文档库 最新最全的文档下载
当前位置:文档库 › 神经网络与模糊控制考试题及答案

神经网络与模糊控制考试题及答案

神经网络与模糊控制考试题及答案
神经网络与模糊控制考试题及答案

一、填空题

1、模糊控制器由模糊化接口、解模糊接口、知识库和模糊推理机组成

2、一个单神经元的输入是 1.0 ,其权值是 1.5,阀值是-2,则其激活函数的净输入是-0.5 ,当激活函数是阶跃函数,则神经元的输出是 1

3、神经网络的学习方式有导师监督学习、无导师监督学习

和灌输式学习

4、清晰化化的方法有三种:平均最大隶属度法、最大隶属度取最小/最大值法和中位数法,加权平均法

5、模糊控制规则的建立有多种方法,是:基于专家经验和控制知识、基于操作人员的实际控制过程和基于过程的模糊模型,基于学习

6、神经网络控制的结构归结为神经网络监督控制、神经网络直接逆动态控制、神网自适应控制、神网自适应评判控制、神网内模控制、神网预测控制六类

7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和。

7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控

制系统

8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。

8、不确定性、高度的非线性、复杂的任务要求

9.智能控制系统的主要类型有、、、

、和。

9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统

10.智能控制的不确定性的模型包括两类:(1);

(2)。

10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。11.控制论的三要素是:信息、反馈和控制。

12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、

和。知识库的设计推理机的设计人机接口的设计

13.专家系统的核心组成部分为和。知识库、推理机

14.专家系统中的知识库包括了3类知识,它们分别为、、

和。判断性规则控制性规则数据

15.专家系统的推理机可采用的3种推理方式为推理、和推理。

15、正向推理、反向推理和双向推理

16.根据专家控制器在控制系统中的功能,其可分为和。

16、直接型专家控制器、间接型专家控制器

17.普通集合可用函数表示,模糊集合可用函数表示。特征、隶属

18.某省两所重点中学在(x 1~x 5)五年高考中,考生“正常发挥”的隶属函数分别为0.85、0.93、

0.89、0.91、0.96和0.92、0.96、0.87、0.93、0.94。则在研究该省重点中学高考考生水平发

挥的状况时,论域应为X =,若分别用A %、B %表示两个学校考试“正常发挥”的状况,则

用序偶表示法分别表示为A =%,B =%

;“未正常发挥”模糊子集(用行向量表示)分别为和;

而该省两所重点中学每年高考考生“正常发挥”的模糊子集应该是(用Zadeh 法表示)。{}12345,,,,X x x x x x =,{}12345(,0.85),(,0.93),(,0.89),(,0.91),(,0.96)A x x x x x =:

{}12345(,0.92),(,0.96),(,0.87),(,0.93),(,0.94)B x x x x x =:

[0.15,0.07,0.11,0.09,0.04]A =:,[0.08,0.04,0.13,0.07,0.06]B =: 12345

0.850.930.870.910.94x x x x x ++++ 19.确定隶属函数的方法大致有 、 和。

19、模糊统计法 主观经验法 神经网络法

20.在模糊控制中应用较多的隶属函数有6种,它们分别为高斯型隶属函数、、

、、和。

20、广义钟形隶属函数 S 形隶属函数 梯形隶属函数 三角形隶属函数 Z 形隶属函数

21.在天气、学问、晴朗、表演和渊博中可作为语言变量值的有和。

21、晴朗、渊博

23.模糊控制是以、、和为基础的一种智能控制方法。模糊集理论,模糊语言变量,模糊逻

辑推理

24.模糊控制的数学基础为。24、模糊集合

25.模糊控制中,常用的语言变量值用2PM

,±PS ,2NM ,2NO 等表示,其中2PM 代表 , 2NO

代表。25、正中、负零 26. 在模糊控制中,模糊推理的结果是量。26、模糊

27. 在模糊控制中,解模糊的结果是量。确定量

28. 基本模糊控制器的组成包括知识库以及、和。

模糊化接口、推理机、解模糊接口

29. 在模糊控制中,实时信号需要才能作为模糊规则的输入,从而完成模糊推理。

29、 模糊化

30.模糊控制是建立在基础之上的,它的发展可分为三个阶段,分别为、、和。

30、人工经验 模糊数学发展和形成阶段 产生了简单的模糊控制器 高性能模糊控制阶段

31.模糊集合逻辑运算的模糊算子为、和。

31、交运算算子并运算算子平衡算子

32.在温度、成绩、暖和、口才和很好中可作为语言变量值的有和

32.暖和、很好

33.在水位、压力、暖和、表演、中年人和比较好中可作为语言变量值的有、和。

33、暖和、中年人和比较好

34.在水位、寒冷、温度、表演和偏高中可作为语言变量值的有和。

34.寒冷、偏高

35. 模糊控制的基本思想是把人类专家对特定的被控对象或过程的总结成一系列

以“”形式表示的控制规则。

35、控制策略“IF条件THEN 作用”

36.神经网络的发展历程经历了4个阶段,分别为、、和。

36、启蒙期、低潮期、复兴期、新连接机制期

37.神经元由4部分构成,它们分别为、、和突触。

37、细胞体、树突、轴突

38.根据神经网络的连接方式,神经网络的3种形式为:、和。38、前向网络反馈网络自组织网络

39.神经网络的3个要素为:、和。

39、神经元的特性拓扑结构学习规则

41.目前神经网络的学习算法有多种,按有无导师分类,可分为、

和。

41、有导师学习无导师学习再励学习

42.神经网络的研究主要分为3个方面的内容,即、和。

42.神经元模型、神经网络结构、神经网络学习算法

43.神经网络的学习过程主要由正向传播和反向传播两个阶段组成。

44.神经网络控制是将和相结合而发展起来的智能控制方法。神经网络,控制理论

45. 遗传算法的主要用途是。45、寻优(优化计算)

46.常用的遗传算法的染色体编码方法有二种,它们分别为实数编码和。

46、二进制编码

47.遗传算法的3种基本遗传算子、和。

47、比例选择算子单点交叉算子变异算子

48.遗传算法中,适配度大的个体有被复制到下一代。更多机会

49. 遗传算法中常用的3种遗传算子(基本操作)为、、和。

49、复制、交叉和变异

二、简答题:

1. 试说明智能控制的的基本特点是什么?

(1)学习功能(1分)(2)适应功能(1分)(3)自组织功能(1分)

(4)优化能力(2分)

2、试简述智能控制的几个重要分支。

专家控制、模糊控制、神经网络控制和遗传算法。

3、试说明智能控制研究的数学工具。

智能控制研究的数学工具为:(1)符号推理与数值计算的结合;(2)离散事件与连续时间系统得结合;(3)模糊集理论;(4)神经网络理论;(5)优化理论

4.智能控制系统有哪些类型,各自的特点是什么?

