文档库 最新最全的文档下载
当前位置:文档库 › 流线优化模型与算法研究及应用

流线优化模型与算法研究及应用

流线优化模型与算法研究及应用
流线优化模型与算法研究及应用

配套的处理方式;果蔬采后商品化处理量几乎达到了100%,形成了完整的果蔬冷链体系。而我国的产地基础设施不完善,未能解决分选、分级、预冷、冷藏运输和保鲜等采后果蔬的处理问题。我国果蔬冷链存在许多问题:产地预冷环节薄弱;冷藏运输工具落后;冷库发展水平低;缺乏有影响力的第三方冷链物流。我国果蔬冷链发展水平要赶上发达国家还有较长的路要走。

要完善我国的果蔬冷链业,除了大力研发性价比合理、符合国情的相关冷链设备、设施以外;还需要全面的对整个果蔬冷链过程中存在的影响果蔬产品质量的风险因素进行分析和评价,从而一一破解;更需要系统地梳理整个果蔬冷链链条,是指实现协同化,构建果蔬冷链质量质量保障体系。这样才能真正确保果蔬产品的质量安全,确保千万消费者食用上安全放心的果蔬产品。

流线优化模型与算法研究及应用

张锦*(交通与物流学院)

1 研究背景

目前我国物流产业正处于高速发展期,理论体系与应用研究正在不断完善。物流活动的目的就是使物流服务来满足物流需求,即通过仓储、加工、运输、配送、包装、装卸搬运等活动来满足社会经济活动中供应商、制造商、零售商、消费者等需求方的对物的移动、储存与服务的需求。在宏观层面的区域及城市经济和微观层面的制造、贸易、消费等典型社会经济活动中的物流活动可抽象为具有特定需求的空间结构,称作物流需求网络。

在物流系统中,由若干特定的点、线和特定的权构成的,反映物流服务与需求关系的供需网络称之为流线网络,它具有以下典型特征。

1.反映了仓储、加工、运输、配送、包装、装卸搬运等物流服务与需求方在物品数量、到达时间、物流费用等方面的物流需求间的供需关系。

2.具有嵌套、多层、多级、多维、多准则、拥塞等典型的超网络结构特征,并且具有连接供需两个物流网络的超网络结构。

3.当实际需求为特定值时,物流服务追求的目标为用恰当的费用,在恰当的时间把恰当数量的恰当物品,经恰当的路线送到恰当的地点。

物流供应网络与物流需求网络之间的关系可由超网络结构进行刻画,用匹配度刻画物流服务与物流需求之间的适应程度。

2 国内外研究现状

目前,国内外学者对流线的组织与优化问题研究较少,与此问题相关的内容包括物流网络、物流网络分配、动线优化、超网络理论与应用、变分不等式算法及其在供应链网络中的应用等内容。

2.1 物流网络研究现状

国外的学者大都倾向从微观的企业角度去研究物流网络的资源配置和协调问题,如物流基础设施、市场竞争机制以及配送运输等问题。这类研究大多利用数学规划法、系统仿真法、启发式

*作者简介:张锦,男,教授。

方法等作为技术工具,为物流网络的设施选址定位、多工厂的协调和战略配送体系的设计等问题提供支持。

物流网络的配送运输问题一直是研究热点,包括车辆路径选择问题(Vehicle Routing Problem,VRP)。VRP最早由Dantzig和Ramser于1959年提出,之后国外学者们使用了多种多样的方法对VRP的进行了理论和实际运用的研究。从Ford和Fulkerson开始,学者们开始采用大量的算法用来研究网络流问题。近年,不少学者更是尝试使用新的方法来研究物流网络中的运输、选址以及网络设计等问题,Pedro M.Reyes利用博弈论中的Shapley value的方法来解决物流网络中的转载运输问题,以维持网络的稳定;Nakatsu则对由工厂、仓库和消费市场等三种常用节点所组成的物流网络结构展开研究,利用基于模型的推理方法和启发式搜索方法来解决仓库设施的定位问题和物流网络结构设计中的聚集或分散决策;https://www.wendangku.net/doc/0d16082655.html,o等通过对影响物流网络中的环境、成本的各种活动进行研究,提出了基于多目标规划的物流网络优化设计框架,并讨论了其在可持续物流网络设计中的应用。

随着绿色和环保概念吸引越来越多的国家、组织和企业的关注,越来越多的学者也开始从回收物流或逆向物流的角度对物流网络设计和优化问题进行研究。Fleischmann等在分析产品回收环境下的物流网络设计过程中,着重对产品回收物流网络和传统的物流网络进行了比较。马祖军等考虑再制造物流系统中废旧产品回收量和再生产品需求量的不确定性,提出一种单产品、单周期、有能力限制的再制造物流网络稳健优化设计模型,用来确定再制造物流网络中各种设施的数量和位置,并在由此构成的各条物流路径上合理分配物流量。

区域物流网络是物流网络的研究热点之一,其相关研究大多数是针对某个特定区域的实证研究。郎丰平将层次分析法和模糊理论相结合,提出了区域物流网络多层次模糊评价法,并确定了东北经济区物流网络的主体架构和对俄边贸物流网络的层次结构。李兆磊等从区域物流与区域经济相互匹配的角度进行了研究。胡剑鸿针对湖北省武陵山地区黄莲生产分布、交易与储存的实际场所与状况,建立了规模化种植物流网络。阎利军等建立了城市商品运输系统运输费用和中间节点的建设费用模型,根据费用和选择模型开发了优化物流中间节点的分布和规模模型。

在流线网络构建方面,王坤、张锦等基于国际贸易中物流组织特点,提出了揭示物流服务与需求关系的流线网络,分析了其时间、数量等方面的供需关系;王坤、张锦等综合考虑时间和数量因素,进一步分析了多层多级的流线网络上匹配度模型;张锦、王坤将流线网络结构扩展应用于生产制造、贸易、消费和区域及城市经济等典型社会经济活动中的物流活动中,综合考虑时间、数量和费用等因素,建立了一类具有匹配度约束的流线优化模型,并提出了求解思路。

