Trizol (invitrogen)溶液,吹打混匀,并吸至1.5ml RNase free EP管中使细胞充分裂解,室温静置5min;

组织样品用液氮充分研磨,加入1ml Trizol (Invitro gen)溶液,混匀,室温放置5min使其充分裂解;(管盖与管壁都需标记样品名称)

2)加入200μl氯仿,剧烈振荡混匀30s,使水相和有机相充分接触,室温静置3-5min;(离心时离心管按顺序排放,离心完毕,离心管的顺序也按顺序排好,与第一步的顺序一致)

3) 4℃下,14,000g离心15min,可见分为三层,RNA在上层水相,移至另一个新的RNase free EP管;(用20-200ul

的枪吸取上清,吸上清时,枪头应沿着液面上层吸取上清,枪头不可碰到、吸到中间层)

4)沉淀RNA:加入等体积异丙醇,轻柔地充分混匀(颠倒6-8次)(不应用振荡器混匀),室温静置10min;

5)4℃下,14,000g离心10min,收集RNA沉淀(如离心后仍不见EP管底部有沉淀,应将EP管放置在-80度冰箱过夜,继续在4℃下,14,000g离心10min,收集RNA沉淀),去上清;

6)用75%乙醇洗涤两次(12,000g离心5min)(加入乙醇后只需轻轻颠倒EP管即可,不用振荡器震荡或枪头吸打沉淀),超净台风干;沉淀不能过干或过湿,过干则不易溶解,过湿则乙醇残留。

7)视沉淀量加入适量DEPC水(至少15ul)溶解沉淀。

三、去基因组

使用RNase-free的DNase ?(Promega),按以下体系配置反应液,37℃消化30min,65℃灭活10min。

RNA DNase ?

10 x buffer H2O(RNase free) RNasin 30

20

10

39.5

0.5

μl

μl

μl

μl

μl

总体积100 μl

然后按以下步骤操作:

1) 加入等体积的苯酚/氯仿,上下颠倒混匀,室温放置5min,后14,000rpm,离心15min,取上清。

2) 加入等体积的氯仿,上下颠倒混匀,静置分层后14,000rpm,离心15min,取上清。

3)加入等体积异丙醇,轻柔地充分混匀(颠倒6-8次),-20℃静置15min;

4)4℃下,14,000g离心15min,收集RNA沉淀,去上清;

5)用75%乙醇洗涤两次(12,000g离心5min),超净台风干;

6)加入适量DEPC水(至少15ul)溶解沉淀。

四、总RNA纯度和完整性检测

1)纯度检测:取1μl RNA样品50倍稀释,在核酸蛋白检测仪上测定OD值,OD260/OD280的比值大于1.8,说明制备的RNA较纯,无蛋白质污染。

2)总RNA完整性检测:取RNA样品1μl,1%琼脂糖凝胶电泳80V×20min,EB染色10min,用凝胶成像系统观察并拍照,总RNA的5s rRNA,18s rRNA和28s rRNA条带,三条条带完整的话即可证明总RNA抽提比较完整。

五、逆转录

1. mRNA:

1) 在RNase free的PCR管中配置下列溶液.

PCR相关知识

1.半定量RT-PCR(实验室所做的普通PCR)与荧光定量Real-time PCR 最大的区别就在于semi-PCR需要跑电泳根据条带亮度的强弱来 判断模板拷贝数的高低或者是表达量的高低而Real-Time PCR则无需电泳可以实时监测整个PCR的全程并且由给出的Ct值及Standard Curve来判断gene拷贝数的高低。 所以由上可见semi-PCR不如Real-Time PCR精确。 至于RT 应该指Reverse Transcription。 为了便于区分我们更偏好使用qPCR来特指Real-Time PCR 但要注意REALTIME-PCR的定性问题,有时候你扩增出来的很有可能只是引物二聚体。所以要利用MELTING CURVE,如果是第一次做一个目的基因的REALTIME-PCR,还是要在2%的琼脂糖凝胶中进行电泳,以确定与你要扩增的目的基因大小一致。 RT-pcr 只能通过模板pcr后扩增的结果间接的反应初始模板的量。而realtime-pcr的结果直接可以看到初始模板的量。所以,realitime-pcr更精确些。 半定量反转录-聚合酶链反应(semi-quantitative reverse transcription and polymerase Chain reaction ,SqRT-PCR)是近年来常用的一种简捷、特异的定量RNA测定方法,通过mRNA反转录成cDNA,再进行PCR扩增,并测定PCR产物的数量,可以

推测样品中特异mRNA的相对数量。以半定量RT-PCR为基础建立起来的mRNA含量测定技术,较含内标化的RT-PCR定量测定的mRNA的方法更为简便可行。 这种方法不另设‘内标准',排除了俩对不同引物之间的相互抑制和灵敏读差异,而且具有明显的剂量-效益关系和良好的重复性。 步骤: 1.抽提RNA, 2.反转录获得cDNA, 3.以cDNA为模板做PCR 注意: 步骤1,RNA抽提质量一定要好,注意污染。内参的选择,常用的有βactin和GAPDH俩中。步骤3,半定量RT-PCR应该再两管中进行,既内参和目的基因各一管,这样便于控制,做图的时候可以放在一各泳道里跑!指数期和平台期一定要摸清楚! 2.在RT时,引物设计有3种方法即a:Random 9mers;b:Oligo dT-Adaptor Primer(实验室用这种方法);和c:特异的下游引物。如果用a和b方法,是扩增的所有的cDNA(理论上),还要用此产物做PCR 的模板继续扩增。 如果用c方法,那么要去哪里查它的序列呢?https://www.wendangku.net/doc/0c15591024.html,

