文档库 最新最全的文档下载
当前位置:文档库 › 量子力学导论第6章答案

量子力学导论第6章答案

量子力学导论第6章答案
量子力学导论第6章答案

第六章 中心力场

6.1) 利用6.1.3节中式(17)、(18),证明下列关系式

相对动量 ()21121p m p m M

r p

-==?

μ (1) 总动量

1p p R M P

+==? (2)

总轨迹角动量p r P R p r p r L L L

?+?=?+?=+=221121 (3)

总动能 μ

22222

22

221

21p

M

P m p m p T +

=+= (4)

反之,有 ,11r m R r

μ+

= r m R r

2

2μ-= (5) p P m p +=2

,p P m p -=

1

(6)

以上各式中,()212121 ,m m m m m m M +=+=μ

证: 2

12

211m m r m r m R ++=

, (17) 21r r r -=, (18)

相对动量 ()211221212

11p m p m M r r m m m m r p

-=???

? ??-+=

=?

??

μ (1’)

总动量 ()212

1221121p p m m r m r m m m R M P

+=+++==?

?? (2’)

总轨迹角动量 221121p r p r L L L

?+?=+=

)5(2211p r m u R p r m u R ????

?

??-+????? ??

+= ()

()

2112

211p m p m

M

r p p R -?

++?=

)

2)(1(p r P R ?+?=

由(17)、(18)可解出21,r r

,即(5)式;由(1’)(2’)可解出(6)。

总动能()22

11

2

262221212222m p P m m p P m m p m p T ???

?

??-+

?

??

?

??+=+=

μμ

2

12

2

2

2

2

122

11

2

2

2

2

12

2222m m p P u m p

P

m m u

m m p P u m p

P

m m u

?-

+

+

?+

+

=

()

()

???

?

??++

++

+=

2122

2

212

2

2

211

1121

22m m p P

m m m P

m m m μ

222

2

p

M

P +

=

(4’)

[从(17),(18)式可解出(5)式;从(1),(2)式可解出(6)式].

6.2) 同上题,求坐标表象中p 、P 和L 的算术表示式

r i p ?-= R i P ?-= ,p r P R L

?+?=

解: ()

()

2112

2112

1r r m m

M

i p m p m

M

p ?-?-=

-=

(1)

其中 1

1

1

1

z k y j x i

r ??+??+??

=?,

x X M m x x x X x X x ??+

??=

????+

??

??=

??1111

同理,y Y

M m y ??

+

??=??11

z

Z

M m z ??+??=??

11

(利用上题(17)(18)式。)

∴ =

?1r r R M

m ?+?1;仿此可设 =

?2r r R M

m ?-?1 (2)

代入(1)中,得 ??

?

???+?-?+?-=

r R r R m M m m m M m m M i p 121221 r i ?-= (3)

()2

121r r i p p P ?+?-=+=

)

2(R

i ?

-= (4)

p r P R L ?+?=

只要将(3)、(4)式中的p 、P 以相应的算符代入即可。

6.3)利用氢原子能级公式,讨论下列体系的能谱: (a )电子偶素(positronium ,指-

+

-e e 束缚体系) (b )u 原子(muonic atom )

(c )u 子偶素(muonium ,指-+

-u u 束缚体系) 解:由氢原子光谱理论,能级表达式为:

2

2

412n

ue E n

-

=, p

e p e m m m m u +=

(a )电子偶素能级 2

2

414n ue E n

-

=,(2

e e

e e e m m m m m u =

+=

(b )u 原子能级 22

4

12n

e u E u n

-

=,(p u p u u m m m m u +=

(c )u 子偶素能级2

2

4

14n

e m E u n

-=,(2

u u

u u u m m m m m u =

+=)

6.4)对于氢原子基态,计算p x ???。

解:

氢原子基态波函数为 0

2

1

3

0100

1

a r

e

a -???

?

??=πψ (1)

宇称为偶。由于均为奇宇称算符,所以 0 ,0==x p x (2) 由于100ψ各向同性,呈球对称分布,显然有

2

2

2

2

2

2

2

2

3

13

1p

p p p r z

y

x

z

y x =

===

== (3)

容易算出 ()

τψd r r

2

10022

?=

?2-2

???

?

?

