文档库 最新最全的文档下载
当前位置:文档库 › 柱下单向偏心扩展基础底面积计算方法20120409

柱下单向偏心扩展基础底面积计算方法20120409

柱下单向偏心扩展基础底面积计算方法20120409
柱下单向偏心扩展基础底面积计算方法20120409

柱下单向偏心扩展基础底面积计算方法

一、

计算公式

A f K F G F a e ku k k =≤+

a. 当3010≤≤b e k 时,0min ≥k p ,0.10==K K e

b. 当

6

130

1≤≤

b

e k 时, 0min ≥k p ,0.1612.1≤+

=

b

e K k e

c.当0min

6

1>

b

e k ,b

e K k e 8

.19.0-=

式中 ku F ──偏心距为k e 时的对应某特定基础尺寸的基础支承能力(标准值)

e K ──偏心距为k e 时的对应某特定基础尺寸的地基支承能力系数 0K ──当偏心距

0=b

e k 时的对应某特定基础尺寸的地基支承能力系数;按现行规范,

当 30

10≤

b

e k 时,0.10==K K e

k e ──基础底面以上所有竖向荷载标准值合力作用点在b 向与基础几何中心的距离 dA G G k γ= )5.0()3(-+-+=d b f f m d b ak a γηγη

由A f K F G F a e ku k k =≤+得

A f K A d K f K dA A f K G F F F a e G e

a e G a e k ku ku k '

=-=-=-='≤)1(γγ

不需进行宽度修正时有近似公式:d K d f f G e

m d ak a γγη1)5.0(-

-+='

由于最后一项总值较小,近似地有:d d f f G m d ak a γγη--+='

)5.0(

二、

算例

某柱下扩展基础,经计算后作用于基础底面的竖向力标准值k F =500kN ,

m kN M k ?=100(即m F M e k

k k 20.0==

),已知修正前的地基承载力特征值ak f =200kPa ,

b η=0.3,d η=1.5,m γ=18kN/m 3,G γ=20kN/m 3。假定基础埋深为d =2.10m ,0.1:2.1:=l b ,

试计算此柱下扩展基础的基底尺寸?

解:1. 第一步

经深度修正后的地基承载力特征值:

k P a

d

d f f G m d ak a 2.20110.220)5.010.2(185.1200)5.0(=?--??+=--+='

γγη

按竖向力估算基底面积:

2

485.22.201500m f F a

k ==' 取2491.244.173.1m m m l b =?=? 2. 第二步 由于

6

165

.81116.073

.120.030

1<===

e k

则 708.0116

.0612.1=?+=

e K

412.11=e

K

可得252.3491.2412.1m A =?= 取2

51.371.105.2m l b =?=? 3. 第三步 757.005

.220.0612.1=?+

=

e K

kN F ku 6.53451.32.201757.0=??='

935.06

.534500==

'

ku

k F F

228.351.3935.0m A =?= 取2

27.365.198.1m l b =?=? 再算747.098

.120.0612.1=?+

=

e K

kN F ku 4.49127.32.201747.0=??='

k F 略大于'

ku F ,基本满足要求。基底面积为:2

27.365.198.1m m m l b =?=? 按GB50007-2002复核(过程略):kPa f a 2.243=,

a k

k k f kPa A

G F p <=??+=

+=

9.19427

.327

.31.220500

kPa f kPa W M p p a k k k 8.2912.17.28798

.165.16

11009.1942

max =<=??+

=+

=

01.102min >=-

=kPa W

M p p k

k k

从以上复核结果可以看出,求得的基底面积是满足规范规定的地基承载力要求的,且同时也充分利用了地基承载力。

柱下单向偏心扩展基础抗冲切验算及配筋计算

某框架柱底内力为:kN N 2000=,m kN M ?=150,kN V 100=;埋深为1.50m ,

柱断面为500mm ×400mm ,基础底面尺寸为mm mm l b 30003500?=?,采用C25砼,2

/27.1mm

N f t =,采用HRB335钢筋,2/300mm N f y =。

a. 按mm h 800=,进行柱与基础交接处的受冲切承载力验算(b 边方向);(9

分)

b. 按mm h 800=,求基础长、短边方向的配筋?(9分) 解:a.m mm h 755.0755458000==-= kPa

W Vh M A N p 1.2286.375.1905.30.36

18

.01001500.35.320002max =+=???++

?=

++=

9.1526.375.1905.30.36

18

.01001500

.35.320002min >=-=???+-

?=+-=

kPa W

Vh M A N p

2

09.225.00.32

09.12

91.42

.35.30.32

)

755.024.0(0.32

)

755.024.0(0.3m

A l =?+?=

-?

+?+-?

?++=

kN A p F l j l 47609.21.228=?==

m a t 40.0= m h a a t b 91.1755.0240.020=?+=+= m

a a a b

t m 155.12

91

.140.02

=+=

+=

kN N h a f m t hp 2.775102.775755115527.10.17.07.030=?=????=β 07.0h a f F m t hp l β> 故抗冲切承载力满足要求 b.kPa

p p p p 9.1950.25

.39

.1521.2289.152)5.15.3(5

.3min

max min =?-+

=-?-+

=

m

kN l p p p p a l a M Ⅰ?=?-+++??=

-++'+=

9.526]0.3)9.1951.228()9.1951.228)(4.00.32[(5.112

1]

)())(2[(12

12

max max 2

1

简化算法:

m

kN b h b M h b N M ?=+=-?

?+?+

-??=-?

