文档库 最新最全的文档下载
当前位置:文档库 › 陶瓷基摩擦材料的研究

陶瓷基摩擦材料的研究

陶瓷基摩擦材料的研究
陶瓷基摩擦材料的研究

陶瓷基摩擦材料的研究

白克江

(东营信义汽车配件有限公司山东东营257335)

摘要:本文通过对陶瓷基摩擦材料摩擦原理的探讨,分析了陶瓷配方的优异性,明确了摩擦性能调节剂在陶瓷配方中的重要作用,并利用国际先进的试验方法FMVSS135对配方性能进行了全面的研究。

关键词:陶瓷基摩擦材料摩擦性能调节剂

Abstract:The article analyzes the excellent of ceramics formula and makes clear the importance of friction regulator in ceramic formula by studying the principle of ceramic radicle and completely researching the formula function through the international advanced trial method FMVSS135.

Keywords:Friction material of ceramic radicle Friction function regulator

一、前言

做为刹车片的摩擦材料,在满足人们正常使用中制动性能的同时,其使用寿命、环保性和舒适性也是人们非常关注的一个问题。而影响其使用寿命、环保性和舒适性的关键因素便是摩擦材料中基础增强材料和摩擦性能调节剂的选择和正确应用。

众所周知,石棉在摩擦材料中具有优秀的综合性能,但石棉有害健康,而且其在我国已经逐渐开始被禁用。半金属摩擦材料虽然因其比较优异的性能已经得到了广大用户的认可,但其易锈蚀、伤对偶、易发生噪音的缺点,一直在困惑着摩擦材料的研究者们,因此随着摩擦材料的发展,少金属和非金属摩擦材料应运而生,本文探讨的便是NAO摩擦材料中的一种:陶瓷基摩擦材料。

陶瓷基摩擦材料是一种利用无机矿物纤维和有机纤维做为增强材料,以改性树脂和橡胶粉为粘合剂,利用多种有机和无机材料做为摩擦性能调节剂配合加工而成的摩擦材料。其特点是无噪音、落灰少,不伤对偶、使用寿命长、无锈蚀。

二、基础摩擦材料的选择

1、增强纤维的选择

矿物纤维和陶瓷纤维的使用温度均可达到1000℃以上,具有良好的分散性能及高温稳定性,且价格比较便宜。这两种纤维的长径比比较小,虽然具有较大的比表面积,但其增强效果并不是十分的理想,因此本研究选用矿物纤维、陶瓷纤维及凯芙拉进行三元复合,来改善摩擦材料的高温摩擦性能和机械强度,以满

足陶瓷基摩擦材料的特点,起到增强基体的作用。

但在选择矿物纤维和陶瓷纤维时,最好是选用经过硅烷或者橡胶对其表面进行处理的纤维,这样不但可以降低树脂的用量,获得良好的粘接效果,还会减少磨损。并且一定要严格控制纤维中渣球的含量,否则将会带来摩擦系数提高,磨损增大,产生噪音的负面影响。

2、粘合剂的选择

摩擦材料基本上都是采用酚醛树脂或改性酚醛树脂,为了达到消除噪音、减少落灰、提高使用寿命、不伤对偶的目的。根据各界的经验,本研究最终选择采用了腰果油改性酚醛树脂和丁腈胶粉做为粘合剂。

摩擦系数的迅速降低称为衰退,其分为高速衰退和高温衰退,摩擦恢复性是指刹车片经过高温后,其低温下的摩擦系数不应受到显著的影响,粘接剂的正确选择及其适量应用直接影响着摩擦材料的衰退和恢复性能,当然,配合适当的摩擦性能调节剂也是解决此问题必不可少的关键因素。

3、摩擦性能调节剂的选择

为了提高摩擦材料的摩擦性能,摩擦性能调节剂的选择非常重要。实践证明摩擦性能调节剂的能够有效地稳定摩擦系数,改善衰退,提高刹车片及对偶的磨损寿命,使其不受制动条件变化的影响,提高刹车的舒适性。

做为汽车安全件的刹车片最大的要求就是摩擦系数的稳定性,即摩擦系数不应随压力、速度、温度的变化有明显的变化。摩擦性能调节剂的使用有助于在摩擦材料表面与对偶之间形成一层粘附性极强的薄的转移膜,这样刹车过程中的滑动摩擦便转变为薄而均一的转移层与摩擦材料之间的摩擦,可以防止摩擦层在高温制动过程中发生明显的变化。同时,由于静摩擦系数与动摩擦系数之间的差异,可以导致在刹车过程中出现震动、噪音及表面粗糙度,因此必须选择能形成薄而且均一的转移膜并能防止厚的碎屑形成的摩擦性能调节剂,因此需要在配方中加入固体润滑剂以消除静态与动态摩擦系数的差异。

长时间以来,被人们普遍采用的摩擦性能调节剂有摩擦粉、橡胶粉、石墨、金属硫化物、二硫化钼、焦炭、金属粉及一些矿物质等有机和无机材料。

这些金属硫化物的分解温度大多在500℃以下,一般在刹车过程中部分金属硫化物会分解并生成金属氧化物或者金属,金属氧化物可以附着在刹车盘表面,形成转移膜,能够很好的稳定摩擦系数并降低磨损,提高刹车的舒适性,而金属可以与其他的金属形成合金,附着在刹车盘表面,这层合金具有更好的散热性,

因此提高了盘的磨损寿命,减少了刹车盘表面裂纹的形成,起到保护刹车盘的作用。

另外刹车片在高速制动的过程中,产生较高的温度,在一定的压力下,必将形成新的摩擦层,尤其是摩擦界面可能会发生化学变化,新的摩擦层在低温下表现出低得多的摩擦系数,因此诸如摩擦粉、焦炭、金属粉等摩擦性能调节剂的加入,可以有效地提高摩擦材料内部的粘接力,从而避免刹车片在高温条件下表面变软,进而改善因高温制动而形成的转移膜的黏附力,提高摩擦材料的速度、压力、温度敏感性。

由于陶瓷基摩擦材料中金属含量较低的特点,基于上述摩擦机理,在原材料的选择过程中对摩擦性能调节剂进行了大量的研究,根据刹车片对摩擦系数的高低要求不同,最终确定了摩擦性能调节剂的种类和用量。

三、配方与工艺的确定

1、配方的确定

通过上述方法对原材料进行选择后,又经过大量的筛选试验,最终确定如下的两个配方进行研究:

2、工艺的确定

由于陶瓷配方所选用材料及其混合料的特殊性,以往的冷型硫化二次成型工艺不适合陶瓷基摩擦片的生产,为了保证产品具有一致的理化性能和摩擦磨损性能,本研究采用了定压一次性成型工艺,其生产工艺流程如下:

称量混料热压成型热处理磨削喷漆

印标安装附件包装

四、试验结果及分析

1、试验条件

1.1理化性能

按照标准SAE J380-71 GB5766-86 ISO6310 PV3005 XJ193 TL523 41的要求,利用相应的设备仪器进行测试。

1.2摩擦磨损性能

试验设备:JF-132 Krauss惯量试验台

AST-486计算机系统采集及处理数据

由TG-55B型天平和螺旋测微计测量制动片的磨损试验参数:试验惯量I=61.5 Kg.m2,

车轮滚动半径:rK=0.312m,

制动钳缸径:rG=43mm,

试验方法:采用联邦法规FMVSS135试验方法的要求,在满足速度,压力、温度的前提下,给试验机主轴配置一定的转动惯量,按照试验程

序的要求进行试验。

2、试验结果

表一:理化性能

图一:摩擦性能

3、结果分析

通过表一、表二的数据可以看出,虽然1#、2#配方采用了不同种类、不同用量的摩擦性能调节剂对其摩擦系数进行了调整,但其理化性能极其相似,其较低的密度节约了资源,较为适中的硬度和压缩量及良好的气孔率赋予了摩擦材料理想的使用舒适性,极低的磨损量(半金属摩擦片的1/3)可以极大地延长刹车片的使用寿命,减少落灰现象,而其较高的PH值则大大地改善了摩擦材料的耐候性,使其可以应用于不同的地区及环境条件。

从图一的摩擦系数曲线中可以看到,1#、2#配方的摩擦系数相差0.5左右,但均在不到10次的磨合后摩擦系数便趋于平稳,而且随速度、温度、压力等条件的变化,其摩擦系数都是非常的稳定,尤其是具有优异的恢复性能。因此完全可以通过调整摩擦性能调节剂的种类和用量来改变摩擦系数的高低并消除静态和动态摩擦系数之间的差异,降低噪音发生的几率,改善驻车性能。

五、结论

1、瓷基摩擦材料具有稳定的摩擦系数,优异的恢复性能、理化性能和耐磨损性,可以降低噪音、延长使用寿命、减少落灰和保护刹车对偶,提高了制动舒适性,适应了环保的要求。

2、正确地选择和使用摩擦性能调节剂,是保证陶瓷基摩擦材料具有优异性能的必要条件。

3、生产工艺不能等同采用半金属的生产工艺,必须采用新工艺,并不断的创新,以保证其摩擦性能和提高生产效率。

4、与半金属摩擦材料相比,陶瓷基摩擦材料的成本较高,但其较低的密度和卓越的耐磨损性,可以改善其不足。但随着对陶瓷配方研究的不断深入,寻求新材料以降低成本是以后的工作中的努力方向。

陶瓷基摩擦材料的研究

陶瓷基摩擦材料的研究 白克江 (东营信义汽车配件有限公司山东东营257335) 摘要:本文通过对陶瓷基摩擦材料摩擦原理的探讨,分析了陶瓷配方的优异性,明确了摩擦性能调节剂在陶瓷配方中的重要作用,并利用国际先进的试验方法FMVSS135对配方性能进行了全面的研究。 关键词:陶瓷基摩擦材料摩擦性能调节剂 Abstract:The article analyzes the excellent of ceramics formula and makes clear the importance of friction regulator in ceramic formula by studying the principle of ceramic radicle and completely researching the formula function through the international advanced trial method FMVSS135. Keywords:Friction material of ceramic radicle Friction function regulator 一、前言 做为刹车片的摩擦材料,在满足人们正常使用中制动性能的同时,其使用寿命、环保性和舒适性也是人们非常关注的一个问题。而影响其使用寿命、环保性和舒适性的关键因素便是摩擦材料中基础增强材料和摩擦性能调节剂的选择和正确应用。 众所周知,石棉在摩擦材料中具有优秀的综合性能,但石棉有害健康,而且其在我国已经逐渐开始被禁用。半金属摩擦材料虽然因其比较优异的性能已经得到了广大用户的认可,但其易锈蚀、伤对偶、易发生噪音的缺点,一直在困惑着摩擦材料的研究者们,因此随着摩擦材料的发展,少金属和非金属摩擦材料应运而生,本文探讨的便是NAO摩擦材料中的一种:陶瓷基摩擦材料。 陶瓷基摩擦材料是一种利用无机矿物纤维和有机纤维做为增强材料,以改性树脂和橡胶粉为粘合剂,利用多种有机和无机材料做为摩擦性能调节剂配合加工而成的摩擦材料。其特点是无噪音、落灰少,不伤对偶、使用寿命长、无锈蚀。 二、基础摩擦材料的选择 1、增强纤维的选择 矿物纤维和陶瓷纤维的使用温度均可达到1000℃以上,具有良好的分散性能及高温稳定性,且价格比较便宜。这两种纤维的长径比比较小,虽然具有较大的比表面积,但其增强效果并不是十分的理想,因此本研究选用矿物纤维、陶瓷纤维及凯芙拉进行三元复合,来改善摩擦材料的高温摩擦性能和机械强度,以满

烧结金属摩擦材料现状与发展动态

烧结金属摩擦材料现状与发展动态 newmaker 1 前言 烧结金属摩擦材料是以金属及其合金为基体,添加摩擦组元和润滑组元,用粉末冶金技术制成的复合材料,是摩擦式离合器与制动器的关键组件。它具有足够的强度,合适而稳定的摩擦系数,工作平稳可靠,耐磨及污染少等优点,是现代摩擦材料家族中应用面最大、量最大的材料。 用粉末冶金技术制造烧结金属摩擦材料已有70年的历史,1929年美国开始了这项工作的研究,30年代末期首先将该材料用在了D-7、D-8铲运机中的离合器片上。发展到现在,所有载荷量高的飞机,包括米格、伊尔、波音707、747和三叉戟等,其制动器摩擦衬材料都采用了烧结金属摩擦材料。在我国,特别是在1965年以后,烧结金属摩擦材料的科研、生产得到迅速发展。迄今,我国已有十多个具有一定生产规模的生产企业,年产铜基和铁基摩擦制品约850万件,广泛应用于飞机、船舶、工程机械、农业机械、重型车辆等领域,基本满足了国内主机配套和引进设备摩擦片的备件供给和使用要求。 2 制造方法与工艺研究 2.1 制造方法 目前,国内外烧结金属摩擦材料的生产仍主要沿用1937年美国S·K·Wellman及其同事们创造的钟罩炉加压烧结法(压烧法),该方法的基本工序是:钢背板加工→往油、电镀铜层(或铜、锡层);配方料混合→压制成薄片→与钢背板烧结成一体→加工沟槽及平面。由于传统的压烧法存在着能耗大、生产效率相对低、原材料粉末利用率低、本钱高等缺点。因此,一些国家对传统工艺作了一些改进,同时十分注重新工艺的研究,在改善或保证产品性能条件下探索和寻求进步经济效益的途径。 新的制造工艺相继问世,其中最令人瞩目的是喷撒工艺(Sprinkling powder procedure),它以生产的高效率和明显的经济效益独具上风。喷撒工艺法以产业规模生产烧结金属摩擦材料始于70年代,美国的威尔曼、西德的奥林豪斯和尤里特、奥地利的米巴等企业拥有这项技术。80年代中期,杭州粉末冶金研究所从奥地利米巴公司引进了该技术。 喷撒工艺的基本流程是:钢背板在溶剂(如四氯化碳中脱脂处理(或钢背板电镀)→在钢背板上喷撒上混合材料→预烧→压沟槽→终烧→精整。 与传统的压烧法相比,喷撒工艺主要有下列一些优点: (1)实现了无加压连续烧结,耗能低。