(1)专家控制系统(1分)

专家系统主要指的是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验。它具有启发性、透明性、灵活性、符号操作、不一确定性推理等特点。

?(2)模糊控制系统(1分)

在被控制对象的模糊模型的基础上,运用模糊控制器近似推理手段,实现系统控制的一种方法模糊模型是用模糊语言和规则描述的一个系统的动态特性及性能指标。

?(3)神经控制系统(1分)

神经网络具有某些智能和仿人控制功能。学习算法是神经网络的主要特征。

(4)遗传算法(2分)

遗传算法是基于自然选择和基因遗传学原理的搜索算法,是基于进化论在计算机上模拟生命进化论机制而发展起来的一门学科. 遗传算法可用于模糊控制规则的优化及神经网络参数及权值的学习,在智能控制领域有广泛的应用。

5、简述专家控制与专家系统存在的区别。

专家控制引入了专家系统的思想,但与专家系统存在区别:

(1)专家系统能完成专门领域的功能,辅助用户决策;专家控制能进行独立的、实时的

自动决策。专家控制比专家系统对可靠性和抗干扰性有着更高的要求。

(2)专家系统处于离线工作方式,而专家控制要求在线获取反馈信息,即要求在线工作方式。

6、试说明智能控制的三元结构,并画出展示它们之间关系的示意图。

把智能控制扩展为三元结构,即把人工智能、自动控

制和运筹学交接如下表示:(2分)

IC=AI∩AC∩OR

OR一运筹学(Operation research)

IC一智能控制( intelligent control);

Al一人工智能(artificial intelligence);

AC一自动控制(automatic Colltrol);

∩一表示交集.

7.比较智能控制与传统控制的特点。

传统控制:经典反馈控制和现代理论控制。它们的主要特征是基于精确的系统数学模型的控制。适于解决线性、时不变等相对简单的控制问题。(2分)

智能控制:以上问题用智能的方法同样可以解决。智能控制是对传统控制理论的发展,传统控制是智能控制的一个组成部分,在这个意义下,两者可以统一在智能控制的框架下。

8. 简述智能控制系统较传统控制的优点。

在传统控制的实际应用遇到很多难解决的问题,主要表现以下几点:(1)实际系统由于存在

复杂性、非线性、时变性、不确定性和不完全性等,无法获得精确的数学模型。(1分)(2)某些复杂的和包含不确定性的控制过程无法用传统的数学模型来描述,即无法解决建模问题。(1分)(3)针对实际系统往往需要进行一些比较苛刻的线性化假设,而这些假设往往与实际系统不符合。(1分)(4)实际控制任务复杂,而传统的控制任务要求低,对复杂的控制任务,如机器人控制、CIMS、社会经济管理系统等复杂任务无能为力。(1分) 智能控制将控制理论的方法和人工智能技术灵活地结合起来,其控制方法适应对象的复杂性和不确定性,能够比较有效的解决上述问题,具有较大的优越性。( 1分)

9、智能控制与传统控制的主要区别如何?

传统控制:经典反馈控制和现代理论控制。它们的主要特征是基于精确的系统数学模型的控制。适于解决线性、时不变等相对简单的控制问题。

智能控制:以上问题用智能的方法同样可以解决。智能控制是对传统控制理论的发展,能够解决传统控制方法难以解决的复杂系统的控制问题,如:对象的不确定性、高度的非线性和复杂的任务要求。传统控制是智能控制的一个组成部分,在这个意义下,两者可以统一在智能控制的框架下。

10.在模糊控制器的设计中,常用的反模糊化的方法有哪几种?

最大隶属度法、中心法和加权平均法。

11.简述将模糊控制规则离线转化为查询表形式的模糊控制器的设计步骤。

(1)确定模糊控制器的结构; (2)定义输入、输出模糊集; (3) 定义输入、输出隶属函数; (4)建立模糊控制规则; (5)建立模糊控制表; (6)模糊推理;

(7)反模糊化。

12.简述模糊控制的发展方向

模糊控制的发展方向有:(1)Fuzzy-PID复合控制(2)自适应模糊控制(3)专家模糊控制(4)神经模糊控制(5)多变量模糊控制

13、模糊控制系统一般由几个部分组成?

1)模糊控制器2)输入/输出接口装置3)广义对象4)传感器

14、比较模糊集合与普通集合的异同。

比较模糊集合与普通集合的异同。

相同点:都表示一个集合;

不同点:普通集合具有特定的对象。而模糊集合没有特定的对象,允许在符合与不符合中间存在中间过渡状态。

15.简述模糊集合的概念。

设为某些对象的集合,称为论域,可以是连续的或离散的;论域到[0,1]区间的任一映射 : →[0,1] 确定了的一个模糊子集;称为的隶属函数,表示论域的任意元素属于模糊子集F的程度。模糊子集F的表示方法有几种,如:向量表示法、Zadeh表示法、序偶表示法等。

16、请画出模糊控制系统的组成框图,并结合该图说明模糊控制器的工作原理。

模糊控制器的工作原理为:

(1) 模糊化接口 测量输入变量(设定输入)和受控系统的输出变量,并把它们映射到一个合适的响应论域的量程,然后,精确的输入数据被变换为适当的语言值或模糊集合的标识符。本单元可视为模糊集合的标记。

(2) 知识库 涉及应用领域和控制目标的相关知识,它由数据库和语言(模糊)控制规则库组成。数据库为语言控制规则的论域离散化和隶属函数提供必要的定义。语言控制规则标记控制目标和领域专家的控制策略。

(3) 推理机 是模糊控制系统的核心。以模糊概念为基础,模糊控制信息可通过模糊蕴涵和模糊逻辑的推理规则来获取,并可实现拟人决策过程。根据模糊输入和模糊控制规则,模糊推理求解模糊关系方程,获得模糊输出。

(4) 模糊判决接口 起到模糊控制的推断作用,并产生一个精确的或非模糊的控制作用。此精确控制作用必须进行逆定标(输出定标),这一作用是在对受控过程进行控制之前通过量程变换来实现的

17.试写出3种常用模糊条件语句及对应的模糊关系R ~

的表达式。 (1)设A ~、B ~分别是论域X、Y上的模糊集合,则模糊条件语句“if A ~ then

B ~”所决定的二元模糊关系为:

]~[]~~[~~~E A B A R B

A ??=→Y (1分) (2)设A ~、

B ~和

C ~分别是论域X、Y和Z上的模糊集合,则模糊条件语句

“if A ~ then B ~else C ~”所决定的二元模糊关系为:

]~~[]~~[~~~C ??=→A B A R B

A Y (2分) (3) 设A ~、

B ~和

C ~分别是论域X、Y和Z上的模糊集合,则模糊条件语

句“if A ~ and B ~then C ~”所决定的二元模糊关系为:

[]C B A R ~~~~1??=T

18.人工神经网络有哪些主要的结构特征?

(1)并行处理;(2分)(2)信息分布式存储;(2分)容错性。(1分)

19.简述神经元模型并画出结构图。

和神经生理学类似,人工神经网络的的基本处理单元称为神经元,每个神经元模型模拟一个生物神经元,如图所示:

神经元模型

该神经元单元由多个输入,i=1, 2, ..., n和一个输出y组成。中间状态由输入信号加权和表示,其输出为:

式中,为神经元单元的阈值),为连接权系数(对于激发状态,取正值,对于抑

制状态,取负值) ,n为输入信号数目,为神经元输出,t为时间,f(_)为输出变换函数,有时叫做激发或激励函数,往往采用0和1二值函数、S形函数和高斯函数等。

20、神经网络应具备的四个基本属性是什么?