目前,国内外专家对物流网络的研究多侧重于配送网络、两级或三级的网络结构,对具有多层、多级、多属性特征的物流网络及其上的供需分析还需进一步研究。

2.2 物流网络分配问题

物流量网络分配问题从文献检索来看,国外有关出行分配问题的研究较为丰富,但对物流量的网络分配问题研究较少,相关的研究集中在物流需求分析方面。在国内,张锦从集合分析的思想出发,提出了基于L-OD的物流需求预测的模型体系,对物流量在物流网络上的分配进行了研究,给出了动态多路径模型与算法。刘开元提出以综合的广义费用对影响网络分配的时间与费用因素进行综合考虑,并将其应用于双约束重力模型当中。韩世莲、李旭宏等利用模糊数学的方法,也对物流网络的路径选择问题进行了研究并取得了一些成果。与出行分配问题相似,物流量的网络分配应考虑时间与费用,且也应综合考虑。张锦、朱炜此基础上进行了进一步的

研究,提出了综合路权与转换阻抗以全面地反映网络分配情况。

在物流网络分配问题的研究中,国内外很多学者做了大量的工作,但其研究成果大都基于时间或费用的单方面指标,将时间、数量、费用进行综合考虑的较少。

2.3 动线优化问题

在厂房、物流中心、货运场站中,动线是指物品、设备、人员的移动路线,避免阻断、迂回、绕行和相互交叉等现象。刘昌祺在物流配送中心的平面布置中,对动线的概念进行了界定,认为动线就是商品、质材(货品箱、托盘、料箱等)、废气物和人员的移动路线,提出了物流配送中心动线设计的若干原则,对物流动线的常见形式进行了分析。钟华在基于EM_PLANT医药物流中心的规划及仿真研究中,详细阐述了医药物流中心的动线规划。

目前,物流动线图以及动线布置法在物流系统规划设计中有较广泛的应用。赵俊峰在烟草配送中心设备管理系统研究中,使用物流动线图来描述卷烟配送中心生产流程;马全伟通过对企业仓储中心的各类货物库区的物流量强度、使用频率的分析,使用仓库物流流程动线图对库区作业进行了优化。宋建新采用I型双直线式动线布置,对箱类、散货以及托盘货物进出配送中心进行了仿真。李云清在物流系统规划中介绍了物流中心内部设施布局规划和物流中心设备选型与空间布局设计,给出了各区域的面积与相对位置的计算方法。刘晓岚通过对非物流因素与物流因素的分析,确定了区域间的相关性,并结合各区域的作业面积,采用动线布置法,完成区域的布置规划。

目前,关于物流过程中的动线研究多是设施内部的问题,但实际物流活动中不仅有设施内部的动线,还存在外部空间的设施、连线等。动线研究方法大多针对冲突点和重复率进行优化与设计,而未涉及系统性的优化,有待于进一步研究。

2.4 超网络理论与应用

随着网络化的发展,一般的网络已不能完全描述真实世界网络的特征,许多复杂的大规模网络出现,这些网络节点和边的数量众多,结构复杂,连接形式多样。在研究超大规模的网络系统时,会出现物流网络与信息网络、资金网络相交织的问题。如果用工程的方法来分别处理各网的问题,就很难理清各网络之间的关系,因此,就出现了超越一般网络的网络系统,即超网络。

超网络概念的提出为许多复杂的系统研究提供了新的思路,可将其作为研究Internet网络、交通网络、供应链网络以及物流网络等大型复杂系统的一种工具,国内也有学者开始这方面的研究,如张福梅基于变分不等式的退货供应链超网络研究,杨广芬基于变分不等式的闭环供应链超网络研究,李晓强基于变分不等式的电子商务供应链超网络研究,杨广芬由零售商负责回收的闭环供应链超网络优化,杨光华基于加权超网络的区域物流网络模型机特征分析,薛雷逆向物流超网络优化模型研究。

随着实际生活中系统的日益复杂多样化,超网络模型的应用领域和范围必将越来越广,更多的系统利用超网络的概念来处理。将超网络进一步应用于知识管理系统等一些新型系统之中,如席运江基于加权超网络模型的知识网络鲁棒性分析及应用。

综上所述,超网络在各类复杂系统中的应用越来越受到专家学者的重视,但超网络在物流领域的应用相对较少,特别是针对本课题制造、贸易、消费等几类流线网络的应用较少。由于超网络对于解决具有多层、多级、多属性的网络优化问题具有一定的可行性,因此,超网络是流线网络构建与优化的一种有效方法。

2.5 变分不等式算法及在供应链网络中的应用

变分不等式求解算法主要包括迭代算法、邻近点算法和投影算法。孙巍,吴长亮等在Hilbert

空间中给出求极大单调算子零点的近似邻近点算法,并证明该算法生成的序列弱收敛到算子的零点,得到求解单调变分不等式的近似邻近点算法;唐国吉针对单调变分不等式,建立了一个新的误差准则,并且在不需要增加投影、外梯度等步骤的情况下证明了邻近点算法的收敛性;赵晖,高自友根据变分不等式的等价形式,构造了一种混沌搜索算法来直接求解变分不等式问题,并验证了算法的渐进收敛性;孙敏基于Han D提出的交替方向法,通过一系列的改进,对结构型单调变分不等式问题给出了一种新的投影类交替方向法,证明了在解集非空和函数单调的条件下,该方法具有全局收敛性;梁远洪介绍了一类广义投影算法,将该算法运用于求解Hilbert空间中一类新的广义非线性变分不等式组的逼近解;彭再云,雷鸣等给出了希尔伯特空间中一类带误差的三步投影方法,借助投影方法的收敛性证明了由该算法生成的迭代序列强收敛于此类广义松弛余强制变分不等式体系问题的精确解。

变分不等式算法广泛应用于优化问题、非线性规划、经济问题等研究领域中,与我们相关的内容主要涉及在供应链网络中的应用。Nagurney等描述了供应链中不同决策者的独立行为,以及决策者之间相互影响的竞争行为,利用进化变分不等式算法,得到了供应链系统达到均衡的条件,确定了供应链中所涉及的交易价格与交易量;Hammond等综合了供应链网络均衡模型和回收超网络模型,对由生产商和需求市场组成的闭环供应链超网络模型和变分不等式求解进行了研究;王众托等在Nagurney工作的基础上,对考虑供应商、生产商、零售商和需求市场的电子商务供应链超网络模型、退货供应链超网络模型进行了研究,并得利用变分不等式算法和改进算法得到了模型的优化解。

物联网电子标签的快速识别技术研究

张小强*(交通与物流学院)