粉末冶金综述论文

合金元素在Cu-PM材料中的应用研究进展 (重庆理工大学重庆巴南) 摘要:在铜基粉末冶金材料中添加合金元素可以显著改善材料的性能特别是摩擦性能,烧结含合金元素的Cu-PM材料是一种有发展前景的粉末冶金材料,如添加Al、Cr、Ni等元素。本文综述了合金元素对铜基粉末冶金材料的性能和组织结构等的影响,总结了到目前为止相关领域的结论和进展,并讨论了Cu-PM 材料生产现状和发展趋势。 关键词:合金元素;Cu-PM;应用;进展 1 引言 铜基粉末冶金摩擦材料是以铜粉为主要成分,此外含有润滑组元石墨和摩擦组元陶瓷颗粒以及强化铜基体的合金元素等多种组分。其最早出现于1929年,材料是含少量的铅、锡和石墨的铜基合金。铜基粉末冶金摩擦材料在飞机、汽车、船舶、工程机械等刹车装置上的应用发展较快,使用较成熟是在70年代之后。前苏联于1941年后成功地研制了一批铜基摩擦材料,广泛应用于汽车和拖拉机上。美国对铜基摩擦材料的研究也较多,主要是致力于基体强化,从而提高材料的高温强度和耐磨性。二十世纪初,铜基摩擦材料大多用在干摩擦条件下工作,五十年代以后,大约75%的铜基摩擦材料,均在润 滑条件下工作。这些摩擦材料都是以青铜为基,以锌、铝、镍、铁等元素强化基体。由于合金元素在铜基粉末冶金材料中的良好作用,国内很多单位及个人展开了相关方面的工作并发表了论文及成果。本文就国内含合金元素的铜基粉末冶金材料的相关研究进行了论述。 2 Cu-PM材料生产现状及国内外对比 纯铜粉末主要用电解法和雾化法生产。 电解法是借助电流的作用, 使电解液中的铜离子在阴极析出成粉的制粉过程。用电解法生产的铜粉呈表面积发达的树枝状、纯度高、压制性能优良, 是纯铜粉末的主要生产方法。相关文献表中数字表明, 我国的铜及铜基合金粉末的产量和用量与欧美等国家差距很大, 这从一个侧面说明我国铜粉生产与应用还具有十分广阔的开发空间。电解铜粉与国外产品相比, 主要差距在于:(1)产品的规格少。(2)粉末的抗氧化性不足, 国外电解铜粉可以保存一年甚至数年都不氧化变色, 而国内铜粉保存期一般不超过半年。 雾化法是借助于高压气流或水流介质的冲击作用将液态铜或其合金粉碎成粉末的工艺过程。所产生的纯铜粉末为近球形, 松装密度大, 流动性好, 但压制性能较差, 用量不及电解铜粉。由于雾化法生产成本低、效率高、对环境污染小, 是一个很有发展潜力的生产方法。 我国的铜基合金粉末的应用以粉末冶金零件为主,与国外相比主要存在两个方面的不足:(1)在新产品的开发能力方面。如美国青铜粉末公司开发了无铅可切削黄铜粉末,已形成Cu-10Zn、Cu-20Zn 、Cu-30Zn 三个牌号;而且国外大公司除完全合金化的粉末外, 还普遍开发部分合金化粉末和预混合粉末, 为不同的产品和用户提供特定的粉末, 以提高产品性能, 降低生产成本, 而我国在这方面还是空白。(2)特种铜基粉末的研制和生产能力不足。特种铜基粉末一般指非结构材料中应用的铜合金粉末。这类粉末对合金的成分、纯度、粒度、粒形均有着较高的要求, 如热喷涂、钎焊、化工等领域应用的铜基粉末。目前这些高性能粉末主要是由高等学校和研究院进行研制和小批量生产试制, 还未形成成熟的牌号和批量生产能力。而且部分特殊性能的粉末还需依靠进口。 3 合金元素添加对Cu-PM材料影响进展 3.1 Al元素在Cu-PM材料中的应用 综合相关文献可知,材料的显微组织有新相生成,基体组织得到细化且晶粒分布均匀,材料整体性能得到提高。其中,黄建龙等[1]关于Al元素含量对Cu-PM材料性能的影响研究中发现在Cu-PM材料中添加铝元素后,材料的密度、孔隙度和抗压强度、摩擦因数降低,硬度和线膨胀率增加,而磨损率明显降低,同时随着Al含量的增加,材料的密度、孔隙度、抗压强度逐渐降低,线膨胀率呈上升趋势,磨损率明显降低,而摩擦因数变化不明显。杨明关于Al、Zr元素含量对Fe-18Cu-PM材料组织