?=?θθπd d r d r e a r a r

s i n 1

23

02

03a = (4)

=2

p ??-τψψ

d 1002

100

2

()[]????-???-=τψψψψ

d 100100100100

2

??=τψ

d 2

100

2

?2??

? ????=?θθψd drd r r sin 2

1002 202

a = (5)

因此 2

x

2

0a =, 02

2

a x

x x =-=

? (6)

2

22

3a p x

=

,0

2

2

3a p p p x

x x =

-=? (7)

3

=???x p x (8)

测不准关系的普遍结论是 2

≥???x p x (9)

显然式(8)和(9)式是不矛盾的。而且3

很接近式(9)规定的下限2

6.5)对于氢原子基态,求电子处于经典禁区()a r 2>(即0<-V E )的几率。

解:氢原子基态波函数为 a

r

e

a -?

?

?

??=2

131001πψ,2

2

ue

a

=,

相应的能量 a e

ue E 222

2

41-

=-

=

动能 ()r

e

a

e

V E r T 2

212+

-

=-=

0<-=V E T 是经典不允许区。由上式解出为a r 2>。

因此,电子处于经典不允许区的几率为

??

?∞-=

a a

r d d dr r e

a

p 20

202

23

sin 1

ππ?θθπ(令a r 2=ξ)

?∞

-??

? ??=4

23324ξξξ

d e

a a 2381.0134

==-e

6.6)对于类氢原子(核电荷Ze )的“圆轨迹”(指1,0-==n l n r 的轨迹),计算 (a )最可几半径; (b )平均半径; (c

)涨落[]

2

122

r

r

r -=

?

解:类氢原子中电子波函数nlm

ψ

可以表示为

()()()()?θ?θψ

,1,lm l n lm l n nlm

Y r u r

Y r R r r =

= (1)

(a ) 最可几半径由径向几率分布的极值条件 ()0=r u dr

d l n r (2)

决定。1-=n l 时,0=r n 。

()na

Zr n

n e

Cr r u --=1,0

代入(2)式,容易求得 Z a n r 02

=几 (4) 这结果和玻尔量子论中圆轨迹的半径公式一致。 (b )在nlm

ψ

态下,各λ

r

之间有递推关系(Kramers 公式)

(

)

()

[

]

0124

121

2

2

22

2

1

2

=-++

+-+--λλλ

λ

λ

λr

Z

a l r

Z

a r r

n

(5)

(参 钱伯初、曾谨言《量子力学习题精选与剖析》P197) 在(5)式中令0=λ

,注意到10

=r

。可设

a

n Z r

nlm

2

1=

(6)

依次再取2,1=λ,得到

()

[]

a

Z l l n

r

nlm

132

12

+-=

)

1(22-=??? ?

?+=

n l a Z

n n (7)

(c )()[]

22

2

2

13512??

? ??+-+=a Z l l n n

r

nlm

())

1(2

2121-=??

? ??+??? ??

+=

n l a Z n n n (8)

因此,r 的涨落

[]

2

122

r

r

r -=

?Z a

n n ???

? ??+=422

3 (9)

1

212

2

2

+=

+

=

?n n n n r

r (10)

可见,n

越大,r r ?越小,量子力学的结果和玻尔量子轨迹的图像越加接近。

6.7)设电荷为Ze 的原子核突然发生-

β衰变,核电荷变成()e Z 1+,求衰变前原子Z 中一个K 电子(s 1轨迹上

的电子)在衰变后仍然保持在新的原子()1+Z 的K 轨迹的几率。

解:由于原子核的-

β衰变是突然发生的。可以认为核外的电子状态还来不及变化。对于原来的K 电子,其波函

数仍未 ()a

Zr

e

a Z r Z -?

?

?

??=2

13100

,πψ (1)

而新原子中K 电子的波函数应为 ()()()a

r

Z e

a Z r Z 12

13

3

100

1,1+-

??

?

???+=+πψ (2)

将()r Z ,100ψ按新原子的能量本征态作线形展开:

()()r Z C

r Z nlm

nlm

nlm

,,100∑=

ψ

ψ (3)

则衰变前的s 1电子在衰变后处于新原子的()r Z

nlm

,1+ψ

态的几率为

()()2

1002

1Z Z C p nlm nlm

nlm ψψ

+== (4)

因此,本题所求的几率为

=100p ()()

()

()()2

2

122

6

2

3

3

2

100100411dr

r e

a

Z

Z

Z Z r Z +-+=

+ππψψ

()

6

36

3

3

21111211-?