1 研究意义

物联网简称IOT(the Internet of Things),物品可以通过射频识别等信息传感设备与互联网链接起来,实现智能化识别和管理。1995年比尔盖茨在其《未来之路》一书中已提及物联网概念,2005年,国际电信联盟发布了《ITU互联网报告2005:物联网》报告,正式提出了物联网概念。中国这几年对物联网的专注度逐渐加强,特别是2009年,对中国物联网的发展可谓是不平凡的一年。2009年8月7日,国务院总理温家宝在无锡微纳传感网工程技术研发中心视察并发表重要讲话,表示中国要抓住机遇,大力发展物联网技术。2009年8月26日,工信部总工程师朱宏任在中国工业经济运行2009年夏季报告会上表示,我国也正在高度关注、重视物联网方面的研究。2009年9月11日,工信部传感器网络标准化工作小组的成立,标志着我国将加快制定符合我国发展需求的传感网技术标准,力争主导制定传感网国际标准。2009年11月3日,温家宝总理在人民大会堂向首都科技界发表了题为《让科技引领中国可持续发展》的讲话,再次强调科学选择新兴战略性产业非常重要,并指示要着力突破传感网、物联网关键技术。

物联网有三个层次,一个是传感网络,即以RFID电子标签、传感器为主,实现“物”的识别;二是传输网络,即通过现有的互联网、广电网、通信网或者下一代互联网,实现数据的传输和

*作者简介:张小强,男,副教授。

最优化理论与算法(第八章)

第八章 约束优化最优性条件 §8.1 约束优化问题 一、 问题基本形式 min ()f x 1()0 1,,.. ()0 ,,i e i e c x i m s t c x i m m +==?? ≥=?L L (8.1) 特别地,当()f x 为二次函数,而约束是线性约束时,称为二次规划。 记 {} 1()0 (1,,);()0 ,,i e i e X x c x i m c x i m m +===≥=L L ,称之为可行域(约束域)。 {}1,,e E m =L ,{}1,,e I m m +=L ,{}()()0 i I x i c x i I ==∈ 称()E I x U 是在x X ∈处的积极约束的指标集。积极约束也称有效约束,起作用约束或紧约束(active constraints or binding constraints )。 应该指出的是,如果x * 是(1)的局部最优解,且有某个0i I ∈,使得 0()0i c x *> 则将此约束去掉,x * 仍是余下问题的局部最优解。 事实上,若x *不是去掉此约束后所得问题的局部极小点,则意味着0δ?>,存在x δ,使得 x x δδ*-<,且()()f x f x δ*<,这里x δ满足新问题的全部约束。注意到当δ充分小时,由0() i c x 的连续性,必有0()0i c x δ≥,由此知x δ是原问题的可行解,但()()f x f x δ*<,这与x * 是局部极小 点矛盾。 因此如果有某种方式,可以知道在最优解x * 处的积极约束指标集()()A x E I x * *=U ,则问题 可转化为等式的约束问题: min ()f x .. ()0i s t c x = ()i A x *∈ (8.2) 一般地,这个问题较原问题(8.1)要简单,但遗憾的是,我们无法预先知道()A x * 。

流线优化模型与算法研究及应用

配套的处理方式;果蔬采后商品化处理量几乎达到了100%,形成了完整的果蔬冷链体系。而我国的产地基础设施不完善,未能解决分选、分级、预冷、冷藏运输和保鲜等采后果蔬的处理问题。我国果蔬冷链存在许多问题:产地预冷环节薄弱;冷藏运输工具落后;冷库发展水平低;缺乏有影响力的第三方冷链物流。我国果蔬冷链发展水平要赶上发达国家还有较长的路要走。 要完善我国的果蔬冷链业,除了大力研发性价比合理、符合国情的相关冷链设备、设施以外;还需要全面的对整个果蔬冷链过程中存在的影响果蔬产品质量的风险因素进行分析和评价,从而一一破解;更需要系统地梳理整个果蔬冷链链条,是指实现协同化,构建果蔬冷链质量质量保障体系。这样才能真正确保果蔬产品的质量安全,确保千万消费者食用上安全放心的果蔬产品。 流线优化模型与算法研究及应用 张锦*(交通与物流学院) 1 研究背景 目前我国物流产业正处于高速发展期,理论体系与应用研究正在不断完善。物流活动的目的就是使物流服务来满足物流需求,即通过仓储、加工、运输、配送、包装、装卸搬运等活动来满足社会经济活动中供应商、制造商、零售商、消费者等需求方的对物的移动、储存与服务的需求。在宏观层面的区域及城市经济和微观层面的制造、贸易、消费等典型社会经济活动中的物流活动可抽象为具有特定需求的空间结构,称作物流需求网络。 在物流系统中,由若干特定的点、线和特定的权构成的,反映物流服务与需求关系的供需网络称之为流线网络,它具有以下典型特征。 1.反映了仓储、加工、运输、配送、包装、装卸搬运等物流服务与需求方在物品数量、到达时间、物流费用等方面的物流需求间的供需关系。 2.具有嵌套、多层、多级、多维、多准则、拥塞等典型的超网络结构特征,并且具有连接供需两个物流网络的超网络结构。 3.当实际需求为特定值时,物流服务追求的目标为用恰当的费用,在恰当的时间把恰当数量的恰当物品,经恰当的路线送到恰当的地点。 物流供应网络与物流需求网络之间的关系可由超网络结构进行刻画,用匹配度刻画物流服务与物流需求之间的适应程度。 2 国内外研究现状 目前,国内外学者对流线的组织与优化问题研究较少,与此问题相关的内容包括物流网络、物流网络分配、动线优化、超网络理论与应用、变分不等式算法及其在供应链网络中的应用等内容。 2.1 物流网络研究现状 国外的学者大都倾向从微观的企业角度去研究物流网络的资源配置和协调问题,如物流基础设施、市场竞争机制以及配送运输等问题。这类研究大多利用数学规划法、系统仿真法、启发式 *作者简介:张锦,男,教授。