+

-=I 9.5739.735005

.35.05.3)8.0100150(8

3)5.05.3(200012

183)(12

1

比规范算法多8.9%

2

6

02585300

7559.010

9.5269.0mm f h M A y

Ⅰs Ⅰ=???=

=

m

kN p p b b a l M Ⅱ?=++?-=

+'+'-=

4.402)9.1521.228)(

5.05.32()4.00.3(48

1)

)(2()(48

12

min max 2

简化算法: m

kN a l N M ?=-??=

-=

I I 3.433)4.00.3(200012

1)(12

1

比规范算法多7.8% 2

6

03421300

7459.010

2.6889.0mm f h M A y

Ⅱs Ⅱ=???=

=

某框架结构柱下条形基础设计

某框架结构柱下条形基础设计

————————————————————————————————作者:————————————————————————————————日期: ?

某框架结构柱下条形基础设计(倒梁法) 一、设计资料 1、某建筑物为7层框架结构,框架为三跨的横向承重框架,每跨跨度为7.2m ;边柱传至基础顶部的荷载标准值和设计值分别为:Fk =2665KN 、Mk=572K N?M、Vk=146KN ,F=3331KN 、M=715KN ?M、V=182KN ;中柱传至基础顶部的荷载标准值和设计值分别为:F k=4231KN 、Mk=481K N?M 、Vk=165KN,F=5289KN 、M=601KN ?M 、V=206KN 。 2、根据现场观察描述,原位测试分析及室内试验结果,整个勘察范围内场地地层主要由粘性土、粉土及粉砂组成,根据土的结构及物理力学性质共分为7层,具体层位及工程特性见附表。勘察钻孔完成后统一测量了各钻孔的地下水位,水位埋深平均值为0.9m,本地下水对混凝土无腐蚀性,对钢筋混凝土中的钢筋无腐蚀性。 3、根据地质资料,确定条基埋深d=1.9m; 二、内力计算 1、基础梁高度的确定 取h=1.5m 符合G B50007-2002 8.3.1柱下条形基础梁的高度宜为柱距的 11 ~48 的规定。 2、条基端部外伸长度的确定 据GB50007-2002 8.3.1第2条规定外伸长度宜为第一跨的0.25倍考虑到柱端存在弯矩及其方向左侧延伸0.250.257.2 1.8l m m =?= 为使荷载形心与基底形心重合,右端延伸长度为ef l ,ef l 计算过程如下: a . 确定荷载合力到E 点的距离o x :

柱下条形基础计算方法与步骤

柱下条形基础简化计算及其设计步骤 提要:本文对常用的静力平衡法和倒梁法的近似计算及其各自的适用范围和相互关系作了一些叙述,提出了自己的一些看法和具体步骤,并附有柱下条基构造表,目的是使基础设计工作条理清楚,方法得当,既简化好用,又比较经济合理。 一、适用范围: 柱下条形基础通常在下列情况下采用: 1、多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足设计要求时。 2、当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时。 3、地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时。 4、各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时。 5、需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时。 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较 件下梁的计算。 二、计算图式 1、上部结构荷载和基础剖面图 2、静力平衡法计算图式 3. 倒梁法计算图式 三、设计前的准备工作 1. 确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度.当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础. 基础的纵向地基净反力为: j j i p F bL M bL min max =±∑∑62

式中 P jmax ,P jmin —基础纵向边缘处最大和最小净反力设计值. ∑F i —作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其他局部均布q i ). ∑M—作用于基础上各竖向荷载(F i ,q i ),纵向弯矩(M i )对基础底板纵向中点产生的总弯矩设计值. L —基础长度,如上述. B —基础底板宽度.先假定,后按第2条文验算. 当P jmax 与P jmin 相差不大于10%,可近似地取其平均值作为均布地基反力,直接定出基础悬臂长度a 1=a 2(按构造要求为第一跨距的1/4~1/3),很方便就确定了合理的基础长度L ;如果P jmax 与P jmin 相差较大时,常通过调整一端悬臂长度a 1或a 2,使合力∑F i 的重心恰为基础的形心(工程中允许两者误差不大于基础长度的3%),从而使∑M 为零,反力从梯形分布变为均布,求a 1和a 2的过程如下: 先求合力的作用点距左起第一柱的距离: 式中, ∑M i —作用于基础上各纵向弯矩设计值之和. x i —各竖向荷载F i 距F 1的距离. 当x≥a/2时,基础长度L=2(x+a 1), a 2=L-a-a 1. 当x

柱下条形基础计算书

1. 工程概况及设计资料 某柱下条形基础,所受外荷载大小及位置如图1.1所示。柱采用C40混凝土,截面尺寸800800mm mm ?。地基为均质粘性土,地基承载力特征值160ak a f KP =,土的重度3 19/KN m γ=。地基基础等级:乙级。地下防水等级:二级。 图1.1 2. 基础宽度计算 基础埋深定为2m 。总竖向荷载值 1000180014004000ki N KN KN KN KN =++=∑ 180********.5 5.334000N KN m KN m e m KN ?+?= = 假设两端向外延伸总长度为3m ,则 4.56313.5L m m m m =++= 地基底面以上土的加权重度3 19/m KN m γ= 查得《地基规范》中对于粘性土: 1.6d η=,0.3b η=

持力层经深度修正后的地基承载力特征值 3(0.5)160 1.619/(20.5)205.6a ak d m a a f f d m KP KN m m m KP ηγ=+-=+??-=()()3 4000 1.789205.620/ 2.013.5ki a G a N KN b m f d l KP KN m m m γ≥ = =--??∑取 2.0b m = 3. 两端外伸长度验算即地基承载力验算 320/ 2.013.5 2.01044k G KN m m m m KN =???= 400010445044ki k N G KN KN KN +=+=∑ 80ki M KN m =?∑ 800.0155244N G KN m e m KN +?= = 113.5 5.445 1.3052l m m ??=-= ??? 213.5 5.055 1.6952l m m ??=-= ??? 5244194.22205.62.013.5ki k k a a a N G KN p KP f KP bl m m +== =<=?∑ ,max ,min 6195.58 1.2246.7524460.015(1)(1)2.013.513.5192.860 ki k k N G a a a k a N G p e KP f KP KN p bl l m m KP ++>=?= ± =±=?>∑