1)并行分布式处理2)非线性处理3)自学习功能4)可通过硬件实现并行处理21.简述误差反向传播学习算法的主要思想

误差反传算法的主要思想是把学习过程分为两个阶段(1分):第一阶段(正向传播过程)给出输入信息通过输入层经隐含层逐层处理并计算每个单元的实际输出值(2分);第二阶段(反向过程),若在输出层未能得到期望输出值,则逐层递归的计算实际输出与期望输出之差值(误差)以便根据此差值调节权值。

22.简述前向(多层)神经网络的结构并画出结构图。

前向(多层)神经网络具有递阶分层结构,由一些同层神经元间不存在互连的层组成。从输入层至输出层的信号通过单向连接流通;神经元从一层连接至下一层,不存在同层神经元间的连接,如图所示。前向(多层)神经网络具有形式,如:多层感知器、BP网络、RBF网络等。

前向(多层)神经网络

23.简述专家系统与专家控制的区别。

专家控制引入了专家系统的思想,但与专家系统存在区别:

(1)专家系统能完成专门领域的功能,辅助用户决策;专家控制能进行独立的、实时的自

动决策。专家控制比专家系统对可靠性和抗干扰性有着更高的要求。

(2)专家系统处于离线工作方式,而专家控制要求在线获取反馈信息,即要求在线工作方

式。

24.试比较特征函数和隶属函数。

特征函数用来表示某个元素是否属于普通集合,而隶属函数则用来表示某个元素属于模

糊集合的程度,特征函数的取值{0,1},而隶属函数的取值[0,1],特征函数可以看作特殊

的隶属函数

25.请画出直接型专家控制器的结构图并说明其设计思想。

图略直接型专家控制器用于取代常规控制器,直接控制生产过程。具有模拟操作工人智能的功能。这种类型的控制器任务和功能相对简单,但需要在线、实时控制。

26.画出间接型专家控制器的结构图并说明其设计思想。

图略设计思想:间接型专家控制器用于和常规控制器相结合,组成对生产过程或被控对象进行间接控制的智能控制系统。具有模拟(或延伸,扩展)控制工程师智能的功能。该控制器能够实现优化适应、协调、组织等高层决策的智能控制。

27. 简述专家系统的基本构成。

知识库和推理机,具体略。

28.简述直接型专家控制器的主要设计内容。

直接型专家控制器的主要设计内容:①建立知识库;②控制知识的获取;③选择合适的推理方法。

29.根据高层决策功能的性质,简述间接型专家控制器的分类。

按照高层决策功能的性质,间接型专家控制器可分为以下几种类型:

①优化型专家控制器;②适应型专家控制器;③协调型专家控制器;④组织型专家控制器。

(完整版)卷积神经网络CNN原理、改进及应用

卷积神经网络(CNN) 一、简介 卷积神经网络(Convolutional Neural Networks,简称CNN)是近年发展起来,并引起广泛重视的一种高效的识别方法。 1962年,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的局部互连网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络[1](Convolutional Neural Networks-简称CNN)7863。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。 Fukushima在1980年基于神经元间的局部连通性和图像的层次组织转换,为解决模式识别问题,提出的新识别机(Neocognitron)是卷积神经网络的第一个实现网络[2]。他指出,当在不同位置应用具有相同参数的神经元作为前一层的patches时,能够实现平移不变性1296。随着1986年BP算法以及T-C问题[3](即权值共享和池化)9508的提出,LeCun和其合作者遵循这一想法,使用误差梯度(the error gradient)设计和训练卷积神经网络,在一些模式识别任务中获得了最先进的性能[4][5]。在1998年,他们建立了一个多层人工神经网络,被称为LeNet-5[5],用于手写数字分类,这是第一个正式的卷积神经网

络模型3579。类似于一般的神经网络,LeNet-5有多层,利用BP算法来训练参数。它可以获得原始图像的有效表示,使得直接从原始像素(几乎不经过预处理)中识别视觉模式成为可能。然而,由于当时大型训练数据和计算能力的缺乏,使得LeNet-5在面对更复杂的问题时,如大规模图像和视频分类,不能表现出良好的性能。 因此,在接下来近十年的时间里,卷积神经网络的相关研究趋于停滞,原因有两个:一是研究人员意识到多层神经网络在进行BP训练时的计算量极其之大,当时的硬件计算能力完全不可能实现;二是包括SVM在内的浅层机器学习算法也渐渐开始暂露头脚。直到2006年,Hinton终于一鸣惊人,在《科学》上发表文章,使得CNN再度觉醒,并取得长足发展。随后,更多的科研工作者对该网络进行了改进。其中,值得注意的是Krizhevsky等人提出的一个经典的CNN架构,相对于图像分类任务之前的方法,在性能方面表现出了显著的改善2674。他们方法的整体架构,即AlexNet[9](也叫ImageNet),与LeNet-5相似,但具有更深的结构。它包括8个学习层(5个卷积与池化层和3个全连接层),前边的几层划分到2个GPU上,(和ImageNet 是同一个)并且它在卷积层使用ReLU作为非线性激活函数,在全连接层使用Dropout减少过拟合。该深度网络在ImageNet大赛上夺冠,进一步掀起了CNN学习热潮。 一般地,CNN包括两种基本的计算,其一为特征提取,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该

神经网络与模糊控制考试题及答案

一、填空题 1、模糊控制器由模糊化接口、解模糊接口、知识库和模糊推理机组成 2、一个单神经元的输入是 1.0 ,其权值是 1.5,阀值是-2,则其激活函数的净输入是-0.5 ,当激活函数是阶跃函数,则神经元的输出是 1 3、神经网络的学习方式有导师监督学习、无导师监督学习 和灌输式学习 4、清晰化化的方法有三种:平均最大隶属度法、最大隶属度取最小/最大值法和中位数法,加权平均法 5、模糊控制规则的建立有多种方法,是:基于专家经验和控制知识、基于操作人员的实际控制过程和基于过程的模糊模型,基于学习 6、神经网络控制的结构归结为神经网络监督控制、神经网络直接逆动态控制、神网自适应控制、神网自适应评判控制、神网内模控制、神网预测控制六类 7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和。 7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控 制系统 8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。 8、不确定性、高度的非线性、复杂的任务要求 9.智能控制系统的主要类型有、、、 、和。 9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统 10.智能控制的不确定性的模型包括两类:(1); (2)。 10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。11.控制论的三要素是:信息、反馈和控制。 12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、 和。知识库的设计推理机的设计人机接口的设计 13.专家系统的核心组成部分为和。知识库、推理机 14.专家系统中的知识库包括了3类知识,它们分别为、、 和。判断性规则控制性规则数据