基于数学模型的网络优化方法研究

基于数学模型的网络优化方法研究 赵鹏 通信一团技术室 摘 要 为了提高网络链路的利用率,解决网络传输中的最大流问题,该文利用建立数学模 型的方法来求解网络的传输路径,研究了基于路径的网络优化方法。该方法能够极大地提高网络的链路利用率,从而降低网络的拥塞,使得网络的性能得到较大改善。 关键词 网络优化 最大流 数学模型 1 引言 随着网络技术的进步和人们对多媒体综合业务需求,传统的数据网络逐渐转向多媒体网络,在这过程中,除了相关服务以外,我们还面临许多极具战性的网络设计和优化问题。网络优化的目标是提高或保持网络质量,而网络质量是各种因素相互作用的结果,随着网络优化工作的深入开展和优化技术的提高,优化的范围也在不断扩大。 在计算机网络优化设计中,各条链路的容量分配和各节点间的路由选择是两个重要问题。在给定网络拓扑结构和各节点间传输流量的条件下,如何确定各条链路的容量大小和选择各节点间的最佳路由,使整个网络成本费用最低并能满足规定的性能指标呢? 许多网络优化的文献,研究针对CDMA 网络、GPRS 网络、GSM 网络、PHS 网络等具体网络在投入运行后,对网络进行参数采集、数据分析,找出影响网络质量的原因,通过技术手段或参数调整使网络达到最佳运行状态,涉及到交换网络技术、无线参数、小区参数配置、信令和设备技术等方面。 本文针对目前许多网络传输链路和网络设备没有得到充分利用,从而影响网络性能的问题,利用网络优化方法从理论上进行分析,研究了用于提高网络链路利用率的基于路径的网络优化方法,该方法能够充分地利用网络链路进行流量传输,从而改善网络的整体性能。 2 网络优化理论 很多情况下可以将网络优化问题转化成数学问题进行研究和分析。从根本上讲,优化问题包含三个基本要素: 决策变量集合或向量:n R x ∈(本文,x 代表在一条或多条路径上的流量) 目标函数R R x f n →:)( 一组约束条件g(x)和h(x),用来定义x 的范围。 解决优化问题实际上就是找出一个点x*,使得f(x)最大化或最小化。 典型的网络优化问题包含找出一组路由和该路由上的流量值以便达到最大或最小化目标函数的目的。目标函数可以代表最大链路利用率、平均延迟或其他指标。 基于路径的问题首先要计算出网络流可能流经的路径,要最大限度的利用网络链路,同时路径上的流量不能超过链路容量。 对于基于路径的网络优化问题可以简单表示成: max f(x) s.t. ∑∈=P p p b x

遗传算法优化的BP神经网络建模[精选.]

遗传算法优化的BP神经网络建模 十一月匆匆过去,每天依然在忙碌着与文档相关的东西,在寒假前一个多月里,努力做好手头上的事的前提下多学习专业知识,依然是坚持学习与素质提高并重,依然是坚持锻炼身体,为明年找工作打下基础。 遗传算法优化的BP神经网络建模借鉴别人的程序做出的仿真,最近才有时间整理。 目标: 对y=x1^2+x2^2非线性系统进行建模,用1500组数据对网络进行构建网络,500组数据测试网络。由于BP神经网络初始神经元之间的权值和阈值一般随机选择,因此容易陷入局部最小值。本方法使用遗传算法优化初始神经元之间的权值和阈值,并对比使用遗传算法前后的效果。 步骤: 未经遗传算法优化的BP神经网络建模 1、随机生成2000组两维随机数(x1,x2),并计算对应的输出y=x1^2+x2^2,前1500组数据作为训练数据input_train,后500组数据作为测试数据input_test。并将数据存储在data中待遗传算法中使用相同的数据。 2、数据预处理:归一化处理。 3、构建BP神经网络的隐层数,次数,步长,目标。 4、使用训练数据input_train训练BP神经网络net。 5、用测试数据input_test测试神经网络,并将预测的数据反归一化处理。 6、分析预测数据与期望数据之间的误差。 遗传算法优化的BP神经网络建模 1、读取前面步骤中保存的数据data; 2、对数据进行归一化处理; 3、设置隐层数目; 4、初始化进化次数,种群规模,交叉概率,变异概率 5、对种群进行实数编码,并将预测数据与期望数据之间的误差作为适应度函数; 6、循环进行选择、交叉、变异、计算适应度操作,直到达到进化次数,得到最优的初始权值和阈值; 7、将得到最佳初始权值和阈值来构建BP神经网络; 8、使用训练数据input_train训练BP神经网络net; 9、用测试数据input_test测试神经网络,并将预测的数据反归一化处理; 10、分析预测数据与期望数据之间的误差。 算法流程图如下:

最优化理论与算法 fibonacci法

function [a,b,n,x]=fibonacci(fname,a,b,d,L) % fname函数句柄,d辨别常数,L最终区间长度a(1)=a; b(1)=b; F=zeros(1,10); %选择fibonacci数列k值为10,可任意更改 F(1)=1; F(2)=2; for k=2:10 %k取到10,生成fibonacci数列 F(k+1)=F(k)+F(k-1); F(k); end Fn=(b(1)-a(1))/L; Fk=[F Fn]; N=sort(Fk); n=find(Fn==N); %查找计算函数值的次数n t(1)=a(1)+F(n-2)*(b(1)-a(1))/F(n); %计算试探点t(1),u(1) u(1)=a(1)+F(n-1)*(b(1)-a(1))/F(n); for k=1:n-2 ft=feval(fname,t(k)); fu=feval(fname,u(k)); if ft>fu a(k+1)=t(k); b(k+1)=b(k); t(k+1)=u(k); u(k+1)=a(k+1)+F(n-k-1)*(b(k+1)-a(k+1))/F(n-k); while k==n-2 t(n)=t(n-1); u(n)=t(n-1)+d; ft=feval(fname,t(n)); fu=feval(fname,u(n)); if ft>fu a(n)=t(n); b(n)=b(n-1); else a(n)=a(n-1); b(n)=t(n); end end else a(k+1)=a(k); b(k+1)=u(k); u(k+1)=t(k); if k~=n-2 t(k+1)=a(k+1)+F(n-k-2)*(b(k+1)-a(k+1))/F(n-k); ft=feval(fname,t(k));