柱下独立基础课程设计

目录 1 柱下独立基础课程设计 .................... 错误!未定义书签。 1.1设计资料............................ 错误!未定义书签。 1.1.1地形........................... 错误!未定义书签。 1.1.2工程地质条件................... 错误!未定义书签。 1.1.3岩土设计参数................... 错误!未定义书签。 1.1.4水文地质条件................... 错误!未定义书签。 1.1.5上部结构材料................... 错误!未定义书签。 1.1.6材料........................... 错误!未定义书签。 1.1.7本人设计资料................... 错误!未定义书签。 1.2独立基础设计........................ 错误!未定义书签。 1.2.1选择基础材料................... 错误!未定义书签。 1.2.2选择基础埋置深度............... 错误!未定义书签。 1.2.3求地基承载力特征值a f ........... 错误!未定义书签。 1.2.4初步选择基底尺寸............... 错误!未定义书签。 土层编号土的 名称 重度γ 3 m KN 孔隙 比e 液性 指数 I l 粘聚 力c KPa 内摩 擦角 ? () 压缩模量 (pa) s E M 标准 贯入 锤击 数N 承载力 特征值 () ak f kPa ①杂填 土 18 -- -- -- -- -- -- -- ②粉质 粘土 20 0.65 0.84 34 13 7.5 6 130 ③黏土19.4 0.58 0.78 25 23 8.2 11 180 ④细砂21 0.62 -- -- 30 11.6 16 240

柱下条形基础设计 课程设计

柱 下条形基础设计 一、设计资料 1、地形 拟建建筑场地平整。 2、工程地质条件 自上而下土层依次如下: ①号土层,耕填土,层厚,黑色,原为农田,含大量有机质。 ②号土层,黏土,层厚,软塑,潮湿,承载力特征值kPa f ak 120=。 ③号土层,粉砂,层厚,稍密,承载力特征值kPa f ak 160=。 ④号土层,中粗砂,层厚,中密,承载力特征值kPa f ak 200=。 ⑤号土层,中风化砂岩,厚度未揭露,承载力特征值kPa f ak 320=。 3、岩土设计技术参数 地基岩土物理力学参数如表所示。 土层编号 土的名称 重度γ 孔 隙 比e 液性指数 L I 粘聚力c )(kPa 内摩擦角?)(? 压缩 模量 S E 标准贯入锤击数N 承载力 特征值 ak f )(kPa ① 耕填土 ② 黏土 22 17 4 120 ③ 粉砂 12 160 ④ 中粗砂 20 30 16 200 ⑤ 中风化砂岩 22 320 4、水文地质条件 (1)拟建场区地下水对混凝土结构无腐蚀性。 (2)地下水位深度:位于地表下。 5、上部结构资料 拟建建筑物为多层全现浇框架结构,框架柱截面尺寸为mm mm 400400?。室外地坪标高同自然地面,室内外高差mm 450。柱网布置如图所示。 6、上部结构作用 上部结构作用在柱底的荷载效应标准组合值=1280kN =1060kN ,,上部结 构作用在柱底的荷载效应基本组合值 =1728kN , =1430kN (其中 k N 1为轴线②~⑥柱

底竖向荷载标准组合值;k N 2为轴线①、⑦柱底竖向荷载标准组合值;1N 为轴线②~⑥柱底竖向荷载基本组合值;2N 为轴线①、⑦柱底竖向荷载基本组合值) 图 柱网平面图 其中纵向尺寸为6A ,横向尺寸为18m ,A=6300mm 混凝土的强度等级C25~C30,钢筋采用HPB235、HRB335、HRB400级。 二、柱下条形基础设计 1、确定条形基础底面尺寸并验算地基承载力 由已知的地基条件,假设基础埋深d 为m 6.2,持力层为粉砂层 (1) 求修正后的地基承载力特征值 由粉砂,查表10.7得,0.3,0.2==d b ηη 埋深范围内土的加权平均重度: 持力层承载力特征值(先不考虑对基础宽度的修正): (2) 初步确定基础宽度 设条形基础两端均向外伸出: m 9.19.63 1 =? 基础总长:m l 4623.269.6=?+?= 则基础底面在单位m 1长度内受平均压力: 基础平均埋深为:m d 825.2)05.36.2(2 1 =+= 需基础底板宽度b : 取m b 2.1=设计 (3) 计算基底压力并验算 基底处的总竖向荷载为: 基底的平均压力为: 满足条件 2、基础的结构设计 (1) 梁的弯矩计算 在对称荷载作用下,由于基础底面反力为均匀分布,因此单位长度地基的净反力为: m kN l F q n /28046 1550219605=?+?= =∑ 基础梁可看成在均布线荷载n q 作用下以柱为支座的六跨等跨度连续梁。为了计算方便,可将图 )(a 分解为图)(b 和图)(c 两部分。 图)(b 用力矩分配法计算,A 截面处的固端弯矩为: 图)(a

柱下条形基础简化计算及其设计步骤

柱下条形基础简化计算及其设计步骤 提要:本文对常用的静力平衡法和倒梁法的近似计算及其各自的适用范围和相互关系作了一些叙述,提出了自己的一些看法和具体步骤,并附有柱下条基构造表,目的是使基础设计工作条理清楚,方法得当,既简化好用,又比较经济合理. 一 适用范围: 柱下条形基础通常在下列情况下采用: 1.多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足设计要求时. 2.当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时. 3.地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时. 4.各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时. 5.需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时. 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较大,以致可忽略柱下不均匀沉降时,假定基底反力按线性分布,仅进行满足静力平衡条件下梁的计算. 二 计算图式 1.上部结构荷载和基础剖面图