卷积神经网络CNN从入门到精通

卷积神经网络CNN从入门到精通 卷积神经网络算法的一个实现 前言 从理解卷积神经到实现它,前后花了一个月时间,现在也还有一些地方没有理解透彻,CNN还是有一定难度的,不是看哪个的博客和一两篇论文就明白了,主要还是靠自己去专研,阅读推荐列表在末尾的参考文献。目前实现的CNN在MINIT数据集上效果还不错,但是还有一些bug,因为最近比较忙,先把之前做的总结一下,以后再继续优化。 卷积神经网络CNN是Deep Learning的一个重要算法,在很多应用上表现出卓越的效果,[1]中对比多重算法在文档字符识别的效果,结论是CNN优于其他所有的算法。CNN在手写体识别取得最好的效果,[2]将CNN应用在基于人脸的性别识别,效果也非常不错。前段时间我用BP神经网络对手机拍照图片的数字进行识别,效果还算不错,接近98%,但在汉字识别上表现不佳,于是想试试卷积神经网络。 1、CNN的整体网络结构 卷积神经网络是在BP神经网络的改进,与BP类似,都采用了前向传播计算输出值,反向传播调整权重和偏置;CNN与标准的BP最大的不同是:CNN中相邻层之间的神经单元并不是全连接,而是部分连接,也就是某个神经单元的感知区域来自于上层的部分神经单元,而不是像BP那样与所有的神经单元相连接。CNN的有三个重要的思想架构: 局部区域感知 权重共享 空间或时间上的采样 局部区域感知能够发现数据的一些局部特征,比如图片上的一个角,一段弧,这些基本特征是构成动物视觉的基础[3];而BP中,所有的像素点是一堆混乱的点,相互之间的关系没有被挖掘。 CNN中每一层的由多个map组成,每个map由多个神经单元组成,同一个map 的所有神经单元共用一个卷积核(即权重),卷积核往往代表一个特征,比如某个卷积和代表一段弧,那么把这个卷积核在整个图片上滚一下,卷积值较大的区域就很有可能是一段弧。注意卷积核其实就是权重,我们并不需要单独去计算一个卷积,而是一个固定大小的权重矩阵去图像上匹配时,这个操作与卷积类似,因此我们称为卷积神经网络,实际上,BP也可以看做一种特殊的卷积神经网络,只是这个卷积核就是某层的所有权重,即感知区域是整个图像。权重共享策略减少了需要训练的参数,使得训练出来的模型的泛华能力更强。 采样的目的主要是混淆特征的具体位置,因为某个特征找出来后,它的具体位置已经不重要了,我们只需要这个特征与其他的相对位置,比如一个“8”,当我们得到了上面一个"o"时,我们不需要知道它在图像的具体位置,只需要知道它下面又是一个“o”我们就可以知道是一个'8'了,因为图片中"8"在图片中偏左或者偏右都不影响我们认识它,这种混淆具体位置的策略能对变形和扭曲的图片进行识别。 CNN的这三个特点是其对输入数据在空间(主要针对图像数据)上和时间(主要针对时间序列数据,参考TDNN)上的扭曲有很强的鲁棒性。CNN一般采用卷积层与

人工智能教程习题及答案第9章神经网络与遗传算法

第九章神经网络与遗传算法习题参考解答 9.1练习题 9.1 何谓人工神经网络?它有哪些特征? 9.2 生物神经元由哪几部分构成?每一部分的作用是什么?它有哪些特性? 9.3 什么是人工神经元?它有哪些连接方式? 9.4 B-P算法的网络结构是什么?简述B-P算法的学习过程。 9.5 什么是网络的稳定性? Hopfield网络模型分为哪两类?两者的区别是什么? 9.6 有教师学习与无教师学习的区别是什么? 请分析说明。 9.7 Hopfield模型与B-P模型的网络结构有何异同? 9.8 简述简单遗传算法的基本原理和一般过程,说明个体选择的常用策略,以及遗传操作“交叉”和“变异”所起的作用。 9.9 遗传算法有哪些特点?在应用遗传算法时要解决的最关键问题有哪些? 9.2习题参考解答 9.1 答: (略) 9.2 答: 生物神经元主要由三部分构成:细胞体、轴突和树突。 每一部分的作用是:(a)细胞体是神经元的新陈代谢中心,同时还用于接收并处理从其他神经元传递过来的信息。(b)轴突的作用相当于神经元的输出电缆,它通过尾部分出的许多神经末梢以及梢端的突触向其他神经元输出神经冲动。(c)树突的相当于神经元的输入端,用于接收从四面八方传来的神经冲动。 神经元的功能特性包括:(a)时空整合功能。(b)神经元的动态极化性。(c)兴奋与抑制状态。(d)结构的可塑性。(e)脉冲与电位信号的转换。(f)突触延期和不应期。(g)学习、遗忘和疲劳。 9.3 答: (略) 9.4 答: B-P算法的网络结构是一个前向多层网络。网络中不仅含有输入节点和输出节点,而且含有一层或多层隐(层)节点,网络中各处理单元间的连接如图6.16所示。当有信息向网络输入时,信息首先由输入层传递到隐层节点,经特性函数(人工神经元)作用后,再

模糊神经网络技术研究的现状及展望

模糊神经网络技术研究的现状及展望 摘要:本文对模糊神经网络技术研究的现状进行了综述,首先介绍了模糊控制技术和神经网络技术的发展,然后结合各自的特点讨论了模糊神经网络协作体的产生以及优越性,接着对模糊神经网络的常见算法、结构确定、规则的提取等进行了阐述,指出了目前模糊神经网络的研究发展中还存在的一些问题,并对模糊神经网络的发展进行了展望。 关键字:模糊控制;神经网络;模糊神经网络 引言 系统的复杂性与所要求的精确性之间存在尖锐的矛盾。为此,通过模拟人类学习和自适应能力,人们提出了智能控制的思想。控制理论专家Austrom(1991)在IFAC大会上指出:模糊逻辑控制、神经网络与专家控制是三种典型的智能控制方法。通常专家系统建立在专家经验上,并非建立在工业过程所产生的操作数据上,且一般复杂系统所具有的不精确性、不确定性就算领域专家也很难把握,这使建立专家系统非常困难。而模糊逻辑和神经网络作为两种典型的智能控制方法,各有优缺点。模糊逻辑与神经网络的融合——模糊神经网络由于吸取了模糊逻辑和神经网络的优点,避免了两者的缺点,已成为当今智能控制研究的热点之一了。 1 模糊神经网络的提出 模糊集理论由美国著名控制论专家L.A.Zadeh于1965年创立[1]。1974年,英国著名学者E.H.Mamdani将模糊逻辑和模糊语言用于工业控制,提出了模糊控制论。至今,模糊控制已成功应用在被控对象缺乏精确数学描述及系统时滞、非线性严重的场合。 人工神经网络理论萌芽于上世纪40年代并于80年代中后期重掀热潮,其基本思想是从仿生学的角度对人脑的神经系统进行功能化模拟。人工神经网络可实现联想记忆,分类和优化计算等功能,在解决高度非线性和严重不确定系统的控制问题方面,显示了巨大的优势和潜力 模糊控制系统与神经网络系统具有整体功能的等效性[2],两者都是无模型的估计器,都不需要建立任何的数学模型,只需要根据输入的采样数据去估计其需要的决策:神经网络根据学习算法,而模糊控制系统则根据专家提出的一些语言规则来进行推理决策。实际上,两者具有相同的正规数学特性,且共享同一状态空间[3]。 另一方面,模糊控制系统与神经网络系统具有各自特性的互补性[。神经网络系统完成的是从输入到输出的“黑箱式”非线性映射,但不具备像模糊控制那样的因果规律以及模糊逻辑推理的将强的知识表达能力。将两者结合,后者正好弥补前者的这点不足,而神经网络的强大自学习能力则可避免模糊控制规则和隶属函数的主观性,从而提高模糊控制的置信度。 因此,模糊逻辑和神经网络虽然有着本质上的不同,但由于两者都是用于处理不确定性问题,不精确性问题,两者又有着天然的联系。Hornik和White(1989)证明了神经网络的函数映射能力[4];Kosko(1992)证明了可加性模糊系统的模糊逼近定理(FAT,Fuzzy Approximation Theorem)[5];Wang和Mendel(1992)、Buckley和Hayashi(1993)、Dubots 和Grabish(1993)、Watkins(1994)证明了各种可加性和非可加性模糊系统的模糊逼近定理[6]。这说明模糊逻辑和神经网络有着密切联系,正是由于这类理论上的共性,才使模糊逻辑