图论与网络优化课程设计_Matlab实现

图论与网络优化课程设计 四种基本网络(NCN、ER、WS、BA) 的构造及其性质比较 摘要:网络科学中被广泛研究的基本网络主要有四种,即:规则网络之最近邻耦合网络(Nearest-neighbor coupled network),本文中简称NCN;ER随机网络G(N,p);WS小世界网络;BA无标度网络。本文着重研究这几种网络的构造算法程序。通过运用Matlab软件和NodeXL网络分析软件,计算各种规模下(例如不同节点数、不同重连概率或者连边概率)各自的网络属性(包括边数、度分布、平均路径长度、聚类系数),给出图、表和图示,并进行比较和分析。 关键字:最近邻耦合网络;ER随机网络;WS小世界网络;BA无标度网络;Matlab;NodeXL。

四种基本网络(NCN、ER、WS、BA) 的构造及其性质比较 1.概述 1.网络科学的概述 网络科学(Network Science)是专门研究复杂网络系统的定性和定量规律的一门崭新的交叉科学,研究涉及到复杂网络的各种拓扑结构及其性质,与动力学特性(或功能)之间相互关系,包括时空斑图的涌现、动力学同步及其产生机制,网络上各种动力学行为和信息的传播、预测(搜索)与控制,以及工程实际所需的网络设计原理及其应用研究,其交叉研究内容十分广泛而丰富。网络科学中被广泛研究的基本网络主要有四种,即:规则网络之最近邻耦合网络(Nearest-neighbor coupled network),本文中简称NCN;ER随机网络G(N,p);WS小世界网络;BA无标度网络。本文着重研究这几种网络的构造算法程序。计算各种规模下(例如不同节点数、不同重连概率或者连边概率)各自的网络属性(包括边数、度分布、平均路径长度、聚类系数),给出图、表和图示,并进行比较和分析。 2.最近邻耦合网络的概述 如果在一个网络中,每一个节点只和它周围的邻居节点相连,那么就称该网络为最近邻耦合网络。这是一个得到大量研究的稀疏的规则网络模型。 常见的一种具有周期边界条件的最近邻耦合网络包含围成一个环的N个节点,其中每K个邻居节点相连,这里K是一个偶数。这类网络的一个重要特征个节点都与它左右各/2 就是网络的拓扑结构是由节点之间的相对位置决定的,随着节点位置的变化网络拓扑结构也可能发生切换。 NCN的Matlab实现: %function b = ncn(N,K) %此函数生成一个有N个节点,每个节点与它左右各K/2个节点都相连的最近邻耦合网络 %返回结果b为该最近邻耦合网络对应的邻接矩阵 function b = ncn(N,K) b=zeros(N); for i = 1:N for j = (i+1):(i+K/2) if j<=N b(i,j)=1; b(j,i)=1; else b(i,j-N)=1;

基于遗传算法的参数优化估算模型

基于遗传算法的参数优化估算模型 【摘要】支持向量机中参数的设置是模型是否精确和稳定的关键。固定的参数设置往往不能满足优化模型的要求,同时使得学习算法过于死板,不能体现出来算法的智能化优点,因此利用遗传算法(Genetic Algorithm,简称GA)对估算模型的参数进行优化,使得估算模型灵活、智能,更加符合实际工程建模的需求。 【关键词】遗传算法;参数优化;估算模型 1.引言 随着支持向量机估算模型在工程应用的不断深入。研究发现,支持向量机算法(包括LS-SVM算法)存在着一些本身不可避免的缺陷,最为突出的是参数的选取和优化问题,以往在参数选取方面,一般依靠专家系统或者设定初始值盲目搜寻等等,在实际应用必然会影响模型的精准度,造成一定影响。如何选取合理的参数成为支持向量机算法应用过程中应用中关注的问题,同时也是目前应用研究的重点。而常用的交叉验证试算的方法,不仅耗时,且搜索目的不清,使得资源浪费,耗时耗力。不能有效的对参数进行优化。 针对参选取的问题,本文使用GA算法对模型中的参数设置进行优化。 2.遗传算法 2.1 遗传算法的实施过程 遗传算法的实施过程中包括了编码、产生群体、计算适应度、复制、交换、变异等操作。图1详细的描述了遗传算法的流程。 其中,变量GEN是当前进化代数;N是群体规模;M是算法执行的最大次数。 遗传算法在参数寻优过程中,基于生物遗传学的基本原理,模拟自然界生物种群的“物竞天则,适者生存”的自然规律。把自变量看作生物体,把它转化成由基因构成的染色体(个体),把寻优的目标函数定义为适应度,未知函数视为生存环境,通过基因操作(如复制、交换和变异等),最终求出全局最优解。 2.2 GA算法的基本步骤 遗传算法操作的实施过程就是对群体的个体按照自然进化原则(适应度评估)施加一定的操作,从而实现模型中数据的优胜劣汰,使得进化过程趋于完美。从优化搜索角度出发,遗传算法可使问题的解,一代一代地进行优化,并逼近最优解。 通常采用的遗传算法的工作流程和结果形式有Goldberg提出的,常用的GA 算法基本步骤如下: ①选择编码策略,把参数集合X和域转换为位串结构空间S。常用的编码方法有二进制编码和浮点数编码。 ②定义合适的适应度函数,保证适应度函数非负。 ③确定遗传策略,包括选择群体大小,选择、交叉、变异方法,以及确定交叉概率、变异概率等其它参数。 ④随机初始化生成群体N,常用的群体规模:N=20~200。 ⑤计算群体中个体位串解码后的适应值。 ⑥按照遗传策略,运用选择、交叉和变异算子作用于群体,形成下一代群体。 ⑦判断群体性能是否满足某一个指标,或者以完成预订迭代次数,若满足则

最优化理论与算法

最优化理论与算法笔记 在老师的指导下,我学习了最优化理论与算法这门课程。最优化理论与算法是一个重要的数学分支,它所研究的问题是讨论在众多方案中什么样的方案最优以及怎样找出最优方案。 由于生产和科学研究突飞猛进的发展,特别是计算机的广泛应用,使最优化问题的研究不仅成为了一种迫切的需要,而且有了求解的有力工具,因此迅速发展起来形成一个新的学科。至今已出现了线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分支。 整个学习安排如下,首先介绍线性与非线性规划问题,凸集和凸函数等基本知识及线性规划的基本性质;然后再这个基础上学习各种算法,包括单纯形法、两阶段法、大M 法、最速下降法、牛顿法、共轭梯度法等,以及各种算法相关的定理和结论;最后了解各种算法的实际应用。 主要学习的基础知识: 1、一般线性规划问题的标准形式 1min n j j j c x =∑ 1 .., 1,...,, 0, 1,...,. n ij j i j j s t a x b i m x j n ===≥=∑ 学会引入松弛变量将一般问题化为标准问题;同时掌握基本可行解的存在问题,通过学习容易发现线性规划问题的求解,可归结为求最优基本可行解的问题。 2、熟练掌握单纯形法、两阶段法和大M 法的概念及其计算步骤。 单纯形法是一种是用方便、行之有效的重要算法,它已成为线性规划的中心内容。其计算步骤如下: 1)解,B Bx b =求得1B x B b b -==,令0,N x =计算目标函数值B B f c x =;