普通PCR设计引物应遵循以下原则

普通P C R设计引物应 遵循以下原则 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一设计引物应遵循以下原则 1 、引物长度: 15-30bp,常用为20bp左右。 2 、引物扩增跨度:以200-500bp为宜,特定条件下可扩增长至10kb的片段。 3 、引物碱基:G C含量以40-60%为宜,G C太少扩增效果不佳,G C过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。上下游引物的GC 含量不能相差太大。附加序列(RT site, Promoter sequence)加到5'端, 在算Tm值时不算,但在检测互补和二级结构是要加上它们. 引物对的Tm差异不超过5℃,设计时温度和GC含量是个主要的参数,做复合扩增时更要设计成相近的温度,而且引物加个尾影响不大。但要切记BLAST,包括查阅文献的引物.如果两个引物Tm不同,将退火温度设定为比最低的Tm 低5℃, 或者为了提高特异性,可以在根据较高Tm设计的退火温度先进行5个循环,然后在根据较低Tm设计的退火温度进行剩余的循环。 4 、避免引物内部出现二级结构,避免两条引物间互补,特别是3'端的互补,否则会形成引物二聚体,产生非特异的扩增条带。引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。引物二聚体及发夹结构的能值过高(超过mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR 反应不能正常进行。 5 、引物3'端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。 6 、引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。引物5‘端引入酶切位点得黏性末端,随意加入3个保护性碱基,但是要注意不要形成引物二聚体,而且以A或G开头为好。 7 、引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。引物量:每条引物的浓度~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会。 8 、引物酶切:除非产物非常特异,直接酶切PCR产物效果有时不是很好,还有一般PCR 体系里过量的dNTPs会影响酶切效果。酶切后,可以用标准得乙醇沉淀法沉淀酶切产物,获得高纯度得酶切产物,也即是你的黏性目断片断供后边得试验。 9 、设计软件:最好学会使用一种design software. PP5,Oligo6,DNAstar, Vector NTI, Online desgin et al. 二引物保存 定制引物以干粉形式运输。最好在TE重溶引物,使其最终浓度为100μM。TE比去离子水好,因为水的pH经常偏酸,会引起寡核苷的水解。引物的稳定性依赖于储存条件。应将干粉和溶解的引物储存在-20℃。以大于10μM浓度溶于TE的引物在 -20℃可以稳定保存6个月,但在室温(15℃到30℃)仅能保存不到1周。干粉引物可以在-20℃保存至少1年,在室温(15℃到30℃)最多可以保存2个月。 三各种PCR的引物设计 1、长距离PCR: 标准PCR的扩增长度在1~2kb间,不能满足中大型基因的扩增。在此背景下产生了长距离PCR。其引物设计原则在标准PCR的基础上还要注意一下几点:

pcr实验原理及注意事项

PCR疑难解答 当PCR结果不甚满意时,首先检查以下几方面并遵照执行: 将PCR反应的试管与反应板紧贴。 当酶反应混合物以70℃“热启动”开始循环时,切记在加入酶后稍微振荡一下,因为在0.2-ml 的PCR管中不能均匀传热。 不要随意减少dNTP的用量,它是一个系统的因素,必须与其它成份保持平衡。 对于有问题的PCR反应,例如模板的量少,模板不纯和环状模板等,先尝试加Taq酶前的体系进行预变性,后加模板进行正常PCR扩增。 没有扩增产物: 在提供MgCl2缓冲液中,以0.25mmol/L为梯度增加MgCl2浓度;无MgCl2的缓冲液以0.5 mmol/L为梯度增加MgCl2浓度。 泳道中出现模糊条带,如果DNA模板中存在RNA,则按上述提示浓度补加MgCl2,因为在PCR反应中可能缺少游离的Mg2+。 检查退火温度和变性条件,如果有需要的话,可降低退火温度。 检查模板和引物的用量。 增加循环次数和/或模板DNA的用量。 泳道中出现模糊条带: 减少循环次数或模板DNA的用量。 提高退火温度,但不要超过68℃。 重新设计引物或设计更长的引物。 其他值得注意的条件: 建议使用0.2-ml薄壁管。厚壁管在92℃时不能有效地使模板变性。 最佳反应体积为50ml,推荐用30ml矿物油覆盖(对盖子加热的PCR仪可以不加)。 大多数反应中,0.75ml(0.5~1ml)的酶量在大多数情况下可以得到满意的结果。 建议使用1.75mmol/L MgCl2∶350mmol/L dNTP或2.25mmol/L MgCl2∶500mmol/L dNTP 组合的混合物。然而要得到最佳结果,优化Mg2+的浓度是必需的。 基因组DNA模板的质量显著影响PCR反应。因此推荐使用琼脂糖凝胶电泳来检测DNA的长度。DNA片段长度可以超过50kb,传统的基因组DNA能扩增片段至10kb。 要扩增更长的片段应使用超纯或高分子量的DNA。请查阅高分子量DNA提取操作过程相关文献。 降低二级结构和引物二聚物形成的可能性。进行长片段PCR扩增时,引物长度一般为24~34个核苷酸,溶点在60~68℃间。使用这类引物可提高PCR反应的退火温度来增加反应的特异性。这点非常重要,长片段扩增的效果往往受到非特异性短片段优先扩增的影响。 变性:第一步变性在94℃下进行2分钟。在循环过程中尽可能缩短变性时间(94℃下进行20--30秒),除非模板中富含GC,则95℃下变性30秒。这可以防止DNA脱嘌啉和链断裂,对于所需扩增的基因组DNA片段终长度超过12 kb时,应该尽可能的降低变性温度。 延伸:68--72℃下进行延伸操作。 循环延伸:尽量采用循环延伸的条件,若PCR仪无此功能,则必须增加延伸的时间,例如在扩增10kb片断时,延伸时间用10分钟替代原来的8分钟。 长片断PCR系统扩增的片断其3’-末端带有一个突出的A,因此建议采用T/A克隆。若要进行平端可隆,可用Klenow酶和T4 DNA多聚酶将PCR产物补平后再进行。 测序时因酶的混合物带有3’→5’外切酶活性,用Sanger方法进行测序不能产生均一的(染色体)带型。