2.静力平衡法计算图式 3.倒梁法计算图式 三.设计前的准备工作 在采用上述两种方法计算基础梁之前,需要做好如下工作: 1.确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度.当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础.基础的纵向地基净反力为: 式中 P jmax,P jmin —基础纵向边缘处最大和最小净反力设计值. ∑F i —作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其它局部均布q i). ∑M —作用于基础上各竖向荷载(F i ,q i ),纵向弯矩(M i)对基础底板纵向中点产生的总弯矩设计值. L —基础长度,如上述. B —基础底板宽度.先假定,后按第2条文验算. j j i p F bL M bL min max =±∑∑6 2

柱下独立基础设计

课程设计说明书 课程名称:基础工程课程设计 设计题目:柱下独立基础设计 专业:建工班级:建工0903 学生姓名: 邓炜坤学号: 0912080319 指导教师:周友香 湖南工业大学科技学院教务部制 2011年 12 月 1 日

引言 “土力学与地基基础”课程是土木工程专业及相关专业的主干课程,也是重要的专业课程。“土力学与地基基础课程设计”是“土力学与 地基基础”课程的实践教学环节,着手提高学生的综合应用能力,主要 为了巩固与运用基础概念与基础知识、掌握方法以及培养各种能力等诸 多方面。 作为建筑类院校专业课的一种实践教学环节,课程设计师教学计划中德一个有机组成部分;是培养学生综合运用所学各门课程的基本理论、基本知识和基本技能,以分析解决实际工程问题能力的重要步骤;是学 生巩固并灵活运用所学专业知识的一种比较好的手段;也是锻炼学生理 论联系实际能力和提高学生工程设计能力的必经之路。 课程设计的目的是: 1.巩固与运用理论教学的基本概念和基础知识 2.培养学生使用各种规范及查阅手册和资料能力 3.培养学生概念设计的能力 4.熟悉设计步骤与相关的设计内容 5.学会设计计算方法 6培养学生图子表达能力 7.培养学生语言表达能力 8.培养学生分析和解决工程实际问题的能力

目录 一、设计资料 二、独立基础设计 1、选择基础材料 2、选择基础埋置深度 3、计算地基承载力特征值 4、初步选择基底尺寸 5、验算持力层的地基承载力 6、软弱下卧层的验算 7、计算基底净反力 8、验算基础高度 9、基础高度(采用阶梯形基础) 10、地基变形验算 11、变阶处抗冲切验算 12、配筋计算 13、基础配筋大详图 14、确定A、B两轴柱子基础底面尺寸 15、A、B两轴持力层地基承载力验算 16、设计图纸

柱下独立基础课程设计例题

1 柱下独立基础课程设计 1.1设计资料 1.1.1地形 拟建建筑地形平整 1.1.2工程地质条件 自上而下土层依次如下: ①号土层:杂填土,层厚0.5m 含部分建筑垃圾。 ②号土层:粉质粘土,层厚1.2m ,软塑,潮湿,承载力特征值ak f 130KPa =。 ③号土层:黏土,层厚1.5m ,可塑,稍湿,承载力特征值180ak f KPa =。 ④号土层:细砂,层厚2.7m ,中密,承载力特征值k 240Kpa a f =。 ⑤号土层:强风化砂质泥岩,厚度未揭露,承载力特征值300ak f KPa =。 1.1.3岩土设计参数 表1.1 地基岩土物理学参数

1.1.4水文地质条件 1) 拟建厂区地下水对混凝土结构无腐蚀性。 2) 地下水位深度:位于地表下1.5m 。 1.1.5上部结构材料 拟建建筑物为多层全现浇框架结构,框架柱截面尺寸为500mm ?500mm 。室外地坪标高同自然地面,室内外高差450mm 。柱网布置图如图1.1所示: 1.1.6材料 混凝土强度等级为2530C C -,钢筋采用235HPB 、HPB335级。 1.1.7本人设计资料 本人分组情况为第二组第七个,根据分组要求及参考书柱底荷载效应标准组合值及柱底荷载效应基本组合值选用⑦题号B 轴柱底荷载. ①柱底荷载效应标准组合值:k K K F 1970KN M 242KN.m,V 95KN ===, 。 ②柱底荷载效应基本组合值:k K K F 2562KN M 315KN.m,V 124KN ===,. 持力层选用④号土层,承载力特征值k F 240KPa =,框架柱截面尺寸为500mm ?500mm ,室外地坪标高同自然地面,室内外高差450mm 。

柱下条形基础计算方法与步骤 (1)

柱下条形基础简化计算及其设计步骤 一 适用范围: 柱下条形基础通常在下列情况下采用: 1.多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足设计要求时. 2.当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时. 3.地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时. 4.各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时. 5.需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时. 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较大,以致可忽略柱下不均匀沉降时,假定基底反力按线性分布,仅进行满足静力平衡条件下梁的计算. 二 计算图式 1.上部结构荷载和基础剖面图 2.静力平衡法计算图式