金属硫化物陶瓷摩擦材料的制备与性能研究_李双君

金属硫化物陶瓷摩擦材料的制备与性能研究 李双君,魏明坤 (武汉理工大学理学院,湖北武汉430070) 摘要:以硫粉、锡粉、三硫化二锑为烧结剂,再加入其他辅助原料,利用金属硫化物的低熔点烧结制备陶瓷摩擦材料。研究了原料的不同配比对金属硫化物陶瓷摩擦材料的体积密度、气孔率、力学性能、摩擦性能以及显微结构的影响。硫含量对金属硫化物陶瓷摩擦材料性能有很重要的影响,通过对比寻求较为理想的原料配比,并对其实际应用的可行性进行探讨。 关键词:硫化物陶瓷;摩擦材料;性能 Preparati on ofM etal Sulfi des Cera m i c Friction M aterial and its Properties LI Shuang-jun,WE I M ing-kun (Schoo l o f Sc i e nce,W uhan Un iversity of Techno l o gy,H ube iW uhan430070,Chi n a) Abst ract:E le m ental su lfur,ti n powder and anti m ony trisu lfide used as sinteri n g agents,and then added other sup-porti n g m aterials,w ith lo w m elti n g po i n tm etal su lfides sinteri n g,cera m ic fricti o n m ater i a lw as prepared.The ra w m ater-i als of different proporti o ns ofm etal su lfide cera m ic friction m ateria l b u l k density,porosity,m echanical properties,friction properties and m icr oscopic structure w ere studied.Su lfur content had a sign ificant i m pact on m eta l sulfi d e cera m ic friction m aterial perfor m ance,By co m pari n g the ratio o f ra w m ateria ls,a m ore satisfactory rati o of ra w m aterials w as found ou,t and the feasi b ility of the ir practical app lication w as discussed. K ey w ords:su lfi d e cera m ic;friction m ateria;l property 车载摩擦片发展到现在,大概分为四种类型:石棉基摩擦衬片、半金属摩擦制动衬片、无石棉摩擦制动衬片和金属基烧结摩擦制动衬片[1]。 石棉基摩擦材料因为有致癌作用已遭淘汰。半金属摩擦材料中钢纤维容易生锈,锈蚀后易出现粘着对偶或者损伤对偶,使摩擦片强度降低,磨损加剧,摩擦系数稳定性变差;当摩擦温度高于300e时,易出现剥落现象,密封圈软化和制动液发生气化而造成制动失灵;易产生低速下的低频噪音。金属基摩擦材料磨损率高、摩擦传载力矩低、高温下性能衰退严重等,难以适用在重载干式离合器中[2]。 目前,虽然很多无石棉摩擦材料的综合性能已得到进一步提高,但仍存在很多问题,如有的材料在性能提高的同时,成本也大幅度提高,有的材料则出现粘结强度不够、噪声大等问题,所以全面提高新型摩擦材料的性能仍是亟待解决的一项任务。 本课题利用硫化锡、三硫化二锑的熔点较低,以其为烧结剂,添加其它助剂在较低的温度下烧结制备金属硫化物陶瓷摩擦材料,有利于降低能耗及生产成本,使其具有良好的摩擦性能,有良好的应用前景。并研究了不同配比的原料对金属硫化物陶瓷性能的影响。 1实验部分 1.1试样制备 金属硫化物陶瓷材料的配比见表1。 表1金属硫化物陶瓷材料的配比(w t%) 试样编号升华硫锡粉三硫化二锑铁铝粉钢钎氧化铝粉石墨二硫化钼100253530532 213213530532 325183530532 437153530532 549123530532 651193530532 1.2实验过程 按照表1所示配方配料,然后进行球磨搅拌混料,将配好的原料装入模具中,在压力320M P a用粉末压样机压制成型,于可控硅高温炉中常压烧结,温度500e。保温2h后自然冷却,再将 # 101 # 2010年38卷第6期广州化工

陶瓷基复合材料综述

浅论陶瓷复合材料的研究现状及应用前景 董超2009107219金属材料工程 摘要 本文主要对陶瓷复合材料的研究现状及应用前景进行了研究,并对当今陶瓷复合材料发展面临的问题进行了概括,希望对陶瓷复合材料的进一步发展起到一定的作用。 本文首先对Al2O3陶瓷复合材料和玻璃陶瓷复合材料的研究进展及发展前景进行了详细的研究。然后对整个陶瓷复合材料的发展趋势及存在的问题进行了分析,得出了在新的时期陶瓷复合材料主要向功能、多功能、机敏、智能复合材料、纳米复合材料、仿生复合材料方向发展;目前复合材料面临的主要问题是基础理论研究问题和新的设计和制备方法问题。 关键词:Al2O3陶瓷复合材料玻璃陶瓷复合材料研究现状应用前景 1. 前言 以粉体为原料,通过成型和烧结等所制得的无机非金属材料制品统称为陶瓷。陶瓷的种类繁多,根据陶瓷的化学组成、性能特点、用途等不同,可将陶瓷分为普通陶瓷和特殊陶瓷两大类。而在许多重要的应用及研究领域,特殊陶瓷是主要研究对象。 陶瓷复合材料是特殊陶瓷的一种。在高技术领域内,对结构材料要求具有轻质高强、耐高温、抗氧化、耐腐蚀和高韧性的特点。陶瓷具有优良的综合机械性能,耐磨性好、硬度高、以及耐热性和耐腐蚀性好等特点。但是它的最大缺点是脆性大。近年来,通过往陶瓷中加入或生成颗粒、晶须、纤维等增强材料,使陶瓷的韧性大大地改善,而且强度及模量也有一定提高。因此引起各国科学家的重视。本文主要介绍了各种陶瓷复合材料的研究现状及其应用前景,并对陶瓷复合材料近年来的发展进行综述。 2.研究现状 随着现代科学技术快速发展,新型陶瓷材料的开发与生产发展异常迅速,新理论、新工艺、新技术和新装备不断出现,形成了新兴的先进无机材料领域和新兴产业。科学技术的发展对材料的要求日益苛刻,先进复合材料已成为现代科学技术发展的关键,它的发展水平是衡量一个国家科学技术水平的一个重要指标,因此世界各国都高度重视其研究和发展。 复合材料的可设计性大,能满足某些对材料的特殊要求,特别是在航空航天技术领域的应用得到迅速发展。陶瓷复合材料的研究,根本目的在于提高陶瓷材料的韧性,提高其可靠性,发挥陶瓷材料的优势,扩大应用领域。本文就几类典型的陶瓷复合材料介绍其研究现状。 2.1Al2O3陶瓷复合材料的研究进展及发展前景 Al2O3陶瓷作为常见陶瓷材料,既具有普通陶瓷耐高温、耐磨损、耐腐蚀、