?? ??+??? ?

?

+=?

?? ?

?

++=

Z Z Z Z Z

(5)

展开时保留到第三项

当1>>Z ,上式可近似取成 2

100431Z

p -≈ (5’)

例如, 10=Z , 9932.0100≈p ;

30=Z , 9992.0100≈p 。

6.8)设碱金属原子中的价电子所受电子实(原子核+满壳电子)的作用近似表为

()2

2

2

r

a e r

e

r V λ

--

=(10<<<λ) (1)

a 为Bohr 半径,求价电子的能级。

提示:令()()

121'

'+=-+l l l l λ,解出()2

12'12812121?

?

????+-??? ??++-=l l l λ

解:取守恒量完全集为()z L L H ,,2

,其共同本征函数为

()()()?θ?θψ,,,lm Y r R r =()()?θ,lm Y r

r u =

(2)

()r u 满足径向方程

()Eu u r a e r e ur l l u u =???

??

?--++-22

22

2"

2

212λ

(3) 令 ()()121'

'

+=-+l l l l λ (4)

式(3)就可以化为 ()

Eu u r e ur l l u u =??

????-++-2

22''"

2

212

(3’) 相当于氢原子径向方程中l 换成'

l 。所以式(3’)的求解过程完全类似于氢原子问题。后者能级为

a

n e

E n 2

22-

=, 1++=l n n r , ,2,1,0=r n (5)

将l 换成'

l ,即得价电子的能级:

a

n e

E nl 2

'22-

=,1'

'++=l n n r (6)

通常令 l l l ?+='

(7)

1'

+?++=l r l n n l n ?+= (8)

l ?称为量子数l 和n 的“修正数”

。由于1<<λ,可以对式(4)作如下近似处理: ()()121'

'

+=-+l l l l λ()()1+?+?+=l l l l ()()()2

121l l l l l ?+?+++=

略去()2

l ?,即得 ??

?

??+

-≈?21l l λ (9) 由于1<<λ,1 <

式(4)的精确解为 ()2

12'

12812121

?

?

????+-??? ??++-=l l l λ (10)

若对上式作二项式展开,保留λ项,略去2

λ以上各项,即可得到式(9)。

6.9)在二维谐振子势()2

2

2

121,y K x K y x V y x +

=

中的粒子,求解其能量本正值。对于二维各向同性

(K K K y x ==)的谐振子,求能级的简并度。(参 书卷ⅠP302-303) 解:

量子力学导论第6章答案

第六章 中心力场 6.1) 利用6.1.3节中式(17)、(18),证明下列关系式 相对动量 ()21121p m p m M r p -==? μ (1) 总动量 1p p R M P +==? (2) 总轨迹角动量p r P R p r p r L L L ?+?=?+?=+=221121 (3) 总动能 μ 22222 22 221 21p M P m p m p T + =+= (4) 反之,有 ,11r m R r μ+ = r m R r 2 2μ-= (5) p P m p +=2 1μ ,p P m p -= 1 2μ (6) 以上各式中,()212121 ,m m m m m m M +=+=μ 证: 2 12 211m m r m r m R ++= , (17) 21r r r -=, (18) 相对动量 ()211221212 11p m p m M r r m m m m r p -=??? ? ??-+= =? ?? μ (1’) 总动量 ()212 1221121p p m m r m r m m m R M P +=+++==? ?? (2’) 总轨迹角动量 221121p r p r L L L ?+?=+= )5(2211p r m u R p r m u R ???? ? ??-+????? ?? += () () 2112 211p m p m M r p p R -? ++?= ) 2)(1(p r P R ?+?= 由(17)、(18)可解出21,r r ,即(5)式;由(1’)(2’)可解出(6)。 总动能()22 11 2 262221212222m p P m m p P m m p m p T ??? ? ??-+ ? ?? ? ??+=+= μμ 2 12 2 2 2 2 122 11 2 2 2 2 12 2222m m p P u m p P m m u m m p P u m p P m m u ?- + + ?+ + =