2)求单纯形乘子ω,解B B c ω= ,得到1B c B ω-=; 3)解k k By p =,若0k y ≤,即k y 的每个分量均非正数,则停止计算,问 题不存在有限最优解,否则,进行步骤(4); 4)确定下标r ,使min{0}r r rk rk rk b b y y y =>,得到新的基矩阵B ,返回第一 步。 两阶段法:第一阶段是用单纯形法消去人工变量,即把人工变量都变换成非基变量,求出原来问题的一个基本可行解;第二阶段是从得到的基本可行解出发,用单纯形法求线性规划的最优解。 大M 法:在约束中增加人工变量a x ,同时修改目标函数,加上罚项T a Me x ,其中M 是很大的正数,这样,在极小化目标函数的过程中,由于M 的存在,将迫使人工变量离基。 3、掌握最速下降法的概念及其算法,并且能够讨论最速下降算法的收敛性。掌握牛顿法,能够熟练运用牛顿迭代公式:(1) ()2()()()()k k k k x x f x x x +=-?- ,掌 握共轭梯度法及其相关结论,以及其收敛性的讨论,掌握最小二乘法及其基本步骤。 最速下降法:迭代公式为(1) ()()k k k k x x d λ+=-。 计算步骤:1)给定点(1)n x R ∈,允许误差0,ε>臵1k =; 2)计算搜索方向() ()()k k d f x =-?; 3)若() k d ε≤,则停止计算,否则,从()k x 出发,沿()k d 进行一维搜索,求k λ,使()()()() ()min ()k k k k k f x d f x d λλλ≥+=+; 4)令(1) ()()k k k k x x d λ+=-,臵:1k k =+,转步骤(2)。

数学建模常用算法模型

按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)

3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握)

最优化理论与算法

最优化理论与算法(数学专业研究生) 第一章 引论 § 引言 一、历史与现状 最优化理论最早可追溯到古老的极值问题,但成为一门独立的学科则是在20世纪四十年代末至五十年代初。其奠基性工作包括Fritz John 最优性条件(1948),Kuhn-Tucker 最优性条件(1951),和Karush 最优性条件(1939)。近几十年来最优化理论与算法发展十分迅速,应用也越来越广泛。现在已形成一个相当庞大的研究领域。关于最优化理论与方法,狭义的主要指非线性规划的相关内容,而广义的则涵盖:线性规划、非线性规划、动态规划、整数规划、几何规划、多目标规划、随机规划甚至还包括变分、最优控制等动态优化内容。本课程所涉及的内容属于前者。 二、最优化问题的一般形式 1、无约束最优化问题 min ()n x R f x ∈ () 2、约束最优化问题 min () ()0, ..()0, i i f x c x i E s t c x i I =∈?? ≥∈? () 这里E 和I 均为指标集。 §数学基础 一、 范数 1. 向量范数 max i x x ∞= (l ∞范数) () 11n i i x x ==∑ (1l 范数) () 122 21 ()n i i x x ==∑ (2l 范数) ()

11 ()n p p i p i x x ==∑ (p l 范数) () 12 ()T A x x Ax = (A 正定) (椭球范数) () 事实上1-范数、2-范数与∞-范数分别是 p -范数当 p =1、2和p →∞时情形。 2.矩阵范数 定义 方阵A 的范数是指与A 相关联并记做A 的一个非负数,它具有下列性质: ① 对于0A ≠都有0A >,而0A =时0A =; ② 对于任意k R ∈,都有kA k A =; ③ A B A B +≤+; ④ AB A B ≤; 若还进一步满足: ⑤ p p Ax A x ≤ 则称之为与向量范数p g 相协调(相容)的方阵范数。若令 max x Ax A x ≠= (这里x 是某一向量范数) () 可证这样定义的范数是与向量范数g 相协调的,通常称之为由向量范数g 诱导的方阵范数。特别地,对方阵()ij n n A a ?=,有: 11max n ij j i A a ==∑(列和的最大者) () 1 max n ij i j A a ∞ ==∑(行和的最大者) () 1 22()T A A A λ=(T A A λ表示T A A 的特征值的最大者) 称为谱范数(注:方阵A 的特征值的模的最大者称为A 的谱半径,记为()A ρ)。 对于由向量诱导的方阵范数,总有:

最优化理论与算法(第九章)

第九章 二次规划 §9.1 二次规划问题 称形如 1m in ()2 T T Q x x H x g x = + 1,,. 1,,T i i e T i i e a x b i m s t a x b i m m ?==??≥=+?? (9.1) 的非线性规划问题为二次规划问题。对二次规划问题,有如下的最优性条件。 定理9.1 设x *是(9.1)的局部极小点,则必存在乘子(1,,)i i m λ*= ,使得 1 0 1,, 0 1,,m i i i T i i i e i e g H x a a x b i m m i m m λλλ**=*** ?+=? ?? ??-==+????≥=+??? ∑ (9.2) 且对于一切满足于: 0, ()T i d a i E I x * =∈ 的n d R ∈,都有0T d Hd ≥。 注:1)上述定理的前后两部分分别对应于一、二阶的必要条件; 2)满足上述条件的d ,都有(,)d S x λ* * ∈; 3)当约束条件均为线性函数时,容易证明: (,)(,) (,F D x X S F D x X L F D x X * * *= =及(,)(,)S x G x λλ**** = 上面给出的是二次规划的必要性条件,下面给出充分性条件。 定理9.2 设x * 是K-T 点,λ* 是相应的Lagrange 乘子,如果对满足 0 0 () 0 () 0 T i T i T i i d a i E d a i I x d a i I x λ* **?=∈?≥∈??=∈>? 且 (9.3) 的一切非零向量n d R ∈,都有0T d Hd >,则x * 是(9.1)的局部严格极小点。