CSiC陶瓷基复合材料界面力学性能的离散元模拟李林涛

C/SiC陶瓷基复合材料界面力学性能的离散元模拟* 李林涛,谭援强,姜胜强 (湘潭大学机械工程学院,湘潭411105 )摘要 采用离散元法(DEM),用BPM(Bonded-p article model)模型分别建立并校准SiC陶瓷基体和碳纤维离散元模型,采用位移软化接触模型表征层间和纤维/基体之间的界面元损伤双线性本构关系。通过DCB试验(Doub-le cantilever beam virtual test)和微滴脱黏试验分别对其界面强度进行收敛试验,动态地观察了塑性变形、裂纹扩展及界面脱黏过程。结果表明,位移软化接触模型可以很好地表征界面损伤过程,采用离散元法可以很好地动态模拟较复杂复合材料的损坏过程。 关键词 C/SiC复合材料 界面性能 离散元法(DEM) 位移软化接触模型 模拟 中图分类号:TB332 文献标识码:A Study  on Interfaces Properties of C/SiC Ceramic Matrix CompositesUsing  Discrete Element MethodLI Lintao,TAN Yuanqiang ,JIANG Shengqiang(School of Mechanical Engineering,Xiangtan University,Xiang tan 411105)Abstract With the aid of BPM(Bonded-particle model),the discrete element models of SiC ceramics matrixand carbon fiber were set up and calibrated separately by the discrete element method(DEM).The bilinear cohesivelaw of interface element damage in interlayer and on matrix/fiber interface was characterized using displacement-sof-tening contact models,and then calibrated by DCB test(Double cantilever beam virtual test)and microbond test,re-spectively.Plastic deformation,crac-king growth situation and dynamic processes of interface debonding were ob-served in these simulation tests.The results show that the displacement-softening contact model could characterize in-terfacial damage process nicely,and discrete element method could simulate dynamic damage process for more complexcomposite materials admirably .Key words C/SiC composites,interfacial properties,discrete element method(DEM),displacement-softeningcontact  model,simulation *国家自然科学基金( 50875224;51005194);湖南省研究生科研创新基金(CX2010B262) 李林涛: 男,1985年生,硕士,主要从事机械工程材料和离散元研究 E-mail:lilintao212@163.com 谭援强:男,博士生导师,主要从事摩擦学、离散元和机械传动方面研究 E-mail:tanyq @xtu.edu.cn0 引言 C/SiC陶瓷基复合材料具有耐高温、 抗腐蚀、高强度、高韧性等优良的高温力学性能,在航空航天、航海、汽车等领域有着广泛应用 [1] 。与SiC陶瓷材料相比, 由于碳纤维的加入,C/SiC陶瓷基复合材料的韧性得到了有效提高, 使陶瓷脆性材料表现出伪塑性行为,减少了发生灾难性损坏的几率[ 2,3] 。目前,国内外学者主要采用有限元法(FEM) 对复合材料进行计算模拟研究。张博明等[4] 通过有限元模拟方法分析 了微观参数(如界面强度等)对材料宏观性能的影响,从而对 复合材料进行优化设计。李典森等[5]采用有限元法建立了 编织型复合材料的三维模型,模拟得到合理的应力分布,可以对不同的复合材料起到预知作用。FEM在工程应用上比较成熟, 在复合材料上却很难解释基体微裂纹对界面的影响,也难以动态观察微裂纹的扩展过程。关于离散元法 (DEM) ,块体材料是由接触键和平行键相连接的颗粒集合来模拟其属性,只要外界载荷超过颗粒间键的强度或断裂能,键就发生断裂。改变断裂键的颜色就可以形象地观察到裂纹的运动以及界面脱黏等情况。同时位移软化接触模型是一种双线性结构,与界面元本构模型很接近,可以用来表征界面力学性能。基于DEM的这些优势和特点,采用PFC(Particle flow code)软件建立并校准复合材料SiC基体和碳纤维的离散元(BPM)模型,以位移软化接触模型模拟脆/脆复合材料的界面属性,并通过DCB和微滴脱黏收敛试验,再现裂纹的生成与扩展及界面脱黏等过程,使离散元法在复合材料领域里发挥独特的优势。 1 离散元法 离散元法(Discrete element method,DEM)起源于分子动力学。1971年,离散元法首先由Cundall提出( 适用于岩·841·材料导报B:研究篇 2 012年11月(下)第26卷第11期

摩擦材料

摩擦材料 一、概论 摩擦材料是一种应用在动力机械上,依靠摩擦作用来执行制动和传动功能的部件材料。它主要包括制动器衬片(刹车片)和离合器面片(离合器片)。刹车片用于制动,离合器片用于传动。 任何机械设备与运动的各种车辆都必须要有制动或传动装置。摩擦材料是这种制动或传动装置上的关键性部件。它最主要的功能是通过摩擦来吸收或传递动力。如离合器片传递动力,制动片吸收动能。它们使机械设备与各种机动车辆能够安全可靠地工作。所以说摩擦材料是一种应用广泛又甚关键地材料。 摩擦材料是一种高分子三元复合材料,是物理与化学复合体。它是由高分子粘结剂(树脂与橡胶)、增强纤维和摩擦性能调节剂三大类组成及其它配合剂构成,经一系列生产加工而制成的制品。摩擦材料的特点是具有良好的摩擦系数和耐磨损性能,同时具有一定的耐热性和机械强度,能满足车辆或机械的传动与制动的性能要求。它们被广泛应用在汽车、火车、飞机、石油钻机等各类工程机械设备上。民用品如自行车、洗衣机等作为动力的传递或制动减速用不可缺少的材料。 二、摩擦材料发展简史 自世界上出现动力机械和机动车辆后,在其传动和制动机构中就使用摩擦片。初期的摩擦片系用棉花、棉布、皮革等作为基材,如:将棉花纤维或其织品浸渍橡胶浆液后,进行加工成型制成刹车片或刹车带。其缺点:耐热性较差,当摩擦面温度超过120℃后,棉花和棉布会逐渐焦化甚至燃烧。随着车辆速度和载重的增加,其制动温度也相应提高,这类摩擦材料已经不能满足使用要求。人们开始寻求耐热性好的、新的摩擦材料类型,石棉摩擦材料由此诞生。 石棉是一种天然的矿物纤维,它具有较高的耐热性和机械强度,还具有较长的纤维长度、很好的散热性,柔软性和浸渍性也很好,可以进行纺织加工制成石棉布或石棉带并浸渍粘结剂。石棉短纤维和其布、带织品都可以作为摩擦材料的基材。更由于其具有较低的价格(性价比),所以很快就取代了棉花与棉布而成为摩擦材料中的主要基材料。1905年石棉刹车带开始被应用,其制品的摩擦性能和使用寿命、耐热性和机械强度均有较大的提高。1918年开始,人们用石棉短纤维与沥青混合制成模压刹车片。20世纪20年代初酚醛树脂开始工业化应用,由于其耐热性明显高于橡胶,所以很快就取代了橡胶,而成为摩擦材料中主要的粘结剂材料。由于酚醛树脂与其他的各种耐热型的合成树脂相比价格较低,故从那时起,石棉-酚醛型摩擦材料被世界各国广泛使用至今。 20世纪60年代,人们逐渐认识到石棉对人体健康有一定的危险性。在开采或生产过程中,微细的石棉纤维易飞扬在空气中被人吸入肺部,长期间处于这种环境下的人们比较容易患上石棉肺一类的疾病。因此人们开始寻求能取代石棉的其它纤维材料来制造摩擦材料,即无石棉摩擦材料或非石棉摩擦材料。20世纪70年代,以钢纤维为主要代替材料的半金属材料在国外被首先采用。80年代-90年代初,半金属摩擦材料已占据了整个汽车用盘式片领域。20世纪90年代后期以来,NAO(少金属)摩擦材料在欧洲的出现是一个发展的趋势。无石棉,采用两种或两种以上纤维(以无机纤维为主,并有少量有机纤维)只含少量钢纤维、铁粉。NAO(少金属)型摩擦材料有助于克服半金属型摩擦材料固有的高比重、易生锈、易产生制动噪音、伤对偶(盘、鼓)及导热系数过大等缺陷。目前,NAO (少金属)型摩擦材料已得到广泛应用,取代半金属型摩擦材料。2004年开始,随汽车工业飞速发展,人们对制动性能要求越来越高,开始研发陶瓷型摩擦材料。陶瓷型摩擦材料主要以无机纤维和几种有机纤维混杂组成,无石棉,无金属。其特点为: 1. 无石棉符合环保要求; 2. 无金属和多孔性材料的使用可降低制品密度,有利于减少损伤制动盘(鼓)和产生制动噪音的粘度。 3. 摩擦材料不生锈,不腐蚀; 4. 磨耗低,粉尘少(轮毂)。 三、摩擦材料分类 在大多数情况下,摩擦材料都是同各种金属对偶起摩擦的。一般公认,在干摩擦条件下,同对偶摩擦系数大于0.2的材料,称为摩擦材料。 材料按其摩擦特性分为低摩擦系数材料和高摩擦系数材料。低摩擦系数材料又称减摩材料或润滑材料,其作用是减少机械运动中的动力损耗,降低机械部件磨损,延长使用寿命。高摩擦系数材料又称摩阻材料(称为摩擦材料)。