量子力学导论 答案

第六章 中心力场 6.1) 利用6.1.3节中式(17)、(18),证明下列关系式 相对动量 ()21121p m p m M r p -==? μ (1) 总动量 1p p R M P +==? (2) 总轨迹角动量p r P R p r p r L L L ?+?=?+?=+=221121 (3) 总动能 μ 22222 22 221 21p M P m p m p T + = + = (4) 反之,有 ,11r m R r μ+ = r m R r 2 2μ-= (5) p P m p += 2 1μ ,p P m p -= 1 2μ (6) 以上各式中,()212 121 ,m m m m m m M +=+=μ 证: 2 12211m m r m r m R ++= , (17) 21r r r -=, (18) 相对动量 ()211221212 11p m p m M r r m m m m r p -=??? ? ??-+= =? ?? μ (1’) 总动量 ()212 1221121p p m m r m r m m m R M P +=+++==? ?? (2’) 总轨迹角动量 221121p r p r L L L ?+?=+= )5(2211p r m u R p r m u R ????? ? ?-+????? ?? += () () 2112 211p m p m M r p p R -? ++?= ) 2)(1(p r P R ?+?= 由(17)、(18)可解出21,r r ,即(5)式;由(1’)(2’)可解出(6)。 总动能()2 2 11 2 262221212222m p P m m p P m m p m p T ??? ? ??-+ ? ?? ? ??+=+= μμ 2 12 2 2 2 2 122 11 2 2 2 2 12 2222m m p P u m p P m m u m m p P u m p P m m u ?- + + ?+ + =

最新量子力学导论期末考试试题内含答案

量子力学试题(1)(2005) 姓名 学号 得分 一. 简答题(每小题5分,共40分) 1. 一粒子的波函数为()()z y x r ,,ψψ=? ,写出粒子位于dx x x +~间的几率。 2. 粒子在一维δ势阱 )0()()(>-=γδγx x V 中运动,波函数为)(x ψ,写出)(x ψ'的跃变条件。 3. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开: ∑=n n n x c x )()(ψψ, 写出展开式系数n c 的表达式。 4. 给出如下对易关系: [][][] ?,? ,? ,===z x y z L L p x p z 5. 何谓几率流密度?写出几率流密度),(t r j ? ?的表达式。 6. 一维运动中,哈密顿量)(22 x V m p H +=,求[][]?,?,==H p H x 7. 一质量为μ的粒子在一维无限深方势阱?? ?><∞<<=a x x a x x V 2,0, 20,0)( 中运动,写出其状态波函数和能级表达式。 8. 已知厄米算符A 、B 互相反对易:{}0,=+=BA AB B A ;b 是算符B 的本征态: b b b B =,本征值 0≠b 。求在态b 中,算符A 的平均值。

二. 计算和证明题 1. 设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。 2. 考虑如下一维波函数:0/0()n x x x x A e x ψ-?? = ??? , 其中0,,A n x 为已知常数。利用薛定谔 方程求位势()V x 和能量E 。对于它们,该波函数为一本征函数(已知当,()0x V x →∞→)。 3.一质量为m 的粒子沿x 正方向以能量E 向0=x 处 的势阶运动。当0≤x 时,该势为0;当0>x 时,该势为 E 4 3 。问在0=x 处粒子被反射的的几率多大?(15分) 0 X 4.设粒子处于()?θ,lm Y 状态下, 1)证明在的本征态下,0==y x L L 。(提示:利用x y z z y L i L L L L η=-, []y L i η=-=z x x z x z L L L L L ,L 求平均。) 2)求()2 x L ?和() 2 y L ? (附加题)5. 设),(p x F 是p x ,的整函数,证明 [][]F , F,,p i F x x i F p ?? =?? -=η η 整函数是指),(p x F 可以展开成∑∞ ==0 ,),(n m n m mn p x C p x F 。

量子力学导论习题答案(曾谨言)