模糊神经网络讲义

模糊神经网络(备课笔记) 参考书: 杨纶标,高英仪。《模糊数学原理及应用》(第三版),广 州:华南理工大学出版社 彭祖赠。模糊数学及其应用。武汉:武汉科技大学 胡宝清。模糊理论基础。武汉:武汉大学出版社 王士同。模糊系统、模糊神经网络及应用程序设计。 《模糊系统、模糊神经网络及应用程序设计》 本书全面介绍了模糊系统、模糊神经网络的基本要领概念与原理,并以此为基础,介绍了大量的应用实例及编程实现实例。 顾名思义,模糊神经网络就是模糊系统和神经网络的结合,本质上就是将常规的神经网络(如前向反馈神经网络,Hopfield神经网络)赋予模糊输入信号和模糊权值。 选自【模糊神经网络P17】 预备知识 复杂的东西是难以精确化的,这使得人们所需要的精确性和问题的复杂性间形成了尖锐的矛盾。 正如模糊数学的创始人L.A.Zadeh(查德)教授(美国加利福尼亚大学)所说:“当系统的复杂性增加时,我们使它精确化的能力将减小。直到达到一个阈值,一旦超越它,复杂性和精确性将相互排斥。”这就是著名的“互克性原理”。 该原理告诉我们,复杂性越高,有意义的精确化能力就越低;而复杂性意味着因素众多,以致人们往往不可能同时考察所有因素,只能把研究对象适当简化或抽象成模型,即抓住其中的主要部分而忽略掉次要部分。当在一个被压缩了的低维因素空间考虑问题时,即使本来是明确的概念,也会变得模糊起来。或者某些抽象简化模型本身就带有概念的不清晰,如“光滑铰链”这个力学模型,什么叫“光滑”、什么叫“粗糙”就没有一个明确的定义,客观上两者之间没有绝对分明的界限;主观上,决策者对此类非程序化决策做出判断时,主要是根据他的经验、能力和直观感觉等模糊概念进行决策的。 或者判断一个人的好坏,本来有很多因素,比如人品、性格、相貌

BP神经网络计算的题目

对如下的BP 神经网络,学习系数1=η,各点的阈值0=θ。作用函数为: ? ? ?<≥=111 )(x x x x f 。 输入样本0,121==x x ,输出节点z 的期望输出为1,对于第k 次学习得到的权值分别为1)(,1)(,1)(,2)(,2)(,0)(2122211211======k T k T k w k w k w k w ,求第k 次和1+k 次学习得到的输出节点值)(k z 和)1(+k z (写出计算公式和计算过程)。 y 2 )(11=k w 1)(22=k 102 计算如下: 1. 第k 次训练的正向过程如下: 1 )0()0210()()(12 1 11==?+?==-=∑=f f net f x w f y j j j θ ) ()(i j i j ij i net f x w f y =-=∑θ

2 )2()0112()()(22 1 22==?+?==∑==f f net f x w f y j j j 3 )3()2111()()(2 1 ==?+?==∑==f f net f y T f z l i i i 2)31(2 12 =-=E 2. 第k 次训练的反向过程如下: 212)3()31()(')(''-=?-=?-=-=f net f z z l l δ li l l i i T net f ∑=δδ)('' 1)2(01)2()0(')(''111=?-?=?-?==f T net f l δδ 2 1)2(11)2()2(')(''222-=?-?=?-?==f T net f l δδ 1 1)2(11)()()1(11111-=?-?+=+=?+=+y k T T k T k T l ηδ 3 2)2(11)()()1(22222-=?-?+=+=?+=+y k T T k T k T l ηδ 1010')()()1(111111 1111=??+=+=?+=+x k W W k W k W ηδ ) ()(l i l i li l net f y T f O =-=∑θ

卷积神经网络CNN原理、改进及应用

一、简介 卷积神经网络(Convolutional Neural Networks,简称CNN)是近年发展起来,并引起广泛重视的一种高效的识别方法。 1962年,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的局部互连网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络[1](Convolutional Neural Networks-简称CNN)7863。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。 Fukushima在1980年基于神经元间的局部连通性和图像的层次组织转换,为解决模式识别问题,提出的新识别机(Neocognitron)是卷积神经网络的第一个实现网络[2]。他指出,当在不同位置应用具有相同参数的神经元作为前一层的patches时,能够实现平移不变性1296。随着1986年BP算法以及T-C问题[3](即权值共享和池化)9508的提出,LeCun和其合作者遵循这一想法,使用误差梯度(the error gradient)设计和训练卷积神经网络,在一些模式识别任务中获得了最先进的性能[4][5]。在1998年,他们建立了一个多层人工神经网络,被称为LeNet-5[5],用于手写数字分类,这是第一个正式的卷积神经网络模型3579。类似于一般的神经网络,LeNet-5有多层,利用BP算法来训练参数。它可以获得原始图像的有效表示,使得直接从原始像素(几乎不经过预处理)中识别视觉模式成为可能。然而,由于当时大型训练数据和计算能力的缺乏,使得LeNet-5在面对更复杂的问题时,如大规模图像和视频分类,不能表现出良好的性能。 因此,在接下来近十年的时间里,卷积神经网络的相关研究趋于停滞,原因有两个:一是研究人员意识到多层神经网络在进行BP训练时的计算量极其之大,当时的硬件计算能力完全不可能实现;二是包括SVM在内的浅层机器学习算法也渐渐开始暂露头脚。直到2006年,Hinton终于一鸣惊人,在《科学》上发表文章,使得CNN再度觉醒,并取得长足发展。随后,更多的科研工作者对该网络进行了改进。其中,值得注意的是Krizhevsky等人提出的一个经典的CNN架构,相对于图像分类任务之前的方法,在性能方面表现出了显著的改善2674。他们方法的整体架构,即AlexNet[9](也叫ImageNet),与LeNet-5相似,但具有更深的结构。它包括8个学习层(5个卷积与池化层和3个全连接层),前边的几层划分到2个GPU上,(和ImageNet是同一个)并且它在卷积层使用ReLU作为非线性激活函数,在全连接层使用Dropout减少过拟合。该深度网络在ImageNet 大赛上夺冠,进一步掀起了CNN学习热潮。 一般地,CNN包括两种基本的计算,其一为特征提取,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数。这两种操作形成了CNN的卷积层。此外,卷积神经网络中的每一个卷积层都紧跟着一个用来求局部平均与二次提取的计算层,即池化层,这种特有的两次特征提取结构减小了特征分辨率。

人工智能练习题答案

1、什么是人工智能?人工智能有哪些研究领域?何时创建该学科,创始人是谁? (1)AI(Artificial Intelligence)是利用计算机技术、传感器技术、自动控制技术、仿生技术、电子技术以及其他技术仿制人类智能机制的学科(或技术),再具体地讲就是利用这些技术仿制出一些具有人类智慧(能)特点的机器或系统 (2)人工智能的研究领域主要有专家系统、机器学习、模式识别、自然语言理解、自动定力证明、自动程序设计、机器人学、博弈、智能决策支持系统、人工神经网络等(3)人工智能于1956年夏季,由麦卡锡,明斯基、洛切斯特、香农等发起创建 2、产生式系统的由哪三部分组成?各部分的功能是什么? 课本29页 (1)产生式系统由综合数据库、产生式规则和控制系统三部分组成 (2)综合数据库用于存放当前信息,包括初始事实和中间结果; 产生式规则用于存放相关知识; 控制系统用于规则的解释或执行程序。 3、设有三枚硬币,其初始状态为(反,正,反),允许每次翻转一个硬币(只翻一个硬币,必须翻一个硬币)。必须连翻三次。用知识的状态空间表示法求出到达状态(反,反,反)的通路。画出状态空间图。 课本51页 问题求解过程如下: (1)构建状态 用数组表示的话,显然每一硬币需占一维空间,则用三维数组状态变量表示这个知识:Q=(q1 , q2 , q3) 取q=0 表示钱币的正面; q=1 表示钱币的反面 构成的问题状态空间显然为: Q0=(0,0,0),Q1=(0,0,1),Q2=(0,1,0), Q3=(0,1,1), Q4=(1,0,0),Q5=(1,0,1),Q6=(1,1,0),Q7=(1,1,1) (2)引入操作 f1:把q1翻一面。 f2:把q2翻一面。 f3:把q3翻一面。 显然:F={f1,f2,f3} 目标状态:(找到的答案)Qg=(0,0,0)或(1,1,1) (3)画出状态图