3.倒梁法计算图式 三.设计前的准备工作 在采用上述两种方法计算基础梁之前,需要做好如下工作: 1.确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度.当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础.基础的纵向地基净反力为: 式中 P jmax,P jmin —基础纵向边缘处最大和最小净反力设计值. ∑F i —作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其它局部均布q i). ∑M —作用于基础上各竖向荷载(F i ,q i),纵向弯矩(M i)对基础底板纵向中点产生的总弯矩设计值. L —基础长度,如上述. B —基础底板宽度.先假定,后按第2条文验算. 当P jmax 与P jmin 相差不大于10%,可近似地取其平均值作为均布地基反力,直接定出基础悬臂长度a 1=a 2(按构造要求为第一跨距的1/4~1/3),很方便就确定了合理的基础长度L ;如果P jmax 与P jmin 相差较大时,常通过调整一端悬臂长度a 1或a 2,使合力∑F i 的重心恰为基础的形心(工程中允许两者误差不大于基础长度的3%),从而使∑M 为零,反力从梯形分布变为均布,求a 1和a 2的过程如下: j j i p F bL M bL min max =±∑∑6 2

柱下条形基础内力计算(zhang)

一、柱下条形基础的计算 1. 倒梁法 倒梁法假定上部结构是刚性的,柱子之间不存在差异沉降,柱脚可以作为基础的不动铰支座,因而可以用倒连续梁的方法分析基础内力。这种假定在地基和荷载都比较均匀、上部结构刚度较大时才能成立。此外,要求梁截面高度大于1/6柱距,以符合地基反力呈直线分布的刚度要求。 倒梁法的内力计算步骤如下: (1).按柱的平面布置和构造要求确定条形基础长度L ,根据地基承载力特征值确定基础 底面积A ,以及基础宽度B=A/L 和截面抵抗矩6/2 BL W =。 (2).按直线分布假设计算基底净反力n p : min max n n p p W M A F i i ∑±∑= (4-12) 式中 ∑i F 、∑i M ?相应于荷载效应标准组合时,上部结构作用在条形基础上的竖向力(不 包括基础和回填土的重力)总和,以及对条形基础形心的力矩值总和。当为轴心荷载时, n n n p p p ==min max 。 (3).确定柱下条形基础的计算简图如图4-13,系为将柱脚作为不动铰支座的倒连续梁。 基底净线反力 B p n 和除掉柱轴力以外的其它外荷载(柱传下的力矩、柱间分布荷载等)是 作用在梁上的荷载。 (4).进行连续梁分析,可用弯矩分配法、连续梁系数表等方法。 (5).按求得的内力进行梁截面设计。 (6).翼板的内力和截面设计与扩展式基础相同。 倒连续梁分析得到的支座反力与柱轴力一般并不相等,这可以理解为上部结构的刚度对基础整体挠曲的抑制和调整作用使柱荷载的分布均匀化,也反映了倒梁法计算得到的支座反力与基底压力不平衡的缺点。为此提出了“基底反力局部调整法”,即将不平衡力(柱轴力与支座反力的差值)均匀分布在支座附近的局部范围(一般取1/3的柱跨)上再进行连续梁分析,将结果叠加到原先的分析结果上,如此逐次调整直到不平衡力基本消除,从而得到梁的最终内力分布。由图4-14,连续梁共有n 个支座,第i 支座的柱轴力为i F ,支座反力为i R ,左右柱跨分别为1-i l 和i l ,则调整分析的连续梁局部分布荷载强度i q 为: 边支座)1(n i i ==或 3 /)(1)1(0) (1)(1)(1n n n n n l l R F q +-= + (4-13a ) 中间支座)1(n i << i i i i i l l R F q +-= -1)(3 (4-13b ) 当i q 为负值时,表明该局部分布荷载应是拉荷载,例如图4-14中的2q 和3q 。 倒梁法只进行了基础的局部弯曲计算,而未考虑基础的整体弯曲。实际上在荷载分布和地基都比较均匀的情况下,地基往往发生正向挠曲,在上部结构和基础刚度的作用下,边柱和角柱的荷载会增加,内柱则相应卸荷,于是条形基础端部的基底反力要大于按直线分布假设计算得到的基底反力值。为此,较简单的做法是将边跨的跨中和第一内支座的弯矩值按计算值再增加20%。

柱下条形基础计算简化及步骤

柱下条形基础简化计算及其设计步骤 摘要:本文对常用的静力平衡法和倒梁法的近似计算及其各自的适用范围和相互关系作了一些叙述,提出了自己的一些看法和具体步骤,并附有柱下条基构造表,目的是使基础设计工作条理清楚,方法得当,既简化好用,又比较经济合理. 关键字:柱下条形基础简化计算设计步骤 一.适用范围: 柱下条形基础通常在下列情况下采用: 1.多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足 设计要求时. 2.当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时. 3.地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时. 4.各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时. 5.需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时. 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较大,以致可忽略柱下不均匀沉降时,假定基底反力按线性分布,仅进行满足静力平衡条件下梁的计算. 二.计算图式 1.上部结构荷载和基础剖面图 2.静力平衡法计算图式 3.倒梁法计算图式

三.设计前的准备工作 在采用上述两种方法计算基础梁之前,需要做好如下工作: 1.确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度.当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础.基础的纵向地基净反力为: 式中Pjmax,Pjmin—基础纵向边缘处最大和最小净反力设计值. ∑Fi—作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其它局部均布qi). ∑M—作用于基础上各竖向荷载(Fi,qi),纵向弯矩(Mi)对基础底板纵向中点产生的总弯矩设计值. L—基础长度,如上述. B—基础底板宽度.先假定,后按第2条文验算. 当Pjmax与Pjmin相差不大于10%,可近似地取其平均值作为均布地基反力,直接定出基础悬臂长度a1=a2(按构造要求为第一跨距的1/4~1/3),很方便就确定了合理的基础长度L;如果Pjmax与Pjmin相差较大时,常通过调整一端悬臂长度a1或a2,使合力∑Fi的重心恰为基础的形心(工程中允许两者误差不大于基础长度的3%),从而使∑M为零,反力从梯形分布变为均布,求a1和a2的过程如下: 先求合力的作用点距左起第一柱的距离: 式中,∑Mi—作用于基础上各纵向弯矩设计值之和. xi—各竖向荷载Fi距F1的距离. 当x≥a/2时,基础长度L=2(X+a1),a2=L-a-a1.