最新数学建模常用算法模型资料

数学模型的分类 按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握) 解决预测类型题目。由于属于灰箱模型,一般比赛期间不优先使用。 满足两个条件可用: ①数据样本点个数少,6-15个 ②数据呈现指数或曲线的形式 2、微分方程预测(高大上、备用) 微分方程预测是方程类模型中最常见的一种算法。近几年比赛都有体现,但其中的要求,不言而喻。学习过程中 无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间的关系,通过公式推导转化为原始数据的关系。 3、回归分析预测(必掌握) 求一个因变量与若干自变量之间的关系,若自变量变化后,求因变量如何变化; 样本点的个数有要求: ①自变量之间协方差比较小,最好趋近于0,自变量间的相关性小; ②样本点的个数n>3k+1,k为自变量的个数;

优化问题的数学模型

一. 管理科学的定义 管理科学是对与定量因素有关的管理问题通过应用科学的方法进行辅助管理决策制定的一门学科. (1) 定量因素(2) 科学的方法(3) 辅助决策制定 二.用管理科学的方法解决问题的基本步骤. (1) 提出问题,并根据需要收录有关数据信息。管理科学工作者向管理者咨询、鉴别所 要考虑的问题以确定合理的目标,然后根据要求收集一些关键数据,并对数据作相应的分析。 (2) 建立模型,引入决策变量,确定目标函数(约束条件)。建模过程是一项创造性的 工作,在处理实际问题时,一般没有一个唯一正确的模型,而是有多种不同的方案。建模是一个演进过程,从一个初始模型往往需要不断的完善渐渐演化成一个完整的数学模型。 (3) 从模型中形成一个对问题求解的算法。要在计算机上运行数学程序对模型进行求 解,一般情况下能找到对模型求解的标准软件。例如,对线性规划问题已有Excel 、Cplex 、Lingo 等标准软件求解。有时要自己编写程序。 (4) 测试模型并在必要时修正。在模型求解后,需要对模型进行检验,以保证该模型能 准确反映实际问题,需要检验模型提供的解是否合理,所有主要相关因素是否已考虑,当有些条件变化时,解如何变化等。 (5) 应用模型分析问题以及提出管理建议。对模型求解并分析后,将相应的最优方案提 交给管理者,由管理者做出决策。管理科学工作者并不作管理决策,其研究只是对涉及的问题进行分析并向管理者提出建议。管理者还要考虑管理科学以外的众多因素才能做出决策。 (6) 帮助实施管理决策。建议被管理者采纳以后,一旦做出管理决策一般要求帮助监督 决策方案的实施。 新问题, 新模型, 新算法, 新应用. 三.优化问题的数学模型 1212max(min)(,,,) (,,)0..1,2,n j n Z f x x x g x x x s t j m =≤?? =? 由于,j f g 是非线性函数时,此问题是非线性优化问题, 求解较复杂。我们主要讨论线性优化问题,常见的形式:混合整数规划 (1) max 0 0 Z CX hY AX GY b X Y =++≤≥≥取整数 其中111,,,,m n m p m n p A G b C h ?????,不失一般性,我们假定,,,,C h A G b 都是整数矩阵。 当0p =时,(1)为纯整数规划,当0n =时,(1)为线性规划。

最优化理论与算法(第五章)

第五章 拟牛顿法 §5.1 拟牛顿法 牛顿法具有收敛速度快的优点,但需要计算Hesse 矩阵的逆,计算量大。本章介绍的拟牛顿法将用较简单的方式得到Hesse 矩阵或其逆的近似,一方面计算量不大,另一方面具有较快的收敛速度,这类算法是无约束最优化问题最重要的求解方法。 一、拟牛顿条件 设()f x 在n R 上二次可微,为了获得Hesse 矩阵2 ()()G x f x =?在1k x +处的近似,先研究如下 问题。考虑()f x 在1k x +附近的二次近似: 1111111 )()()()2 ()(T T k k k k k k g x x G x f x f x x x x +++++++-+ --≈. 两边求导,有 111()()k k k g x g G x x +++≈+- 令k x x =,有 111()k k k k k g g G x x +++≈+- 再令 1k k k s x x +≈-,1k k k y g g +≈- 则有 1k k k y G s +≈ 或 1 1k k k G y s -+≈. 因此,我们要求构造出的Hesse 矩阵的近似1k B +或Hesse 矩阵逆的近似1k H +应分别满足: 1k k k B s y += 或 1k k k H y s += (5.1) 它们均称之为拟牛顿条件。 二、一般拟牛顿算法 1) 给出初始点0x R ∈,0H I =,0ε>,:0k =. 2) 若k g ε≤,停止;否则,计算k k k d H g =-(拟牛顿方向). 3) 沿方向k d 进行线性搜索,0k α>(可以是精确,也可非精确).令1k k k k x x d α+=+. 4) 校正k H 产生1k H +,使拟牛顿条件满足. 5) :1k k =+, 转2)

机器学习算法系列(20):项目模型优化四要素

title: 机器?学习算法系列列(20):项?目模型优化四要素 date: 2017-06-16 23:14:45 categories: 机器?学习 tags: - 业务 - 特征 - 数据 - 模型 本?文转载?自美团点评技术团队博客,该?文以业界视?角介绍了了机器?学习如何发挥其实际价值。作者胡淏,?目前是美团算法?工程师,毕业于哥伦?比亚?大学。先后在携程、?支付宝、美团从事算法开发?工作。了了解?风控、基因、旅游、即时物流相关问题的?行行业领先算法?方案与流程。图1 机器?学习?工程师的知识图谱 上图列列出了了我认为?一个成功的机器?学习?工程师需要关注和积累的点。机器?学习实践中,我们平时 机器?学习算法系列列(20):项?目模型优化四要素 mathjax2: true ?一、机器?学习?工程师的知识图谱