陶瓷基复合材料论文 (1)

陶瓷基复合材料在航天领域的应用 概念:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。 一、陶瓷基复合材料增强体 用于复合材料的增强体品种很多,根据复合材料的性能要求,主要分为以下几种 纤维类增强体 纤维类增强体有连续长纤维和短纤维。连续长纤维的连续长度均超过数百。纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。 颗粒类增强体 颗粒类增强体主要是一些具有高强度、高模量。耐热、耐磨。耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。细金刚石、高岭土、滑石、碳酸钙等。主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末 晶须类增强体

晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。 金属丝 用于复合材料的高强福、高模量金属丝增强物主要有铍丝、钢丝、不锈钢丝和钨丝等,金属丝一般用于金属基复合材料和水泥基复合材料的增强,但前者比较多见。 片状物增强体 用于复合材料的片状增强物主要是陶瓷薄片。将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。 二、陶瓷基的界面及强韧化理论 陶瓷基复合材料(CMC)具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,被认为是推重比10以上航空发动机的理想耐高温结构材料。界面作为陶瓷基复合材料重要的组成相,其细观结构、力学性能和失效规律直接影响到复合材料的整体力学性能,因此研究界面特性对陶瓷基复合材料力学性能 的影响具有重要的意义。 界面的粘结形式 (1)机械结合(2)化学结合 陶瓷基复合材料往往在高温下制备,由于增强体与基体的原子扩散,在界面上更易形成固溶体和化合物。此时其界面是具有一定厚度的反应区,它与基体和增强体都能较好的

烧结金属材料硬度规范

烧结金属材料硬度规范 由于烧结金属材料硬度的检测和其他金属件有所不同。为了使图纸与工厂及生产厂商的实物检指能够保持一致,须统一标准与规范,经过统计多家供应商的烧结金属零件检指数据加以汇总分析,并参照一系列的国家标准,特编制烧结金属材料硬度的设计检测标准规范。 硬度硬度是烧结金属结构材料(零件)中最常使用的一个性能指标。按烧结金属结构材料(零件)的材质不同,常用的硬度测试方法有布氏硬度HB;洛氏硬度HRA、HRB、HRC;维氏硬度HV及肖氏硬度HS。它们的压头材料、压头大小、压头形状以及采用的压力各不相同。根据试样上压头所留下的压痕尺寸大小,可算出其相应的硬度值。 烧结金属结构材料通常存在孔隙。如果硬度计的压头正好压在它的孔隙处,就不能反映出其基体的真实硬度。多孔性材料的硬度值的离散性比相应的锻轧材料大。烧结金属零件的多孔性决定了其检测方法最好采用维氏硬度计,其值相对稳定而准确。烧结金属件中,含油(滑动)轴承仍用布氏硬度来表示其表观硬度。 经分析生产厂商送检的各类烧结金属零件检指数据,并参照相关国家标准规定: GB/T 9097.1-2002烧结金属材料(不包括硬质合金)表观硬度的测定第一部分:截面硬度基本均匀的材料 GB/T 4340.1-1999 金属维氏硬度试验第1部分试验方法 GB/T 231.1-2002 金属布氏硬度试验第1部分试验方法 对于烧结金属零件(含油轴承除外),在图纸上技术要求中硬度统一使用维氏硬度来标志,同样测试也使用维氏硬度标准。具体的测试统一按GB/T 4340.1-1999中3.3推荐的维氏硬度试验力表3-2,小负荷维氏硬度试验的HV0.3来标注和检测。 密度烧结金属材料制取零件时,材料具有孔隙,零件的密度是可变的。其不仅影响零件的力学性能和精度,同时影响压坯的成品率和生产效率,所以压坯密度设计是烧结金属的零件设计和制造的主要依据之一。在烧结金属零件生产中,一般说来,材料的密度愈高 ,材料的物理—力学性能愈高。烧结金属零件的密度是单位体积的质量,其体积也包含材料中孔隙的体积。 含油率含油率高低是含油轴承性能的重要指标,并与开孔率有关。测试参照国家标准: GB/T 5163-2006 烧结金属材料(不包括硬质合金)可渗性烧结金属材料密度、含油率和开孔率的测定来进行 烧结金属零件在图纸技术要求中必须要有硬度和密度二项指标,齿轮类还须增加材料抗拉及冲击强度极限值的技术要求。具体参照国家标准: GB/T 10423-2002 烧结金属摩擦材料抗拉强度的测定。 一.烧结金属材料-结构件 硬度与密度的分类:统一使用维氏硬度HV0.3,同时以零件在整机中的使用状态分为以下五大类。