PCR扩增原理及操作

PCR扩增反应的操作 第一节PCR扩增反应的基本原理 一、聚合酶链式反应(PCR)的基本构成 PCR是聚合酶链式反应的简称,指在引物指导下由酶催化的对特定模板(克隆或基因组DNA)的扩增反应,是模拟体内DNA复制过程,在体外特异性扩增DNA片段的一种技术,在分子生物学中有广泛的应用,包括用于DNA作图、DNA测序、分子系统遗传学等。 PCR基本原理是以单链DNA为模板,4种dNTP为底物,在模板3’末端有引物存在的情况下,用酶进行互补链的延伸,多次反复的循环能使微量的模板DNA得到极大程度的扩增。在微量离心管中,加入与待扩增的DNA片段两端已知序列分别互补的两个引物、适量的缓冲液、微量的DNA 膜板、四种dNTP溶液、耐热Taq DNA聚合酶、Mg2+等。反应时先将上述溶液加热,使模板DNA 在高温下变性,双链解开为单链状态;然后降低溶液温度,使合成引物在低温下与其靶序列配对,形成部分双链,称为退火;再将温度升至合适温度,在Taq DNA聚合酶的催化下,以dNTP为原料,引物沿5’→3’方向延伸,形成新的DNA片段,该片段又可作为下一轮反应的模板,如此重复改变温度,由高温变性、低温复性和适温延伸组成一个周期,反复循环,使目的基因得以迅速扩增。因此PCR循环过程为三部分构成:模板变性、引物退火、热稳定DNA聚合酶在适当温度下催化DNA链延伸合成(见图)。 1.模板DNA的变性 模板DNA加热到90~95℃时,双螺旋结构的氢键断裂,双链解开成为单链,称为DNA的变性,以便它与引物结合,为下轮反应作准备。变性温度与DNA中G-C含量有关,G-C间由三个氢键连接,而A-T间只有两个氢键相连,所以G-C含量较高的模板,其解链温度相对要高些。故PCR 中DNA变性需要的温度和时间与模板DNA的二级结构的复杂性、G-C含量高低等均有关。对于高G-C含量的模板DNA在实验中需添加一定量二甲基亚砜(DMSO),并且在PCR循环中起始阶段热变性温度可以采用97℃,时间适当延长,即所谓的热启动。 2.模板DNA与引物的退火 将反应混合物温度降低至37~65℃时,寡核苷酸引物与单链模板杂交,形成DNA模板-引物复合物。退火所需要的温度和时间取决于引物与靶序列的同源性程度及寡核苷酸的碱基组成。一般要求引物的浓度大大高于模板DNA的浓度,并由于引物的长度显著短于模板的长度,因此在退火时,引物与模板中的互补序列的配对速度比模板之间重新配对成双链的速度要快得多,退火时间一般为1~2min。 3.引物的延伸 DNA模板-引物复合物在Taq DNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条与模板DNA链互补的新链。重复循环变性-退火-延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。延伸所需要的时间取决于模板DNA的长度。在72℃条件下,Taq DNA聚合酶催化的合成速度大约为40~60个碱基/秒。经过一轮“变性-退火-延伸”循环,模板拷贝数增加了一倍。在以后的循环中,新合成的DNA都可以起模板作用,因此每一轮循环以后,DNA拷贝数就增加一倍。每完成一个循环需2~4min,一次PCR经过30~40次循环,约2~3h。扩增初期,扩增的量呈直线上升,但是当引物、模板、聚合酶达到一定比值时,酶的催化反应趋于饱和,便出现所谓的“平台效应”,即靶DNA产物的浓度不再增加。 PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA扩增量可用Y =(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。反应初期,

PCR基本原理及方法_图文.

Medical Molecular Biology Principle and Applications of PCR (Polymerase Chain Reaction) Department of Biochemistry and Molecular Biology 1 Contents History of PCR Concept and principle of PCR PCR reaction system Types and Applications of PCR 2 Replication Substances Involved in DNA replication and Functions substrate (底物: 4 dNTP。合成新链的原料。 template (模板: 解开成单链的DNA母链。指引dNTP按碱基互补配对原则合成新链。 primer (引物: 一段寡核苷酸序列。提供3′-OH末端使dNTP 可以依次聚合。 polymerase (聚合酶: 依赖DNA的DNA聚合酶( DNA-pol Other enzymes & protein factors: Helicase, Topoisomerase:解链解旋,防止打结。 SSB (单链DNA结合蛋白):稳定已解开的单链。 Primase:催化RNA引物生成。DNA ligase:连接两段相邻的岡崎片段。 4 一、History of PCR 1、Khorana(1971等提出在体外经DNA变性,与适当引物 杂交,再用DNA聚合酶延伸,克隆DNA的设想。 2、1983年,Mullis发明了PCR技术,使Khorana的设想得到实现。 3、1988年Saiki等将耐热DNA聚合酶(Taq)引入了PCR 技术。 4、1989年美国《Science》杂志列PCR 为十余项重大科学发明之首,比喻1989年为PCR爆炸年,Mullis荣获1993年度诺贝尔化学奖。 5