机器学习期末测试练习题4

1、在神经网络模型VggNet中,使用两个级联的卷积核大小为3×3,stride=1的卷积层代替了一个5×5的卷积层,如果将stride设置 为2,则此时感受野为 A.7×7 B.9×9 C.5×5 D.8×8 正确答案:A 2、 上图是具有四个隐藏层的神经网络,该网络使用sigmoid函数作为 激活函数,训练过程出现了梯度消失问题。从图中可以判断出四个 隐藏层的先后顺序(靠近输入端的为先,靠近输出端的为后)分别 为 A.DBCA B.ABCD

D.DCBA 正确答案:D 3、在网络训练时,loss在最初几个epoch没有下降,可能原因是 A.学习率过低 B.以下都有可能 C.正则参数过高 D.陷入局部最小值 正确答案:B 4、假设有一个三分类问题,某个样本的标签为(1,0,0),模型的预测结果为(0.5,0.4,0.1),则交叉熵损失值(取自然对数结果)约等于

B.0.7 C.0.8 D.0.5 正确答案:B 5、 IoU是物体检测、语义分割领域中的结果评测指标之一,上图中A 框是物体的真实标记框,面积为8。B框是网络的检测结果,面积为7。两个框的重合区域面积为2。则IoU的值为 A.2/8 B.2/13 C.2/7 D.2/15 正确答案:B

6、Gram矩阵是深度学习领域常用的一种表示相关性的方法,在风格迁移任务中就使用风格Gram矩阵来表示图像的风格特征,以下关于风格Gram矩阵的论述正确的是 A.风格Gram矩阵的大小与输入特征图的通道数、宽、高都不相关 B.风格Gram矩阵的大小只与输入特征图的通道数相关 C.风格Gram矩阵的大小与输入特征图的通道数、宽、高都相关 D.风格Gram矩阵的大小只与输入特征图的宽、高有关 正确答案:B 7、现使用YOLO网络进行目标检测,待检测的物体种类为20种,输入图像被划分成7*7个格子,每个格子生成2个候选框,则YOLO网络最终的全连接层输出维度为 A.1078 B.980 C.1470 D.1960 正确答案:C 二、多选题 1、池化层在卷积神经网络中扮演了重要的角色,下列关于池化层的论述正确的有 A.池化操作具有平移不变性

智能控制导论报告BP神经网络模糊控制

智能控制导论实验报告 2012-01-09 姓名:_______________ 常青_________ 学号:0815321002 班级:____________ 08自动化 指导老师:___________ 方慧娟________

实验一:模糊控制器设计与实现 一、实验目的 1. 模糊控制的特征、结构以及学习算法 2. 通过实验掌握模糊自整定PID 的工作原理 二、实验内容 已知系统的传递函数为:1/(10s+1)*e(-0.5s) 。假设系统给定为阶跃值r=30 ,系统初始值r0=0. 试分别设计 (1) 常规的PID 控制器; (2) 常规的模糊控制器; (3) 比较两种控制器的效果; (4) 当通过改变模糊控制器的比例因子时,系统响应有什么变化? 三、实验设备 Matlab 7.0 软件/SIMULINK 四、实验原理 1.模糊控制 模糊逻辑控制又称模糊控制,是以模糊集合论,模糊语言变量和模糊逻辑推理为基础的一类计算机控制策略,模糊控制是一种非线性控制。图1-1 是模糊控制系统基本结构,由图可知模糊控制器由模糊化,知识库,模糊推理和清晰化(或去模糊化)四个功能模块组成。

控制的。其传递函数的形式是: G(s) k p(1 T I S T D S),PID控制原理 针对模糊控制器每个输入,输出,各自定义一个语言变量。因为对控制输出的判断,往往不仅根据误差的变化,而且还根据误差的变化率来进行综合评判。所以在模糊控制器的设计中,通常取系统的误差值e和误差变化率ec为模糊控制器的两个输入,则在e的论域上定义语言变量“误差 E ” ,在ec的论域上定义语言变量“误差变化EC ” ;在控制量u的论域上定义语言变量“控制量U”。 通过检测获取被控制量的精确值,然后将此量与给定值比较得到误差信号e,对误差取微分得到误差变化率ec,再经过模糊化处理把分明集输入量转换为模糊集输入量,模糊输入变量根据预先设定的模糊规则,通过模糊逻辑推理获得模糊控制输出量,该模糊输出变量再经过去模糊化处理转换为分明集控制输出量。 2.PID控制 在模拟控制系统中,控制器最常用的控制规律是PID控制。PID 控制器是一种线性控制器。它根据给定值与实际输出值之间的偏差来 框图如图1-2所示。

基于神经网络的模糊控制

基于神经网络的仿真实验 一、实验目的 1.熟悉神经网络的结构、特征及学习算法 2.通过实验掌握利用神经网络进行样本学习与训练的方法。 3.通过实验了解神经网络的结构、权值、学习速率、动量因子对控制效果的影响。 4.通过实验掌握用Matlab 实现神经网络控制系统仿真的方法 二、实验内容 1.给出仿真系统的设计过程和程序清单。 2.记录实验数据和曲线 三、实验步骤 1.在Matlab 下依据原理编写仿真程序并调试。 2.给定输入信号,或训练样本,运行程序,记录实验数据和控制曲线 3.修改神经网络结构参数,如权值、学习速率、动量因子、隐含层神经元个数等,重复步骤(2) 四、实验要求 1. 使用BP 网络逼近对象: 采样时间取2ms,输入信号为u(k)=2sin(10πt),神经网络为3-10-2结构,权值W1,W2的初始取值取[-1,+1]之间的随机值,取η=0.80,α=0.06。 2.取标准样本为3 神经网络为3-12-2结构,权值的初始取值取[-1,+1]之间的随机值,取η =0.70,α=0.05,训练最终目标为 。 3.被控对象为 输入指令为一方波信号:))4sgn(sin(8.0)(t k rin π=,采样时间为1ms ,η=0.60,采用有监督Hebb 学习实现权值的学习,初始权值取 [][]2.0,15.015.015.0321===K w w w W 五、实验程序 1.clear all; 清除所有文件; close all; 关闭所有已开文件; xite=0.80; 惯性系数为0.8; alfa=0.06; 学习速率为0.06; w2=rands(6,1); 初始化隐含层与输出层6行1列的权值矩阵; s t k y k y k u k yout 5.0) 1(1)1()()(2 3 ≤-+-+=) 2(632.0)1(10.0)2(26.0)1(368.0)(-+-+-+-=k u k u k y k y k y 1010-=E