蹄块摩擦材料配方

制动器摩擦片材料介绍 目前,国内外用于制动的摩擦材料主要有石棉树脂(国家法规已限制使用)型摩擦材料、无石棉树脂型摩擦材料、金属纤维增强摩擦材料、半金属纤维增强摩擦材料和混杂纤维增强摩擦材料等,国内以半金属纤维增强摩擦材料的应用最为普遍。上述这些摩擦材料的基本成分是增强纤维摩擦材料的生产过程一般为: 原料储存→称重→混合→预成型(常温模)→高温压模→样品修饰处理→检视→包装出厂。 1、石棉、钢纤维及克维拉(芳纶纤维)制动片的典型配方 a.石棉制动片配方一般为:50%石棉、15%树脂、20%耐磨粒、15%填充料。 b.钢纤维制动片配方一般为:30%钢纤维、15%树脂,10%氧化锌,10%金属粉,15%陶瓷,10%橡胶粒、10%石墨。 c.芳纶纤维制动片配方一般为:5%芳纶纤维、15%金属粉、15%耐磨粒、15%树脂、50%填充料。 2、摩擦材料中各组分的作用 2.1增强纤维 纤维在摩擦材料中作为增强剂,对制动片的强度、摩擦和磨损性能起着重要作用。 2.2粘结剂树脂和纤维材料、填充料等各组分能否良好粘结,取决于树脂对这些材料的浸润性能以及与它们形成化学键的可能性。目前,摩擦材料最常用的粘结剂是各种酚醛树脂及其改性树脂,常用酚醛树脂的性能如表3所示,它的作用是将增强纤维与其他组分粘合在一起。粘结剂是摩擦材料的基体,直接影响到材料的各种性能,因此粘结剂应满足以下性能要求。 a.在一般温度(100℃以下)下,保证摩擦材料有足够的机械强度(抗击强度、冲击强度、压缩强度、剪切强度以及一定的伸长率)。 b.当制动摩擦表面温度在200~300℃时,树脂不发生粘流、分解,应保持一定的强度,以支持摩擦表面层的工作要求,且与对偶件有良好的贴合性。

汽车离合器用铜基金属陶瓷摩擦材料的研究进展

—21— 新材料新装饰XINCAILIAOXINZHUANGSHI 2014年4期 汽车离合器用铜基金属 陶瓷摩擦材料的研究进展 冯超 徐吉波 魏子良 王琦 胡欢 (湖北汽车工业学院 材料科学与工程学院 十堰湖北 442002) 摘要:金属陶瓷摩擦材料具有吸能效率高、导热性好、摩擦系数高、耐高温、耐磨等特点,可用 于重型车、矿区用车、工程作业车、沙漠车等重载荷车辆以代替不抗热的有机摩擦片。本文综述了铜基金属陶瓷摩擦材料的发展现状,展望了铜基金属陶瓷摩擦材料的发展前景。 关键词:金属陶瓷;铜基摩擦材料;研究进展 1前言 汽车离合器靠摩擦来传递动力。当汽车行驶时,离合器的主动部件和从动盘相互压紧而一起旋转,但在起步、换档过程中,主、从动件之间相对摩擦,从动盘摩擦片发热并发生磨损。离合器的使用寿命主要取决于其从动盘摩擦片的耐磨性。通常汽车离合器从动盘摩擦片采用树脂基石棉材料做成。在160℃以上树脂片自身及其对偶件的磨损量都急剧增大,而金属陶瓷片在250℃以上仍保持很好的耐磨性,其对偶的磨损也很小。另一方面,金属陶瓷摩擦材料对铸铁的摩擦系数要比树脂石棉片对铸铁的摩擦系数高一些,因此用金属陶瓷摩擦片的离合器在同一夹紧载荷下,能比采用树脂片的离合器提供更大的摩擦力矩,亦即在保证相同的扭矩容量下所用的夹紧载荷减小,从而使离合器接合更柔和,在相同夹紧力下扭矩得到提高[1,2]。 2 铜基金属陶瓷摩擦材料的应用 从20世纪50年代起,国外就在拖拉机、工程机械及载货汽车上开始使用金属陶瓷磨擦材料作为离合从动盘的磨擦面片。由于金属陶瓷磨擦面片的磨擦系数高于有机石棉片,采用金属陶瓷磨擦面片的离合器与采用石棉片的离合器相比,在同一夹紧载荷下可提供更大的磨擦力矩,即离合器扭矩容量较大;而在同样大小的扭矩容量下,所用夹紧载荷较小,使离合器接合更平稳、柔和。此外,金属陶瓷材料比有机材料更耐高温,对于起步换挡频繁、离合器工作温度较高的汽车来说,用金属陶瓷材料更耐磨。据有关资料介绍,在温度160℃以下有机片的耐磨性还是比较好,但当温度更高时,其耐磨性急剧下降;而金属陶瓷材料则在接近300℃的高温下仍有较好的耐磨性。显然,对于使用条件恶劣的车辆来说,其离合器从动盘磨擦面的工作温度高,只有用耐高温的金属陶瓷材料才能保证足够长的使用寿命。据有关资料介绍,采用金属陶瓷片的离合器使用寿命比有机片的长75%。 3 国内外研究现状 金属陶瓷磨擦材料是由金属基体、陶瓷成份和润滑剂组成的一种多元复合材料。金属基体的主要作用是以机械结合的方式将陶瓷成份和润滑剂保持于其中,形成具有一定机械强度的整体;陶瓷成份主要起磨擦剂作用;而润滑剂成份则主要起提高材料抗咬合性和抗粘接性的润滑作用,特别有利于降低对偶材料的磨损,并使磨擦副工作平稳。润滑剂组分和陶瓷组分共同形成金属陶瓷磨擦磨损性能的调节剂。基体作为摩擦材料的主要组元,其作用主要是以机械结合方式将摩擦颗粒和润滑剂保持于其中,形成具有一定力学性能的整体。基体的强度是摩擦材料承载能力的反应,在很大程度上取决于基体的成分、结构和物理一力学性能。目前改善材料基体结构和强度主要从两个方面入手[3-4]:一是添加合金元素来强化基体。二是在较软的基体中添加强度较高的金属纤维或其它增强纤维。基体的组织结构、物理化学性质 在很大程度上决定了粉末冶金摩擦材料的力学性能、摩擦磨损性能、 热稳定性和导热性等整体性能的发挥。摩擦材料要求基体具有足够高 的熔点,高的耐热强度和热稳定性,工作温度内有较高的塑性变形抗 力,高的耐磨性。开展对基体成分及性能的研究至关重要,对提高铜 基金属陶瓷摩擦材料摩擦性能提供有益的指导。 对铜基金属陶瓷摩擦材料基体的研究,不能仅局限于基体本身,因为现代高性能粉末冶金摩擦材料大多是多组元的复合体,各个组元对材料性能的作用是相互影响的,因此研究基体的同时也应考虑其它组元加入后对基体的影响。目前在基体方面的研究工作,大都是在摩擦材料三大组元都存在的情况下来研究的,主要涉及以下各个方面:基体的类型;基体的物理、机械性能对摩擦磨损性能的影响;合金元素(辅助组元)对基体性能的影响;基体组织、硬相和塑性相的分布、第二相的影响、摩擦过程中表层组织的变化;材料中非金属组分与金属基体的相互作用、基体夹持硬质点的能力、粘结问题的研究;改善基体的压制、烧结等工艺性能研究摩擦过程中表层元素扩散过程研 究;基体塑变能力对摩擦磨损性能的影响,孔隙度大小、分布对基体 性能的影响;改善基体耐热性、耐磨性的研究等诸多方面[5-6]。 4 发展现状 目前,随着重载汽车离合器片的发展,以及离合器结构设计的紧凑性要求,对铜基金属陶瓷摩擦材料的耐磨性和耐热性提出了更高要求,特别是高温制动的稳定性。因此研究开发具有优异性能的新型铜基摩擦材料十分重要和迫切。为提高铜基摩擦材料的耐热性和耐磨性,主要途径:添加合金元素来强化提高基体的耐磨性和耐热强度;通过改变材料的摩擦剂与润滑剂,调节材料的成分,如添加铁和石墨等耐高温、耐磨材料来提高摩擦材料的整体性能。目前铜基纳米复合材料的研究成果表明:纳米氧化物作为弥散增强相所制备的弥散强化铜基复合材料,在保持铜本身高导热性能的同时还大幅度提高了强度及抗高温软化特性,具有其他强化方法无法比拟的优点。因此,将纳米材料应用于铜基摩擦材料,为改善摩擦材料的摩擦学性能提供了新途径。 参考文献: [1]黄建龙,王建吉,党兴武,陈生圣.铝含量对铜基粉末冶金材料性能的影响.润滑与密封,2013,38(1):56-60. [2]邓海金,李明,龚敏.钢纤维对铜基金属陶瓷摩擦材料力学和摩擦学性能的影响.摩擦学报,2004,24(4):336-340. [3]钟志刚,邓海金,李明,等.铁含量对铜基金属陶瓷摩擦磨损性能的影响.材料工程,2002,(8):17-19. [4]王晔,燕青芝,张肖路,等.石墨对铜基粉末冶金闸片材料性能的影响.粉末冶金技术,2012,30(6):432-439. [5]Xiong X,Sheng H C,Chen J,et al.Effects of sintering pressure and temperature on microstructure and tribological characteristic of Cu-based aircraft brake material.Transactions of nonferrous metals society of China,2007,17:669 -675. [6]湛永钟,张国定,曾建民,等.SiC 和石墨混杂增强铜基复合材料的高温摩擦磨损特性研究.摩擦学学报,2006,26(3):223-227. 基金项目:湖北汽车工业学院大学生创新性实验项目基金资助。