定量PCR 简介

定量PCR简介 聚合酶链反应(polymerase chain reaction, PCR)是微量核酸扩增的有效工具,由于其灵敏、特异、快速等优点,在医学上已广泛应用与病毒、细菌病原体及遗传病、肿瘤的早期诊断。随着PCR技术的发展,特别是病毒或肿瘤的治疗监测、疾病的诊断、机体基因表达调控方面,不仅需要检测其存在是否;而且还需要得知扩增前标本中的模板的数量,因而必须对PCR进行定量检测,即定量PCR技术,本文将对定量PCR的定量原理、技术类型以及相关进展方面综述如下:一、定量PCR的基本原理: 在PCR实验条件下(Mg++、缓冲液、Taq酶、dNTP、引物、模板),经变性→退火→延伸的一个循环,引物在退火阶段与相应的模板结合,在延伸阶段进行复制,此时产物为:Yn=Yn-1×(1+Ev) ,Yn:n个PCR循环后PCR产物的分子数;Yn-1:为n-1个热循环后PCR产物的分子数;Ev:为扩增效率,0≤Ev≤1;若n个热循环中其Ev是一致的话,经n个循环后的扩增产物的分子数(Y)和反应物中原始分子数(X)之间关系,可描述为:Y=x×(1+ Ev)n。 1. 终点法定量原理: 在最佳实验、循环次数n一定、Ev相同的前提下,根据扩增产物的量可以计数出反应物中原始分子数,若核酸提取效率相同(与标准品),进而计算出标本中靶分子的准确含量,即: lnx=lnY-n×ln(1+Ev)=lnY - b (b为常数) 2. 实时检测法定量原理: 在最佳实验、相同Ev以及相同扩增产物的情况下,反应物中原始分子数(X)与其所需要的扩增循环次数(n)成反比,若核酸提取效率相同(与标准品),进而计算出标本中靶分子的准确含量,即: LgX=LgY–n×Lg(1+Ev)=b - n×a (a、b为常数)3. 扩增效率(Ev)的影响因素: 以上所述的定量原理均假定反应体系中扩增效率是不变,但是,实际上,Ev在不同的扩增管之间和同一扩增管的不同循环次数之间是不同,如何控制及解决Ev的变异以及标本制备的可靠性是PCR定量的可靠性所在,也是定量PCR的发展方向,那么,Ev的影响因素有: a. 引物和靶序列的结合能力(G+C%及突变),扩增产物的长度,G+C含量。 b. 模板的含量、DNA聚合酶、反应液成分变化。 c. 不同临床标本间DNA聚合酶抑制物的存在情况。 d. 循环扩增仪上不同位置的差异。 二、定量PCR方法的分类: 目前对标本的靶DNA或基因的相对或绝对含量是不同样品的PCR产量检测而推算出来,根据标本中是否加入内标物,将分成以下两种: (一)外标法定量PCR: 一个已知含量的标准品(通常用质粒)经一系列的稀释后与待检标本一起进行扩增,制作PCR 扩增产物和靶核酸含量的标准曲线,根据待检标本的扩增产物量即可推算出靶核酸的绝对含量;上述已提及不同标本间的扩增效率(Ev)的差异,对样本间PCR产量作比较会产生很不准确的结果;以外还应考虑“平台效应”对结果的影响,因为“平台期”PCR产物量并不受初时模板量的影响;导致结果的准确性和重复性差,因此采用外标法应该注意: a、注意标准化操作,优化最佳实验条件,减少标本间Ev的差异导致对结果的影响。 b、标准品的稀释因存在随机分布而导致结果的不准确。 c、注意“平台效应”对实验结果的影响。特别是后面提及的终点法检测PCR产物的方法中。 d、由PCR方法很灵敏,特别RT-PCR方法,没有内标存在的情况下,标本的污染而对实验结果产生很大的影响。 e、标本处理对结果的影响。

PCR仪的分类

1聚合酶链反应(polymerase chain reaction,PCR)的基本原理PCR反应过程与细胞内的DNA复制相似,但PCR的反应体系要简单的多,主要包括DNA靶序列、引物、4种单核苷酸dNTP、耐热DNA聚合酶以及合适的缓冲液体系。PCR反应过程有以下3个步骤:①变性。将反应体系混合物加热到94 ℃,维持较短时间(大约15 s-30 s),使目标DNA双螺旋的氢键断裂,形成单链DNA作为反应模板。②退火。将反应体系冷却至特定的温度(引物的TM值左右或以下),引物与DNA模板的互补区结合,形成模板引物复合物。③延伸。将反应体系的温度提高到72 ℃并维持一段时间,引物在耐热聚合酶的作用下,以引物为固定起点,以4种单核苷酸(dNTP)作为底物合成新的DNA链。以上三步作为一个循环重复的进行,每一循环的产物作为下一循环的模板。如此循环数十次,从而使目的基因得到指数级扩增,达到检测或获取基因的目的。 2 PCR仪的分类 根据DNA扩增的目的和检测的标准可以将PCR仪分为普通PCR仪,梯度PCR仪,原位PCR,实时荧光定量PCR仪等几类。 2.1普通PCR仪 一般把一次PCR扩增只能运行一个特定退火温度的PCR仪,称之为普通PCR仪。如果要用它做不同的退火温度则需要多次运行。主要是用作简单的,对目的基因退火温度的扩增。 主要应用于科研、教学、临床医学、检验、检疫等。 2.2 梯度PCR仪 一次性PCR扩增可以设置一系列不同的退火温度条件(通常12种温度梯度)的称之为梯度PCR仪。因为被扩增的不同的DNA片段其最适合的退火温度不同,通过设置一系列的梯度退火温度进行扩增,从而一次性PCR扩增就可以筛选出表达量高的最适合退火温度进行有效的扩增。主要用于研究未知DNA退火温度的扩增,这样既节约时间,也节约经费。在不设置梯度的情况下亦可当做普通的PCR用。真正的梯度,是每一排管都有精确的加热控温探头,2009年为止只有美国ABI公司可以做到。其他的都是从两头的热传递来设计控温。