柱下独立基础课程设计模板

目录 一、设计资料 二、独立基础设计 1、选择基础材料 2、选择基础埋置深度 3、计算地基承载力特征值 4、初步选择基底尺寸 5、验算持力层的地基承载力 6、计算基底净反力 7、验算基础高度 8、基础高度(采用阶梯形基础) 9、变阶处抗冲切验算 10、配筋计算 11、基础配筋大详图 12、确定A、B两轴柱子基础底面尺寸 13、设计图纸(附图纸) 三、设计技术说明及主要参考文献

柱下独立基础课程设计 一、设计资料 3号题○B轴柱底荷载: ○1柱底荷载效应标准组合值:F K=1720KN,M K=150KN·m,V K=66KN。 ○2柱底荷载效应基本组合值:F=2250KN,M=195KN·m,V=86KN。 持力层选用○4号土层,承载力特征值f ak=240kPa,框架柱截面尺寸为500mm×500mm,室外地坪标高同自然地面,室内外高差450mm。 二、独立基础设计 1.选择基础材料 基础采用C25混凝土,HPB235级钢筋,预估基础高度0.8m。 2.选择基础埋置深度 根据柱下独立基础课程设计任务书要求和工程地质资料选取。 ①号土层:杂填土,层厚约0.5m,含部分建筑垃圾。 ②号土层:粉质粘土,层厚1.2m,软塑,潮湿,承载力特征值f ak=130kPa。 ③号土层:粘土,层厚1.5m,稍湿,承载力特征值f ak=180kPa。 ④号土层:细砂,层厚3.0m,中密,承载力特征值f ak=240kPa。 ⑤号土层:强风化砂质泥岩,很厚,中密,承载力特征值f ak=300kPa。 拟建场区地下水对混凝土结构无腐蚀性,地下水位深度:位于地表下1.5m。取基础地面高时最好至持力层下0.5m,本设计取○4号土层为持力层,所以考虑取室外地坪到基础地面为0.5+1.2+1.5+0.5=3.7m。由此得到基础剖面示意图如下图所示。

柱下条形基础简化计算及其设计步骤

柱下条形基础简化计算及其设计步骤 一、适用范围: 柱下条形基础通常在下列情况下采用: 1、多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足设计要求时。 2、当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时。 3、地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时。 4、各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时。 5、需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时。 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较大,以致可忽略柱下不均匀沉降时,假定基底反力按线性分布,仅进行满足静力平衡条件下梁的计算。 二、计算图式 1、上部结构荷载和基础剖面图 2、静力平衡法计算图式 3、倒梁法计算图式 三、设计前的准备工作 在采用上述两种方法计算基础梁之前,需要做好如下工作:

1、确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度。当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础。基础的纵向地基净反力为: 式中Pjmax,Pjmin—基础纵向边缘处最大和最小净反力设计值。 ∑Fi—作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其它局部均布qi)。 ∑M—作用于基础上各竖向荷载(Fi ,qi),纵向弯矩(Mi)对基础底板纵向中点产生的总弯矩设计值。 L—基础长度,如上述。 B—基础底板宽度。先假定,后按第2条文验算。 当Pjmax与Pjmin相差不大于10%,可近似地取其平均值作为均布地基反力,直接定出基础悬臂长度a1=a2(按构造要求为第一跨距的1/4~1/3),很方便就确定了合理的基础长度L;如果Pjmax与Pjmin相差较大时,常通过调整一端悬臂长度a1或a2,使合力∑Fi的重心恰为基础的形心(工程中允许两者误差不大于基础长度的3%),从而使∑M为零,反力从梯形分布变为均布,求a1和a2的过程如下: 先求合力的作用点距左起第一柱的距离: 式中,∑Mi—作用于基础上各纵向弯矩设计值之和。 xi—各竖向荷载Fi距F1的距离。 当x≥a/2时,基础长度L=2(X+a1), a2=L-a-a1。 当x

柱下条形基础设计计算书

柱下条形基础课程设计计算书 由平面图和荷载可知A 、D 轴的基础受力情况相同,B 、C 轴的基础受力情况相同。所以在计算时,只需对A 、B 轴的条形基础进行计算。 一、A 、D 轴基础尺寸设计 1、确定基础底面尺寸并验算地基承载力 由已知的地基条件,地下水位埋深12m ,假设基础埋深1.55m (基础底面到室外地面的距离),持力层为粘土层。 (1)求修正后的地基承载力特征值 查得0=b η,0.1=d η, 3180.518 1.05 18/1.55 m kN m γ?+?= = (0.5)160 1.018(1.550.5)178.9a ak d m f f d kPa ηγ=+-=+??-= (2)初步确定基础宽度 条形基础轴线方向不产生整体偏心距,设条形基础两端均向外伸出0.25 5.4 1.35m ?= 基础总长57 5.40.25259.7l m =+??= 则基础底面在单位1m 长度内受平均压力 1864.73 282.536.6k F kN = = 则基础底面在单位1m 长度内受平均弯矩 83.50 12.656.6 k M kN m = =? 282.53 1.87178.918 1.55 k a G F b m f d γ≥ ==--? 考虑偏心荷载的作用,取b=2.5m 。 (3)计算基底压力并验算 基底处的总竖向荷载为: 282.5318 1.0 1.55 2.5352.28k k F G kN +=+???= 基底总弯矩为:83.50k M kN m =? 偏心距为:83.50 2.5 0.2370.417352.2866 k k k M l e m m F G = ==<==+ 基底平均压力为:352.28 140.9178.92.5 1.0 k k k a F G p kPa f kPa A +===<=? 基底最大压力为: max 660.2371140.91201.04 1.2214.682.5k k a e p p kPa f kPa l ????? =+=?+=<= ? ???? ?满 足条件。