第五章 力学量随时间的变化与对称性 5.1)设力学量A 不显含t ,H 为本体系的Hamilton 量,证明 [][]H H A A dt d ,,2 2 2 =- 证.若力学量A 不显含t ,则有[]H A i dt dA ,1 =, 令[]C H A =, 则 [][]H C H C i dt C d i dt A d ,1 ,112 22 -===, [][]H H A A dt d ,, 2 2 2 =-∴ 5.2)设力学量A 不显含t ,证明束缚定态,0=dt dA 证:束缚定态为::() () t iE n n n e t -=ψψ,。 在束缚定态()t n ,ψ,有()()()t E t t i t H n n n n ,,,ψψψ=?? = 。 其复共轭为()()()t r E e r t i t r H n n t iE n n n ,,** * * ψψψ=?? -= 。 ??? ??=n n dt dA dt dA ψψ,()??? ??-??? ??-=??n n n n n n A A A dt d ψψψψψψ,,, ?? ? ??-??? ??-= n n n n H i A A H i dt dA ψψψψ 1,,1 []()()n n n n AH i HA i H A i t A ψψψψ,1 ,1,1 -++??= []()()n n HA AH i H A i ψψ--= ,1,1 [][]() 0,,1=-=A H H A i 。 5.3)(){} x x iaP x a a D -=? ?? ??? ??-=exp exp 表示沿x 方向平移距离a 算符.证明下列形式波函数(Bloch 波函数)()()x e x k ikx φψ=,()()x a x k k φφ=+ 是()a D x 的本征态,相应的本征值为ika e - 证:()()()() ()a x e a x x a D k a x ik x +=+=+φψψ ()()x e x e e ika k ikx ika ψφ=?=,证毕。

原子物理第三章量子力学初步答案

第三章 量子力学初步 3.1 波长为ο A 1的X 光光子的动量和能量各为多少? 解:根据德布罗意关系式,得: 动量为:1 24 10 34 10 63.610 1063.6----???=?= = 秒 米千克λ h p 能量为:λ/hc hv E == 焦耳 15 10 834 10 986.110 /10310 63.6---?=???=。 3.2 经过10000伏特电势差加速的电子束的德布罗意波长?=λ 用上述电压加速的质子束的德布罗意波长是多少? 解:德布罗意波长与加速电压之间有如下关系: meV h 2/ =λ 对于电子:库仑 公斤,19 31 10 60.110 11.9--?=?=e m 把上述二量及h 的值代入波长的表示式,可得: ο οο λA A A V 1225.010000 25.1225.12== = 对于质子,库仑 公斤,19 27 10 60.110 67.1--?=?=e m ,代入波长的 表示式,得:ο λ A 3 19 27 34 10 862.210000 1060.110 67.1210 626.6----?=??????= 3.3 电子被加速后的速度很大,必须考虑相对论修正。因而原来ο λ A V 25.12=的电子德布罗意波长与加速电压的关系 式应改为: ο λA V V )10 489.01(25.126 -?-= 其中V 是以伏特为单位的电子加速电压。试证明之。 证明:德布罗意波长:p h /=λ

对高速粒子在考虑相对论效应时,其动能K 与其动量p 之间有如下关系:2 22 02 2c p c Km K =+ 而被电压V 加速的电子的动能为:eV K = 2 2 002 2 2 /)(22)(c eV eV m p eV m c eV p += += ∴ 因此有: 2 002112/c m eV eV m h p h + ?= =λ 一般情况下,等式右边根式中2 02/c m eV 一项的值都是很小 的。所以,可以将上式的根式作泰勒展开。只取前两项,得: )10 489.01(2)41(26 02 00V eV m h c m eV eV m h -?-= - = λ 由于上式中ο A V eV m h 25.122/0≈ ,其中V 以伏特为单位,代回原 式得: ο λA V V )10 489.01(25.126 -?-= 由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。 3.4 试证明氢原子稳定轨道上正好能容纳下整数个电子的德布罗意波波长。上述结果不但适用于圆轨道,同样适用于椭圆轨道,试证明之。