PCR

聚合酶链式反应Polymerase Chain Reaction 聚合酶链式反应,简称PCR技术,是近年来发展起来的一种体外扩增特异DNA 片段的技术,是最常用的、以分子水平研究微生物的技术之一。 PCR技术具有特异、敏感、产率高,快速、简便、重复性好,且极易操作等突出的优点,能在一个小扩增管内,将所需研究的目的基因或某一DNA片段在短短数小时内获得几十万乃至百万个特异DNA序列的拷贝,使肉眼能直接观察和判断。PCR技术虽然问世时间仅二十余年,但它已迅速渗透到分子生物学的各个分支领域,在分枝克隆、遗传病的基因诊断、法医学、考古学等诸多方面得到了广泛应用。 如此神秘的技术,是怎样诞生的呢?1983年在Cetus公司任职、时年39岁的科学家Dr.Kary Mullis正在着手解决用简单的方法鉴定某一段DNA的技术问题。有一天晚上,他灵机一动想出了一个能在试验中产生某个特定DNA序列无限拷贝的简单方法,这一方法就是“聚合酶链式反应——PCR”。该方法的应用在1983年10月的一次学术会议上首次公开于学术界。对这一新技术,许多到会的科学家都很吃惊因为在此之前,没有人想到过这个方法如此简单,即只需要三个不同温度的水浴槽,通过控制反应时间和循环数,就可以实现DNA的大量扩增。Cetus 公司为此奖给Dr.Kary Mullis一万美元,后来Cetus公司以3亿美元的价格把PCR 技术的专利权卖给了一个制药公司(Hoffman-La Roche).PCR技术以此得到了迅速发展,截止到1993年底,有7000篇科学论文引用了PCR文献。1993年Dr.Kary Mullis荣获诺贝尔化学奖。 核酸研究已有100多年的历史,最初人们为了以生物材料中获得某一特定的DNA 片段或进行其序列分析、鉴定,按传统的方法,要经过DNA酶切、连接、转化等步骤构建含有目的基因的克隆体,然后导入细胞进行扩增,再经过同位素标记探针的筛选等过程。虽然技术上已无难点,但操作复杂,一般需要数周到数月的时间。而PCR技术可在数小时内对仅有极少拷贝(几个即可)的基因放大到至百万倍!大大简化了传统的分子克隆技术,比较容易地对目的基因进行鉴定。20世纪60年代末70年代初时,DNA的体外分离技术尚需完善,人们都在致力于研究并建立这方面的技术。Korana于1971年最早提出核酸体外扩增的设想:“经过DNA变性,与合适的引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可克隆tRNA基因。”但那时候,如何实现仍是个谜。这一谜底于1985年由

pcr技术原理简介

PCR技术的基本原理 PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成: ①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA 双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备; ②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合; ③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP 为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍。(Plateau)。到达平台期所需循环次数取决于样品中模板的拷贝。 PCR的反应动力学 PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA 扩增量可用Y=(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA 片段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应” ,这种效应称平台期数、PCR 扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素。大多 数情况下,平台期的到来是不可避免的。 PCR扩增产物 可分为长产物片段和短产物片段两部分。短产物片段的长度严格地限定在两个引物链5'端之间,是需要扩增的特定片段。短产物片段和长产物片段是由于引

几种PCR扩增的比较

普通PCR、原位PCR、反向PCR和反转录PCR的基本原理和操作步骤 普通PCR 1概述 聚合酶链式反应(Polymerase Chain Reaction),简称PCR,是一种分子生物学技术,用于放大特定的DNA片段。可看作生物体外的特殊DNA复制。DNA聚合酶(DNA polymerase I)最早于1955年发现,而较具有实验价值及实用性的Klenow fragment of E. Coli 则是于70年代的初期由Dr. H. Klenow所发现,但由于此酶不耐高温,高温能使之变性, 因此不符合使用高温变性的聚合酶链式反应。现今所使用的酶(简称Taq polymerase), 则是于1976年从温泉中的细菌(Thermusaquaticus)分离出来的。它的特性就在于能耐高温,是一个很理想的酶,但它被广泛运用则于80年代之后。PCR最初的原始雏形概念是类似基因修复复制,它是于1971年由Dr. KjellKleppe提出。他发表了第一个单纯且短暂性基因复制(类似PCR前两个周期反应)的实验。而现今所发展出来的PCR则于1983由Dr. Kary B. Mullis发展出的,Dr. Mullis当年服务于PE公司,因此PE公司在PCR界有着特殊的地位。Dr. Mullis 并于1985年与Saiki 等人正式发表了第一篇相关的论文。此后,PCR 的运用一日千里,相关的论文发表质量可以说是令众多其它研究方法难望其项背。随后PCR技术在生物科研和临床应用中得以广泛应用,成为分子生物学研究的最重要技术。Mullis也因此获得了1993年诺贝尔化学奖。 2 PCR原理 PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP(脱氧核糖核苷三磷酸)为反应原料,靶序列为模板,按碱基互补配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链,重复循环变性--退火--延伸三过程就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。 3. PCR反应体系与反应条件 3.1标准的PCR反应体系 10×扩增缓冲液10μl 4种dNTP混合物200μl 引物10~100μl 模板DNA 0.1~2μg Taq DNA聚合酶2.5 μl Mg2+ 1.5mmol/L