连续陶瓷基复合材料的研究现状及发展趋势

第27卷第2期 硅 酸 盐 通 报 Vo.l 27 No .2 2008年4月 BULLETI N OF T HE C H INESE CERA M IC S OC IET Y Apr i,l 2008 连续陶瓷基复合材料的研究现状及发展趋势 陈维平,黄 丹,何曾先,王 娟,梁泽钦 (华南理工大学机械工程学院,广州 510640) 摘要:连续陶瓷基复合材料(C4材料)是近年来出现的一种具有全新复合增强方式的陶瓷/金属复合材料。在这种 复合材料中,基体陶瓷增强相具有三维连通的内部结构,因而起增韧作用的金属填充在陶瓷骨架的空隙中,其在空 间上也是三维连通的。实现这种复合结构需要不同于传统的复合材料成型与制备技术。这种复合结构使得连续 陶瓷基复合材料能够将陶瓷与金属各自的性能特点与优点更多的保留在最终的复合材料中;同时,还表现出了与 传统复合材料(颗粒增强复合材料、纤维增强复合材料等)不同的性能特性,具有广泛的应用前景。 关键词:连续陶瓷基复合材料;C4材料;三维连通 中图分类号:TQ174.758.2 文献标识码:A 文章编号:100121625(2008)022******* R esearch and Developm en t Per spective of C o 2con ti nuous C era m ic C o m posites C HE N Wei 2ping,H U A NG Dan,HE Ce ng 2xian,W A NG Juan,LIA NG Z e 2qin (School ofM echan icalE ngi neeri ng ,Sou t h Ch i na Un i versit y ofT echndogy ,Guangzhou 510640,Ch i na) Abstr act :Co 2conti n uous cera m ic co mposites (C4materials )are a ne w class of cera m ic /meta l co mposites w it h ne w ly rei n f orce men t manner ,where the reinf orc i n g cera m ic phase ,as t h e base of the co mposite ,is characterized as the t h ree 2di m ensional i n terpenetrati n g str ucture ;and the m etallic phase is filled i n t h e i n terspaces of the cera m ic net w or k,as the ductile phase of the co mposite .So me untraditi o na l f or m i n g and fabricating technol o gies f or the co mposites are required due to the spec i a l co 2conti n uous i n ter nal structure .The i n terna l structure of i n ter penetrati o n deter m i n es co 2conti n uous cera m ic co mposites can retain more f eatures and advantages of cera m ic and meta l respectively in the fi n al co mposite ,and also ,perf o r m the diff erent characteristics f ro m the traditi o na l co mposites (such as particle re i n f orced co mposites and fi b er reinf orced co mposites)so that this class of co mposites gain the extensive app li c ation perspectives . K ey w ord s :co 2continuous cera m ic co mposite ;C4m aterials ;three 2di m ensional i n terpenetrating 基金项目:国家自然科学基金资助项目(50575076);广东省自然科学基金重点资助项目(粤科基办[2003]07号);教育部博士点基金资助 项目(20040510107) 作者简介:陈维平(19502),男,教授,博士生导师.主要从事高性能金属/陶瓷复合材料的研究.E 2m a i :l m e wpchen@sc u t .edu .cn 1 连续陶瓷基复合材料 连续陶瓷基复合材料(co 2continuous cera m ic co mposites),简称为C4材料,指的是陶瓷增强体具有三维连通骨架结构的陶瓷基复合材料。这种三维网络陶瓷(骨架)/铝合金复合材料由美国俄亥俄州大学的研究人员Bresli n 等发现,他们将这种复合类型的新材料称为连续陶瓷复合材料(co 2continuous cera m ic

相关文档