都在积累?自?己的“弹药库”:分类、回归、?无监督模型、Kaggle 上特征变换的?黑魔法、样本失衡的处理理办法、缺失值填充......这些?大概可以归类成模型和特征两个点。我们需要参考成熟的做法、论?文,并?自?己实现,此外还需要多反思?自?己?方法上是否还可以改进。如果模型和特征这俩个点都已经做的很好了了,你就拥有了了?一张绿卡,能跨过在数据相关?行行业发挥模型技术价值的准?入?门槛。在这个时候,?比较关键的?一步,就是搞笑的技术变现能?力力。 所谓?高效,就是解决业务核?心问题的专业能?力力。本?文将描述这些专业能?力力,也就是模型优化的四个要素:模型、数据、特征、业务,还有更更重要的,就是他们在模型项?目中的优先级。项?目推进过程中,四个要素相互之间的优先级?大致是:业务>特征>数据>模型。 图2 四要素解决问题细分+优先级 ?一个模型项?目有好的技术选型、完备的特征体系、?高质量量的数据?一定是很加分的,不不过真正决定项?目好与坏还有?一个?大前提,就是在这个项?目的技术?目标是否在解决当下核?心业务问题。 业务问题包含两个?方?面:业务KPI 和Deadline 。举个例例?子,业务问题在两周之内降低?目前?手机丢失带来的?支付宝销赃?风险。这时如果你的?方案是研发?手机丢失的核?心特征,?比如改密是否合理理,基本上就死的很惨,因为两周根本完不不成,改密合理理性也未必是模型优化好的切?入点;反之,如果你的?方案是和运营同学看bad case ,梳理理现阶段的作案通?用?手段,并通过分析上线?一个简单模型或者业务规则的补丁,就明智很多。如果上线之后,案件量量真掉下来了了,就算你的?方案准确率很糟糕、?方法很low ,但你解决了了业务问题,这才是最重要的。 虽然业务?目标很关键,不不过?一般讲,业务运营同学真的不不太懂得如何和技术有效的沟通业务?目 ?二、模型项?目推进的四要素 2.1 业务

最优化理论与算法第八章

第八章 约束优化最优性条件 §8.1 约束优化问题 一、 问题基本形式 min ()f x 1()0 1,,.. ()0 ,,i e i e c x i m s t c x i m m +==?? ≥=? (8.1) 特别地,当()f x 为二次函数,而约束是线性约束时,称为二次规划。 记 { }1()0 (1, ,);()0 , ,i e i e X x c x i m c x i m m +===≥=,称之为可行域(约束域) 。 {}1, ,e E m =,{}1, ,e I m m +=,{}()()0 i I x i c x i I ==∈ 称()E I x 是在x X ∈处的积极约束的指标集。 积极约束也称有效约束,起作用约束或紧约束(active constraints or binding constraints )。 应该指出的是,如果x * 是(1)的局部最优解,且有某个0i I ∈,使得 0()0i c x *> 则将此约束去掉,x * 仍是余下问题的局部最优解。 事实上,若x *不是去掉此约束后所得问题的局部极小点,则意味着0δ?>,存在x δ,使得 x x δδ*-<,且()()f x f x δ*<,这里x δ满足新问题的全部约束。注意到当δ充分小时,由0() i c x 的连续性,必有0()0i c x δ≥,由此知x δ是原问题的可行解,但()()f x f x δ*<,这与x * 是局部极小 点矛盾。 因此如果有某种方式,可以知道在最优解x * 处的积极约束指标集()()A x E I x **=,则问题 可转化为等式的约束问题: min ()f x .. ()0i s t c x = ()i A x *∈ (8.2) 一般地,这个问题较原问题(8.1)要简单,但遗憾的是,我们无法预先知道()A x * 。

最优化理论与算法(第四章的)

第四章 共轭梯度法 §4.1 共轭方向法 共轭方向法是无约束最优化问题的一类重要算法。它一方面克服了最速下降法中,迭代点列呈锯齿形前进,收敛慢的缺点,同时又不像牛顿法中计算牛顿方向耗费大量的工作量,尤其是共轭方向法具有所谓二次收敛性质,即当将其用于二次函数时,具有有限终止性质。 一、共轭方向 定义4.1 设G 是n n ?对称正定矩阵,1d ,2d 是n 维非零向量,若 120T d Gd = (4.1) 则称1d ,2d 是G -共轭的。类似地,设1,,m d d L 是n R 中一组非零向量。若 0T i j d Gd =()i j ≠ (4.2) 则称向量组1,,m d d L 是G -共轭的。 注:(1) 当G I =时,共轭性就变为正交性,故共轭是正交概念的推广。 (2) 若1,,m d d L G -共轭,则它们必线性无关。 二、共轭方向法 共轭方向法就是按照一组彼此共轭方向依次搜索。 模式算法: 1)给出初始点0x ,计算00()g g x =,计算0d ,使000T d g <,:0k = (初始共轭方向); 2)计算k α和1k x +,使得0 ()min ()k k k k k f x d f x d ααα≥+=+,令1k k k k x x d α+=+; 3)计算1k d +,使10T k j d Gd +=,0,1,,j k =L ,令:1k k =+,转2)。

三、共轭方向法的基本定理 共轭方向法最重要的性质就是:当算法用于正定二次函数时,可以在有限多次迭代后终止,得到最优解(当然要执行精确一维搜索)。 定理4.2 对于正定二次函数,共轭方向法至多经过n 步精确搜索终止;且对每个1i x +,都是()f x 在 线性流形00,i j j j j x x x d αα=???? =+??????? ∑中的极小点。 证明:首先证明对所有的1i n ≤-,都有 10T i j g d +=,0,1,,j i =L (即每个迭代点处的梯度与以前的搜索方向均正交) 事实上,由于目标函数是二次函数,因而有 ()11k k k k k k g g G x x Gd α++-=-= 1)当j i <时, () 1 1 11i T T T i j j j k k j k j g d g d g g d +++=+=+ -∑ 1 1 0i T T j j k k j k j g d d Gd α+=+=+ =∑ 2)当j i =时,由精确搜索性质知: 10T i j g d += 综上所述,有 10T i j g d += (0,1,,)j i =L 。 再证算法的有限终止结论。若有某个10i g +=(1i n <-),则结论已知。若不然,那么由上面已证则必有: 0T n j g d = (0,,1)j n =-L 。 而由于01,,n d d -L 是n R 的一组基,由此可得0n g =。故至多经过n 次精确一维搜索即可获得最优解。 下面证明定理的后半部分。由于 1()2 T T f x x Gx b x c = ++ 是正定二次函数,那么可以证明

数学建模常用算法模型

数学建模常用算法模型文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

数学模型的分类 按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法

(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法

相关文档
相关文档 最新文档