第3章_柱下条形基础

第3章柱下条形基础、筏形和箱形基础 §3-1概述 柱下条形基础、筏形基础和箱形基础与柱下独立基础相比,具有优良的结构特征、较大的承载能力等优点,适合作为各种地质条件复杂、建设规模大、层数多、结构复杂的建筑物基础。 柱下条形基础、筏形基础和箱形基础将建筑物底部连成整体加强了建筑物整体刚度,调整和均衡传递给地基的上部结构荷载,减小荷载差异和地基不均匀造成的建筑物不均匀沉降,减小上部结构的次应力。该类基础一般埋深较大,可提高地基的承载力,增大基础抗水平滑动的稳定性,并可利用地基补偿作用减小基底附加应力,减小建筑物的沉降量。此外,筏形和箱形基础还可在建筑物下部构成较大的地下空间,提供安置设备 和公共设施的合适场所。 但是,这类基础尤其箱形基础,技术要求及造价较高,施工中需处理大基坑、深开挖所遇到的许多问题,箱形基础的地下空间利用 不灵活,因此,选用时需根据具体条件通过技术经济及应用比较确 定。 如前所述的刚性及扩展基础,因建筑物较小,结构较简单,计算分析中将上部结构、基础和地基简单地分割成彼此独立的三个组成 部分,分别进行设计和验算,三者之间仅满足静力平衡条件。这种 设计方法称为常规设计,由此引起的误差一般不致于影响结构安全 或增加工程造价,但计算分析简单,工程界易于接受。然而对于条 形、筏形和箱形等规模较大、承受荷载多和上部结构较复杂的基础,上述简化分析,仅满足静力平衡条件而不考虑三者之间的相互作用,则常常引起较大误差。由于基础在地基平面上一个或两个方向的尺 度与其竖向截面相比较大,一般可看成是地基上的受弯构件—梁或 板。其挠曲特征、基底反力和截面内力分布都与地基、基础以及上 部结构的相对刚度特征有关,故应从三者相互作用的角度出发,采 用适当的方法进行设计。 应该指出,上部结构、基础和地基共同作用是一个复杂的研究课题,尽管已取得较丰硕的成果,但是由于涉及到的因素很多,尤其 地基土是一种很复杂的材料,目前尚缺少一种理想的地基模型去确 切模拟,因此考虑共同工作的分析结果与实测资料对比往往存在着 不同程度的差异,有时误差还较大,说明理论分析方法尚有待进一 步完善,许多设计人员提出,设计这些基础宜以“构造为主,计算 为辅”的原则,本章在介绍柱下条形基础、筏形基础、箱形基础设 计计算的同时,也介绍其结构和构造要求,供设计时采用。 §3-2弹性地基上梁的分析

柱下独立基础课程设计--指导

基础工程课程设计任务书 题目:柱下独立基础课程设计 指导教师:黄晋 浙江理工大学科艺学院建筑系 2011年10月9日

柱下独立基础课程设计任务书 一、设计题目 柱下独立基础设计 二、设计资料 1.地形:拟建建筑场地平整 2.工程地质资料:自上而下依次为: ①杂填土:厚约0.5m,含部分建筑垃圾; ②粉质粘土:厚1.2m,软塑,潮湿,承载力特征值fak=130KN/m2; ③粘土:厚1.5m,可塑,稍湿,承载力特征值fak=180KN/m2; ④全风化砂质泥岩:厚2.7m,承载力特征值fak=240KN/m2; ⑤强风化砂质泥岩:厚3.0m,承载力特征值fak=300KN/m2; ⑥中风化砂质泥岩:厚4.0m,承载力特征值fak=620KN/m2; 表1 地基岩土物理力学参数表 3.水文资料为: 地下水对混凝土无侵蚀性。 地下水位深度:位于地表下1.5m。 4.上部结构资料: 上部结构为多层全现浇框架结构,框架柱截面尺寸为500×500 mm,室外地坪标高同自然地面,室内外高差450mm。柱网布置见图1。

图1 柱网平面图 5.上部结构作用在柱底的荷载效应标准组合值见表2; 上部结构作用在柱底的荷载效应基本组合值见表3; 表2 柱底荷载效应标准组合值 题号F k(KN) M k (KN?m) V k (KN) A轴B轴C轴A轴B轴C轴A轴B轴C轴 1 975 1548 1187 140 100 198 46 48 44 2 1032 1615 1252 164 125 221 55 60 52 3 1090 1730 1312 190 150 242 62 66 57 4 1150 181 5 1370 210 175 271 71 73 67 5 1218 1873 1433 235 193 297 80 83 74 6 1282 1883 1496 25 7 21 8 325 86 90 83 7 1339 1970 1560 284 242 355 96 95 89 8 1402 2057 1618 231 266 377 102 104 98 9 1534 2140 1677 335 288 402 109 113 106 10 1598 2205 1727 365 309 428 120 117 114 表3 柱底荷载效应基本组合值 题号 F (KN) M (KN?m) V (KN) A轴B轴C轴A轴B轴C轴A轴B轴C轴 1 1268 201 2 1544 18 3 130 258 60 62 58 2 1342 2100 1627 214 16 3 288 72 78 67 3 1418 2250 1706 248 195 315 81 86 74 4 1496 2360 1782 274 228 353 93 9 5 88 5 1584 2435 1863 30 6 251 386 104 108 96 6 166 7 244 8 1945 334 284 423 112 117 108 7 1741 2562 2028 369 315 462 125 124 116 8 1823 2674 2104 391 346 491 133 136 128 9 1995 2783 2181 425 375 523 142 147 138 10 2078 2866 2245 455 402 557 156 153 149