PCR数据分析

有双△Ct法,你是要相对定量吗?我也做。用的是delta-deltaCt法。 有一种算法是: 把内参的Ct求均值,比如得到a,再把目的基因每一个Ct减去a,就得到三个△Ct了,然后分别算三个的2e-△Ct,得到相对数共3个,然后就用这个来算标准差 具体比较倍数才是两次△Ct,相对数不用 pumpkin236(站内联系TA) Originally posted by 三磷酸腺苷at 2011-03-27 17:03:03: 有一种算法是: 把内参的Ct求均值,比如得到a,再把目的基因每一个Ct减去a,就得到三个△Ct了,然后分别算三个的2e-△Ct,得到相对数共3个,然后就用这个来算标准差 具体比较倍数才是两次△Ct,相对数不用 我还是不太明白。为什么这点---得到三个△Ct了,然后分别算三个的2e-△Ct。 2-△△Ct不是最后一步才用嘛。。。 我现在是这样算的,△Ct=目的均值-内参均值。△△Ct=加药组的△Ct-正常组△Ct。然后2 -△△Ct。得到加药组相对于正常组的表达量。 但是,我不太明白每组的SD怎么求。我是参照这篇文献的算法,但是他算SD我没太看懂。。Analysis of Relative Gene Expression Data Using Real- Time Quantitative PCR and the 22DDCT Method 文献里他给了例子,就是表一。。你帮忙看下她的SD是怎么算的。。谢谢了 三磷酸腺苷(站内联系TA) Originally posted by pumpkin236 at 2011-03-27 18:15:56: 我还是不太明白。为什么这点---得到三个△Ct了,然后分别算三个的2e-△Ct。 2-△△Ct不是最后一步才用嘛。。。 我现在是这样算的,△Ct=目的均值-内参均值。△△Ct=加药组的△Ct-正常组△Ct。然后2 -△△C ... :sweat::sweat::sweat::sweat::sweat: 其实,所有实验都要重复3次才有个SD,因此你的每次独立实验得出来的相对于对照组的倍数,就有3个值了,就可以再求均数标准差 如果你想知道每次独立实验复孔之间的均数标准差,就不要把复孔的值求均值再减去内参均值了,每一个复孔单独一个值就和内参的均值比较归一化即可 ………………我发现一次过这么多文件鸭梨很大…………我表示想偷懒……

PCR技术原理及心得.

PCR技术原理与心得体会 PCR产物的电泳检测时间一般为48h以内,有些最好于当日电泳检测,大于48h 后带型不规则甚致消失。 一.假阴性,不出现扩增条带 PCR反应的关键环节有①模板核酸的制备,②引物的质量与特异性,③酶的质量及活性④PCR循环条件。寻找原因亦应针对上述环节进行分析研究。 模板:①模板中含有杂蛋白质,②模板中含有Taq酶抑制剂,③模板中蛋白质没有消化除净,特别是染色体中的组蛋白,④在提取制备模板时丢失过多,或吸入酚。⑤模板核酸变性不彻底。在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序亦应固定不宜随意更改。 酶失活:需更换新酶,或新旧两种酶同时使用,以分析是否因酶的活性丧失或不够而导致假阴性。需注意的是有时忘加Taq酶或溴乙锭。 引物:引物质量、引物的浓度、两条引物的浓度是否对称,是PCR失败或扩增条带不理想、容易弥散的常见原因。有些批号的引物合成质量有问题,两条引物一条浓度高,一条浓度低,造成低效率的不对称扩增,对策为:①选定一个好的引物合成单位。②引物的浓度不仅要看OD值,更要注重引物原液做琼脂糖凝胶电泳,一定要有引物条带出现,而且两引物带的亮度应大体一致,如一条引物有条带,一条引物无条带,此时做PCR有可能失败,应和引物合成单位协商解决。如一条引物亮度高,一条亮度低,在稀释引物时要平衡其浓度。③引物应高浓度小量分装保存,防止多次冻融或长期放冰箱冷藏部分,导致引物变质降解失效。④引物设计不合理,如引物长度不够,引物之间形成二聚体等。 Mg2+浓度:Mg2+离子浓度对PCR扩增效率影响很大,浓度过高可降低PCR扩增的特异性,浓度过低则影响PCR扩增产量甚至使PCR扩增失败而不出扩增条带。