卷积神经网络

卷积神经网络 摘要:卷积神经网络是近年来广泛应用于模式识别、图像处理等领域的一种高效识别算法,它具有结构简单、训练参数少和适应性强等特点。本文从卷积神经网络的发展历史开始,详细阐述了卷积神经网络的网络结构、神经元模型和训练算法。在此基础上以卷积神经网络在人脸检测和形状识别方面的应用为例,简单介绍了卷积神经网络在工程上的应用,并给出了设计思路和网络结构。 关键字:模型;结构;训练算法;人脸检测;形状识别 0 引言 卷积神经网络是人工神经网络的一种已成为当前语音分析和图像识别领域的研究热点,它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度不变性。 1 卷积神经网络的发展历史 1962年Hubel和Wiesel通过对猫视觉皮层细胞的研究,提出了感受野(receptive field)的概念,1984年日本学者Fukushima基于感受野概念提出的神经认知机(neocognitron)可以看作是卷积神经网络的第一个实现网络,也是感受野概念在人工神经网络领域的首次应用。神经认知机将一个视觉模式分解成许多子模式(特征),然后进入分层递阶式相连的特征平面进行处理,它试图将视觉系统模型化,使其能够在即使物体有位移或轻微变形的时候,也能完成识别。神经认知机能够利用位移恒定能力从激励模式中学习,并且可识别这些模式的变化形,在其后的应用研究中,Fukushima将神经认知机主要用于手写数字的识别。随后,国内外的研究人员提出多种卷积神经网络形式,在邮政编码识别和人脸识别方面得到了大规模的应用。 通常神经认知机包含两类神经元,即承担特征抽取的S-元和抗变形的C-元。S-元中涉及两个重要参数,即感受野与阈值参数,前者确定输入连接的数目,后者则控制对特征子模式的反应程度。许多学者一直致力于提高神经认知机的性能的研究:在传统的神经认知机中,每个S-元的感光区中由C-元带来的视觉模糊量呈正态分布。如果感光区的边缘所产生的模糊效果要比中央来得大,S-元将会接受这种非正态模糊所导致的更大的变形容忍性。我们希望得到的是,训练模式与变形刺激模式在感受野的边缘与其中心所产生的效果之间的差异变得越来越大。为了有效地形成这种非正态模糊,Fukushima提出了带双C-元层的改进型神经认知机。 Trotin 等人提出了动态构造神经认知机并自动降低闭值的方法[1],初始态的神经认知机各层的神经元数目设为零,然后会对于给定的应用找到合适的网络规模。在构造网络过程中,利用一个反馈信号来预测降低阈值的效果,再基于这种预测来调节阈值。他们指出这种自动阈值调节后的识别率与手工设置阈值的识别率相若,然而,上述反馈信号的具体机制并未给出,并且在他们后来的研究中承认这种自动阈值调节是很困难的【8】。 Hildebrandt将神经认知机看作是一种线性相关分类器,也通过修改阈值以使神经认知机成为最优的分类器。Lovell应用Hildebrandt的训练方法却没有成功。对此,Hildebrandt 解释的是,该方法只能应用于输出层,而不能应用于网络的每一层。事实上,Hildebrandt 没有考虑信息在网络传播中会逐层丢失。 Van Ooyen和Niehuis为提高神经认知机的区别能力引入了一个新的参数。事实上,该参数作为一种抑制信号,抑制了神经元对重复激励特征的激励。多数神经网络在权值中记忆训练信息。根据Hebb学习规则,某种特征训练的次数越多,在以后的识别过程中就越容易

卷积神经网络中减少训练样本时间方法研究

龙源期刊网 https://www.wendangku.net/doc/0c5612590.html, 卷积神经网络中减少训练样本时间方法研究作者:范青 来源:《电脑知识与技术》2016年第33期 摘要:深度学习在人工智能尤其是在图像处理,图像分类方面的应用越来越广泛。其中卷积神经网络在其中具有重要地位。本文的主要目的为探究通过调整在网络中卷积过程所使用的滤波器大小,在保证分类结果准确率可接受情况下,尽量减少样本的训练时间,并总结出一套较为通用的滤波器大小设置规则。在文章中,通过对theano中基于lenet模型所构造的卷积神经网络的两层卷积层中的滤波器大小进行不同搭配的设置,测试数据集为广泛使用的mnist手写数字库以及cifar_10库,最后对比探究出适用于这两个数据集的减少训练时间的设置规律。 关键词:卷积神经网络;深度学习;图像处理;训练时间 中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2016)33-0167-04 如今在机器学习领域中,深度学习方法已经占据了相当重要的地位,通过模仿人脑学习方式构造模型,在图像、文本、语音处理方面取得了显著成果[1]。目前应用较为广泛的深度学 习模型包含多层感知器模型(MLP)[2],卷积神经网络模型和限制性玻尔兹曼机模型等[4]。多层感知器[2]网络结构的神经节点一般分层排列,主要由输入层,输出层和一些隐层组成, 同层之间的神经元节点无连接,相邻的两层神经元进行全连接,前一层的神经元的输出作为后一层神经元的输入,但本身此种算法存在着一些问题,那就是它的学习速度非常慢,其中一个原因就是由于层与层之间进行全连接,所以它所需要训练的参数的规模是非常大的,所以对其进行改进,产生了卷积神经网络模型。卷积神经网络模型在图像识别方面的应用十分广泛[5,8,9]。从它的结构上来看,层与层之间的神经元节点采用局部连接模式,而并非MLP的全连接模型,这样就降低了需要训练的参数的规模。而在它卷积层中,它的每一个滤波器作为卷积核重复作用于整个输入图像中,对其进行卷积,而得出的结果作为输入图像的特征图[6],这 样就提取出了图像的局部特征。而由于每一个卷积滤波器共享相同的参数,这样也就大大降低了训练参数的时间成本。而本文,以卷积神经网络为研究对象,在其模型的基础上通过对其结构中卷积核也就是滤波器的大小进行调整并结合卷积核个数调整和gpu加速等已有的训练提速方法,达到降低训练时间并且对识别结果并无太大影响的目的。 1 卷积神经网络 卷积神经网络在MLP的基础上,已经对结构进行了优化,通过层与层之间的局部连接以及权值共享等方式对要训练的参数的进行了大幅减低。 1.1局部连接

人工智能化课后练习题集

上海大学《人工智能》网络课课后习题答案 育才新工科-人工智能简介 1【判断题】《人工智能》课程为理工类通选课,本课程给予学生的主要是思想而不是知识。 对 图灵是谁? 1【单选题】图灵曾协助军方破解()的著名密码系统Enigma 。 A 英国 B 、美国 C 、德国 D 、日本 2【判断题】电影《模仿游戏》是纪念图灵诞生 90周年而拍摄的电影。X 3【判断题】图灵使用博弈论的方法破解了 Enigma 。对 为什么图灵很灵? 1【单选题】1937年,图灵在发表的论文()中,首次提出图灵机的概念。 A 《左右周期性的等价》B 《论可计算数及其在判定问题中的应用》 C 《可计算性与入可定义性》 D 《论高斯误差函数》 2【单选题】1950年,图灵在他的论文()中,提出了关于机器思维的问题。 A 、《论数字计算在决断难题中的应用》 B 《论可计算数及其在判定问题中的应用》 C 《可计算性与入可定义性》 D 《计算和智能》 3【判断题】存在一种人类认为的可计算系统与图灵计算不等价。 X 4【判断题】图灵测试是指测试者与被测试者(一个人和一台机器)隔开的情况下,通过一些装 置(如键盘)向被测试者随意提问。如果测试者不能确定出被测试者是人还是机器,那么这台机 器 就通过了测试,并被认为具有人类智能。对 为什么图灵不灵? 1【单选题】以下叙述不正确的是()。 A 图灵测试混淆了智能和人类的关系 B 机器智能的机制必须与人类智能相同 C 机器智能可以完全在特定的领域中超越人类智能 D 机器智能可以有人类智能的创造力 2【单选题】在政府报告中,()的报告使用“机器智能”这个词汇。 A 中国B 英国C 德国D 美国 3【多选题】机器智能可以有自己的“人格”体现主要表现在 1【单选题】以下关于未来人类智能与机器智能共融的二元世界叙述不正确的是 A 人类智能与机器智能具有平等性 B 、机器智能是模仿人类智能 C 人类智能与机器智能均具有群智行 D 人工智能与机器智能均具有发展性、合作性 2【单选题】机器通过人类发现的问题空间的数据,进行机器学习,具有在人类发现的问题空间 中求解的能力,并且求解的过程与结果可以被人类智能(),此为机器智能的产生。C ()0 A 模型间的对抗一智能进化的方式 B 、机器智能的协作一机器智能的社会组织 C 机器智能是社会的实际生产者 D 机器智能可以有人类智能的创造力 4【判断题】图灵测试存在的潜台词是机器智能的极限可以超越人的智能 ,机器智能可以不与 人的智能可比拟。X 人类智能与机器智能如何共融及未来 ()。B