柱下条形基础设计课程设计

柱下条形基础设计 一、设计资料 1、地形 拟建建筑场地平整。 2、工程地质条件 自上而下土层依次如下: ①号土层,耕填土,层厚0.7m ,黑色,原为农田,含大量有机质。 ②号土层,黏土,层厚1.8m ,软塑,潮湿,承载力特征值kPa f ak 120=。 ③号土层,粉砂,层厚2.6m ,稍密,承载力特征值kPa f ak 160=。 ④号土层,中粗砂,层厚4.1m ,中密,承载力特征值kPa f ak 200=。 ⑤号土层,中风化砂岩,厚度未揭露,承载力特征值kPa f ak 320=。 3、岩土设计技术参数 地基岩土物理力学参数如表2.1所示。 4、水文地质条件 (1)拟建场区地下水对混凝土结构无腐蚀性。 (2)地下水位深度:位于地表下0.9m 。

5、上部结构资料 拟建建筑物为多层全现浇框架结构,框架柱截面尺寸为mm mm 400400 。室外地坪标高同自然地面,室内外高差mm 450。柱网布置如图2.1所示。 6、上部结构作用 上部结构作用在柱底的荷载效应标准组合值=1280kN =1060kN ,,上 部结构作用在柱底的荷载效应基本组合值 =1728kN ,=1430kN (其中 k N 1为轴 线②~⑥柱底竖向荷载标准组合值;k N 2为轴线①、⑦柱底竖向荷载标准组合值; 1N 为轴线②~⑥柱底竖向荷载基本组合值;2N 为轴线①、⑦柱底竖向荷载基本 组合值) 图2.1 柱网平面图 其中纵向尺寸为6A ,横向尺寸为18m ,A=6300mm 混凝土的强度等级C25~C30,钢筋采用HPB235、HRB335、HRB400级。

二、柱下条形基础设计 1、确定条形基础底面尺寸并验算地基承载力 由已知的地基条件,假设基础埋深d 为m 6.2,持力层为粉砂层 (1) 求修正后的地基承载力特征值 由粉砂,查表10.7得,0.3,0.2==d b ηη 埋深范围内土的加权平均重度: 3/69.116 .2) 105.19(1.06.1)104.18(2.04.187.06.17m kN m =-?+?-+?+?= γ 持力层承载力特征值(先不考虑对基础宽度的修正): kPa d f f m d ak a 65.233)5.06.2(69.110.3160)5.0(=-??+=-?+=γη (2) 初步确定基础宽度 设条形基础两端均向外伸出:m 9.19.63 1 =? 基础总长:m l 4623.269.6=?+?= 则基础底面在单位m 1长度内受平均压力: kN F k 61.20746 5145021150=?+?= 基础平均埋深为:m d 825.2)05.36.2(2 1 =+= 需基础底板宽度b : m d f F b G a k 06.1)] 9.0825.2(10825.220[65.23361 .207=-?-?-=?-≥ γ 取m b 2.1=设计 (3) 计算基底压力并验算 基底处的总竖向荷载为: kN G F k k 73.2583.11)]9.0825.2(10825.220[32.251=??-?-?+=+ 基底的平均压力为: kPa f kPa G F P a k k k 65.23360.2152 .1173 .258A =<=?=+= 满足条件 2、基础的结构设计 (1) 梁的弯矩计算 在对称荷载作用下,由于基础底面反力为均匀分布,因此单位长度地基的净反力为:

柱下独立基础设计计算

目录 柱下独立基础课程设计 (2) 1.1、设计资料 (2) 1.1.1、地形 (2) 1.1.2、工程地质条件 (2) 1.1.3、岩土设计参数 (2) 1.1.4水文地质条件 (3) 1.1.5上部结构资料 (3) 1.1.6设计要求 (3) 1.1.7设计容 (4) 1. 1. 8参考资料 (4) 1.2独立基础设计 (4) 1.2.1选择基础材料 (4) 1.2.2选择基础埋置深度 (5) 1.2.3求地基承载力特征值fa (5) 1.2.4初步选择基底尺寸 (5) 1.2.5验算持力层地基承载力 (6) 1.2.6计算基底反力 (6) 1.2.7柱边基础截面抗冲切验算 (7) 1.2.8变阶处抗冲剪验验 (8) 1.2.9配筋计算 (9) 1.2.10基础配筋大样图 (10) 1. 2. 11计算基础沉降量 (11) 1.2.12设计图纸 (17)

选题一、柱下独立基础设计 (一)设计资料 1、地形 拟建建筑场地平整。 2、工程地质条件 自上而下土层依次如下: ①号土层,杂填土,层厚0.6m ,含部分建筑垃圾。 ②号土层,粉质黏土,层厚1.5m ,软塑,潮湿,承载力特征值kPa f ak 150=。 ③号土层,黏土,层厚1.8m ,可塑,稍湿,承载力特征值kPa f ak 190=。 ④号土层,细砂,层厚2.0m ,中密,承载力特征值kPa f ak 240=。 ⑤号土层,强风化砂质泥岩,厚度未揭露,承载力特征值kPa f ak 310=。 3、岩土设计技术参数 地基岩土物理力学参数如表1.1所示。 表1.1 地基岩土物理力学参数 4、水文地质条件 (1)拟建场区地下水对混凝土结构有腐蚀性。 (2)地下水位深度:位于地表下1.5m 。 5、上部结构资料 拟建建筑物为多层全现浇框架结构,框架柱截面尺寸为mm mm 400400?。室外地坪标高同自然地面,室外高差mm 350。柱网布置如图1.1所示。

相关文档
相关文档 最新文档