PCR原理及过程

PCR技术原理、实验步骤和应用 来源:易生物实验浏览次数:3623 网友评论0 条 PCR技术,即聚合酶链反应(polymerase chain reaction,PCR)是由美国PE Cetus公司的Kary Mullis在1983年(1993年获诺贝尔化学奖)建立的。这项技术可在试管内的经数小时反应就将特定的DNA片段扩增数百万倍,这种迅速获取大量单一核酸片段的技术在分子生物学研究中具有举足轻重的意义,极大地推动了生命科学的研究进展。 关键词:PCR技术PCR聚合酶链反应 一、实验目的 1.掌握聚合酶链式反应的原理。 2. 掌握移液枪和PCR仪的基本操作技术。 二、实验原理 PCR技术,即聚合酶链反应(polymerase chain reaction,PCR)是由美国PE Cetus 公司的Kary Mullis在1983年(1993年获诺贝尔化学奖)建立的。这项技术可在试管内的经数小时反应就将特定的DNA片段扩增数百万倍,这种迅速获取大量单一核酸片段的技术在分子生物学研究中具有举足轻重的意义,极大地推动了生命科学的研究进展。它不仅是DNA分析最常用的技术,而且在DNA重组与表达、基因结构分析和功能检测中具有重要的应用价值。 PCR可以被认为是与发生在细胞内的DNA复制过程相似的技术,其结果都是以原来的DNA为模板产生新的互补DNA片段。细胞中DNA的复制是一个非常复杂的过程。参与复制的有多种因素。PCR是在试管中进行的DNA复制反应,基本原理与细胞内DNA复制相似,但反应体系相对较简单。

PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA 经加热至94℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA 解离,使之成为单链,以便它与引物结合,为下轮反应做准备; ②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合; ③引物的延伸:DNA模板--引物结合物在Taq酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链。 重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍。 三、实验试剂与器材 模板DNA、L dNTP Taq DNA聚合酶(5U/μL)、SSR引物 O 10 ×buffer、15mmol/L Mg2+、ddH 2 PCR仪、移液枪、PCR板 四、实验步骤 1、配制20μL反应体系,在PCR板中依次加入下列溶液: 模板DNA 2μL 引物1 1μL 引物2 1μL dNTP μL

q-pcr结果分析报告

摘要: 现在最常用的两种分析实时定量PCR 实验数据的方法是绝对定量和相对定量。绝对定量通过标准曲线计算起始模板的拷贝数;相对定量方法则是比较经过处理的样品和未经处理的样品目标转录本之间的表达差异。2-△△CT方法是实时定量PCR 实验中分析基因表达相对变化的一种简便方法,即相对定量的一种简便方法。本文介绍了该方法的推导,假设及其应用。另外,在本文中我们还介绍了两种2-△△CT衍生方法的推导和应用,它们在实时定量 PCR 数据分析中可能会被用到。 关键词:反转录PCR 定量PCR 相对定量实时PCR Taqman 反转录 PCR (RT-PCR )是基因表达定量非常有用的一种方法(1 - 3 )。实时PCR 技术和RT-PCR 的结合产生了反转录定量 PCR 技术(4 ,5 )。实时定量 PCR 的数据分析方法有两种:绝对定量和相对定量。绝对定量一般通过定量标准曲线来确定我们所感兴趣的转录本的拷贝数;相对定量方法则是用来确定经过不同处理的样品目标转录本之间的表达差异或是目标转录本在不同时相的表达差异。 绝对定量通常在需要确定转录本绝对拷贝数的条件下使用。通过实时 PCR 进行绝对定量已有多篇报道(6 - 9 ),包括已发表的两篇研究论文(10,11 )。在有些情况下,并不需要对转录本进行绝对定量,只需要给出相对基因表达差异即可。显然,我们说 X 基因在经过某种处理後表达量增加 2.5 倍比说该基因的表达从1000 拷贝/ 细胞增加到2500 拷贝/ 细胞更加直观。 用实时PCR 对基因表达进行相对定量分析需要特殊的公式、假设以及对这些假设的验证。2-△△CT方法可用于定量PCR 实验来计算基因表达的相对变化:2-△△CT公式的推导,以及实验设计,有效性评估在Appl ied Biosystems User Bulletin No.2(P/N4303859)中有介绍。用2-△△CT方法分析基因表达数据在文献中也有报道(5,6)。本文介绍了该方法的推导、假设以及应用。另外,本文还介绍了2-△△CT两种衍生方法的推导和应用,它们在实时定量PCR 数据分析中都可能被用到。 1. 2-△△CT方法

普通PCR、原位PCR、反向PCR和反转录PCR的基本原理和操作步骤

普通PCR、原位PCR、反向PCR和反转录PCR的 基本原理和操作步骤 普通PCR 1概述 聚合酶链式反应(Polymerase Chain Reaction),简称PCR,是一种分子生物学技术,用于放大特定的DNA片段。可看作生物体外的特殊DNA复制。DNA聚合酶(DNA polymerase I)最早于1955年发现,而较具有实验价值及实用性的Klenow fragment of E. Coli 则是于70年代的初期由Dr. H. Klenow 所发现,但由于此酶不耐高温,高温能使之变性, 因此不符合使用高温变性的聚合酶链式反应。现今所使用的酶(简称Taq polymerase), 则是于1976年从温泉中的细菌(Thermus aquaticus)分离出来的。它的特性就在于能耐高温,是一个很理想的酶,但它被广泛运用则于80年代之后。PCR最初的原始雏形概念是类似基因修复复制,它是于1971年由Dr. Kjell Kleppe 提出。他发表了第一个单纯且短暂性基因复制(类似PCR前两个周期反应)的实验。而现今所发展出来的PCR 则于1983由Dr. Kary B. Mullis发展出的,Dr. Mullis当年服务于PE公司,因此PE公司在PCR界有着特殊的地位。Dr. Mullis 并于1985年与Saiki 等人正式发表了第一篇相关的论文。此后,PCR的运用一日千里,相关的论文发表质量可以说是令众多其它研究方法难望其项背。随后PCR技术在生物科研和临床应用中得以广泛应用,成为分子生物学研究的最重要技术。Mullis也因此获得了1993年诺贝尔化学奖。 2 PCR原理 PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA 解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基互补配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链,重复循环变性--退火--延伸三过程就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。 3 PCR反应体系与反应条件 3.1标准的PCR反应体系 10×扩增缓冲液10μl 4种dNTP混合物200μl 引物10~100μl 模板DNA 0.1~2μg