人工智能课后练习题

上海大学《人工智能》网络课课后习题答案 1.1育才新工科-人工智能简介 1【判断题】《人工智能》课程为理工类通选课,本课程给予学生的主要是思想而不是知识。对 1.2图灵是谁? 1【单选题】图灵曾协助军方破解()的著名密码系统Enigma。 A、英国 B、美国 C、德国 D、日本 2【判断题】电影《模仿游戏》是纪念图灵诞生90周年而拍摄的电影。X 3【判断题】图灵使用博弈论的方法破解了Enigma。对 1.3为什么图灵很灵? 1【单选题】1937年,图灵在发表的论文()中,首次提出图灵机的概念。 A、《左右周期性的等价》 B、《论可计算数及其在判定问题中的应用》 C、《可计算性与λ可定义性》 D、《论高斯误差函数》 2【单选题】1950年,图灵在他的论文()中,提出了关于机器思维的问题。 A、《论数字计算在决断难题中的应用》 B、《论可计算数及其在判定问题中的应用》 C、《可计算性与λ可定义性》 D、《计算和智能》 3【判断题】存在一种人类认为的可计算系统与图灵计算不等价。X 4【判断题】图灵测试是指测试者与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。如果测试者不能确定出被测试者是人还是机器,那么这台机器就通过了测试,并被认为具有人类智能。对 1.4为什么图灵不灵? 1【单选题】以下叙述不正确的是()。 A、图灵测试混淆了智能和人类的关系 B、机器智能的机制必须与人类智能相同

C、机器智能可以完全在特定的领域中超越人类智能 D、机器智能可以有人类智能的创造力2【单选题】在政府报告中,()的报告使用“机器智能”这个词汇。 A、中国 B、英国 C、德国 D、美国 3【多选题】机器智能可以有自己的“人格”体现主要表现在()。 A、模型间的对抗—智能进化的方式 B、机器智能的协作—机器智能的社会组织 C、机器智能是社会的实际生产者 D、机器智能可以有人类智能的创造力 4【判断题】图灵测试存在的潜台词是机器智能的极限可以超越人的智能,机器智能可以不与人的智能可比拟。X 1.5人类智能与机器智能如何共融及未来 1【单选题】以下关于未来人类智能与机器智能共融的二元世界叙述不正确的是()。B A、人类智能与机器智能具有平等性 B、机器智能是模仿人类智能 C、人类智能与机器智能均具有群智行 D、人工智能与机器智能均具有发展性、合作性 2【单选题】机器通过人类发现的问题空间的数据,进行机器学习,具有在人类发现的问题空间中求解的能力,并且求解的过程与结果可以被人类智能(),此为机器智能的产生。C A、采纳 B、参考 C、理解 D、相同 3【判断题】人类智能可以和机器智能相互融合。对 4【判断题】机器智能的创造是指机器通过求解人类智能发现的问题空间中的问题积累数据与求解方法,通过机器学习,独立发现新的问题空间。X 1.6人工智能界定与科学 1【单选题】在最初的图灵测试中,如果有超过()的测试者不能确定出被测试者是人还是机器,则这台机器就通过了测试,并认为具有人类智能。 A、0.2 B、0.3 C、0.4 D、0.5 2【单选题】()不属于图灵测试中包含的三个未曾言明的预设前提。

人工智能--经典考试试题及答案

一、选择题(每题1分,共15分) 1、AI的英文缩写是 A)Automatic Intelligence B)Artifical Intelligence C)Automatice Information D)Artifical Information 2、反演归结(消解)证明定理时,若当前归结式是()时,则定理得证。 A)永真式B)包孕式(subsumed)C)空子句 3、从已知事实出发,通过规则库求得结论的产生式系统的推理方式是 A)正向推理B)反向推理C)双向推理 4、语义网络表达知识时,有向弧AKO 链、ISA 链是用来表达节点知识的()。 A)无悖性B)可扩充性C)继承性 5、(A→B)∧A => B是 A)附加律B)拒收律C)假言推理D)US 6、命题是可以判断真假的 A)祈使句B)疑问句C)感叹句D)陈述句 7、仅个体变元被量化的谓词称为 A)一阶谓词B)原子公式C)二阶谓词D)全称量词 8、MGU是 A)最一般合一B)最一般替换C)最一般谓词D)基替换 9、1997年5月,著名的“人机大战”,最终计算机以3.5比2.5的总比分将世界国际象棋棋王卡斯帕罗夫击败,这台计算机被称为() A)深蓝B)IBM C)深思D)蓝天 10、下列不在人工智能系统的知识包含的4个要素中 A)事实B)规则C)控制和元知识D)关系 11、谓词逻辑下,子句, C1=L∨C1‘, C2= ? L∨若σ是互补文字的(最一般)合一置换,则其归结式C=() A) C1’σ∨C2’σB)C1’∨C2’C)C1’σ∧C2’σD)C1’∧C2’ 12、或图通常称为 A)框架网络B)语义图C)博亦图D)状态图 13、不属于人工智能的学派是 A)符号主义B)机会主义C)行为主义D)连接主义。 14、人工智能的含义最早由一位科学家于1950年提出,并且同时提出一个机器智能的测试模型,请问这个科学家是 A)明斯基B).扎德C)图林D)冯.诺依曼 15.要想让机器具有智能,必须让机器具有知识。因此,在人工智能中有一个研究领域,主要研究计算机如何自动获取知识和技能,实现自我完善,这门研究分支学科叫()。 A)专家系统B)机器学习C)神经网络D)模式识别 二、填空题(每空1.5分,共30分) 1、不确定性类型按性质分:,, ,。 2、在删除策略归结的过程中删除以下子句:含有的子句;含 有的子句;子句集中被别的子句的子句。 3、对证据的可信度CF(A)、CF(A1)、CF(A2)之间,规定如下关系: CF(~A)=、CF(A1∧A2 )=、 CF(A1∨A2 )= 4、图:指由和组成的网络。按连接同一节点的各边的逻辑关系又可分为和。 5、合一算法:求非空有限具有相同谓词名的原子公式集的 6、产生式系统的推理过程中,从可触发规则中选择一个规则来执行,被执行的规则称为。

相关文档
相关文档 最新文档