real-time PCR 数据分析

real-time PCR 数据分析 无论所使用的real-time PCR是何种型号,正确的数据分析对于获得有效的实验结果都是至关重要的。这里介绍有关real-time PCR数据分析的知识。 在讨论基本分析过程之前,先介绍如何设计一个好的实验。如果你是自己设计的引物和探针,那有助于下一步的工作。但是在有些情况下,人们使用出版文献上的序列会更方便。记住,即便是出版物提供的序列也不能保证会得到优化的实验结果。而且排版错误的可能性也需要考虑在内。所以进入实验室之前使用BLAST对全部序列进行核实确保他们是正确的。下订单前先检察引物和探针的序列和Tm值是实验设计的基本要求。 标准曲线是判断实验质量的重要手段。使用一个已知的模板,PCR产物,合成的寡核苷酸或转录的RNA做个标准曲线能够确定PCR的效率,敏感性,动态范围和其他的参数。建立标准曲线时使用OD260的模板样本。模板的总量以DNA分子的数量来描述,把质量转化为DNA含量的公式如下: (质量(克)*阿伏伽德罗常数)每个碱基的平均质量*模板的长度。 例如,合成70-mer的单链DNA,样本质量为0.8*10?-11gm。代入公式得: (0.8*10?-11*6.023*10?23molecules/mole)330gm/mole/base*70 base。 如果使用双链的模板,则碱基的平均质量为660gm/mole/base。 标准曲线使用的模板含量从1*10?7开始连续稀释7次每次稀释10倍,最终得到10个模板拷贝。这样的浓度有助于得到最高的ΔRn和最低的Ct。用Excel画曲线时以模板数量的对数值为X,Ct(cycle threshold)值为Y轴。标准曲线的计算公式如下: y=mx+b。y就是Ct,m是斜率,x=log10template amount,b=y-intercept。 用斜率计算出实验效率Efficiency【10?(-1/斜率)】-1。实验效率告诉我们PCR反应的执行情况。鉴定系数r?2是实际结果和理论值相符程度,表示稀释和移液的准确性。y-intercept说明实验的敏感度和模板含量的精确度。 通过已知的模板含量,可以计算合成一定的DNA含量需要多少次循环: n=Log(Nn)-Log(N0)/Log(1+E) Nn是n次循环后的模板含量,N0是原来的模板含量,E是实验效率Efficiency,n是所需的循环数。 一个完美实验的斜率是-3.32,效率Efficiency是100%,y-intercept在33到37次循环之间,r^2是1.00。如果效率(Efficiency)较低,y-intercept较高,这意味着循环开始时DNA的含量不足或需要多跑几个循环。可以接受效率Efficiency在95-100%之间的实验结果,但如果

利用实时定量PCR和2-△△CT法分析基因相对表达量

利用实时定量PCR和2-△△CT法分析基因相对表达量 METHODS 25, 402–408 (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitati ve PCR and the 2-△△CT Method Kenneth J. Livak* and Thomas D. Schmittgen?,1 *Applied Biosystems, Foster City, California 94404; and ? Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, Washington 99164-6534 摘要: 现在最常用的两种分析实时定量PCR 实验数据的方法是绝对定量和相对定量。绝对定量通过标准曲线计算起始模板的拷贝数;相对定量方法则是比较经过处理的样品和未经处理的样品目标转录本之间的表达差异。2-△△CT方法是实时定量P CR 实验中分析基因表达相对变化的一种简便方法,即相对定量的一种简便方法。本文介绍了该方法的推导,假设及其应用。另外,在本文中我们还介绍了两种2-△△CT衍生方法的推导和应用,它们在实时定量 PCR 数据分析中可能会被用到。 关键词:反转录PCR 定量PCR 相对定量实时PCR Taqman 反转录 PCR (RT-PCR )是基因表达定量非常有用的一种方法(1 - 3 )。实时PCR 技术和RT-PCR 的结合产生了反转录定量 PCR 技术(4 ,5 )。实时定量 P CR 的数据分析方法有两种:绝对定量和相对定量。绝对定量一般通过定量标准曲线来确定我们所感兴趣的转录本的拷贝数;相对定量方法则是用来确定经过不同处理的样品目标转录本之间的表达差异或是目标转录本在不同时相的表达差异。 绝对定量通常在需要确定转录本绝对拷贝数的条件下使用。通过实时 PCR 进行绝对定量已有多篇报道(6 - 9 ),包括已发表的两篇研究论文(10,11 )。在有些情况下,并不需要对转录本进行绝对定量,只需要给出相对基因表达差异即可。显然,我们说 X 基因在经过某种处理後表达量增加 2.5 倍比说该基因的表达从1000 拷贝/ 细胞增加到2500 拷贝/ 细胞更加直观。

相关文档