量子力学第三章讲解

第三章 力学量用算符表达 §3.1 算符的运算规则 一、算符的定义: 算符代表对波函数进行某种运算或变换的符号。 ?Au v = 表示?把函数u 变成 v , ?就是这种变换的算符。 为强调算符的特点,常常在算符的符号上方加一个“^”号。但在不会引起误解的地方,也常把“^”略去。 二、算符的一般特性 1、线性算符 满足如下运算规律的算符?,称为线性算符 11221122 ???()A c c c A c A ψψψψ+=+ 其中c 1, c 2是任意复常数,ψ1, ψ2是任意两个波函数。 例如:动量算符?p i =-?, 单位算符I 是线性算符。 2、算符相等 若两个算符?、?B 对体系的任何波函数ψ的运算结果都相同,即??A B ψψ=,则算符?和算符?B 相等记为??A B =。 3、算符之和 若两个算符?、?B 对体系的任何波函数ψ有:?????()A B A B C ψψψψ+=+=,则???A B C +=称为算符之和。 ????A B B A +=+,??????()()A B C A B C ++=++ 4、算符之积 算符?与?B 之积,记为??AB ,定义为 ????()()AB A B ψψ=?C ψ= ψ是任意波函数。一般来说算符之积不满足交换律,即????AB BA ≠。 5、对易关系 若????AB BA ≠,则称?与?B 不对易。 若A B B A ????=,则称?与?B 对易。 若算符满足????AB BA =-, 则称?A 和?B 反对易。 例如:算符x , ?x p i x ?=-?不对易

证明:(1) ?()x xp x i x ψψ?=-?i x x ψ?=-? (2) ?()x p x i x x ψψ?=-?i i x x ψψ?=--? 显然二者结果不相等,所以: ??x x xp p x ≠ ??()x x xp p x i ψψ-= 因为ψ是体系的任意波函数,所以 ??x x xp p x i -= 对易关系 同理可证其它坐标算符与共轭动量满足 ??y y yp p y i - =,??z z zp p z i -= 但是坐标算符与其非共轭动量对易,各动量之间相互对易。 ??0??0y y z z xp p x xp p x -=??-=?,??0??0x x z z yp p y yp p y -=??-=?,??0??0x x y y zp p z zp p z -=???-=?? ????0x y y x p p p p -=,????0y z z y p p p p -=,????0z x x z p p p p -= ????0xy yx -=,????0y z z y p p p p -=,????0z x x z p p p p -= 写成通式(概括起来): ??x p p x i αββααβδ-= (1) ????0x x x x αββα-= ????0p p p p αββα-= 其中,,,x y z αβ=或1,2,3 量子力学中最基本的对易关系。 注意:当?与?B 对易,?B 与?对易,不能推知?与?对易与否。 6、对易括号(对易式) 为了表述简洁,运算便利和研究量子力学与经典力学的关系,人们定义了对易括号: ??????[,]A B AB BA ≡- 这样一来,坐标和动量的对易关系可改写成如下形式: ?[,]x p i αβαβδ= 不难证明对易括号满足下列代数恒等式: 1) ????[,][,]A B B A =- 2) ???????[,][,][,]A B C A B A C +=+ 3) ?????????[,][,][,]A BC B A C A B C =+ ,?????????[,][,][,]AB C A B C A C B =+,]?,?[]?,?[B A k B k A = 4) ?????????[,[,]][,[,]][,[,]]0A B C B C A C A B ++= ——称为 Jacobi 恒等式。

量子力学第三章算符

第三章算符与力学量算符 3、1 算符概述 设某种运算把函数u变为函数v,用算符表示为: (3、1-1) 称为算符。u与v中得变量可能相同,也可能不同。例如,,,,,,则,x,,,都就是算符。 1.算符得一般运算 (1)算符得相等:对于任意函数u,若,则。 (2)算符得相加:对于任意函数u,若,则。算符得相加满足交换律。 (3)算符得相乘:对于任意函数u,若,则。算符得相乘一般不满足交换律。如果,则称与对易。 2.几种特殊算符 (1)单位算符 对于任意涵数u,若u=u,则称为单位算符。与1就是等价得。 (2)线性算符 对于任意函数u与v,若,则称为反线性算符。 (3)逆算符 对于任意函数u,若则称与互为逆算符。即,。 并非所有得算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。 对于非齐次线性微分方程:,其中为与函数构成得线性算符,a为常数。其解u可表示为对应齐次方程得通解u。与非齐次方程得特解之与,即。因,所以不存在使。一般说来,在特解中应允许含有对应齐次方程得通解成分,但如果当a=0时,=0,则中将不含对应齐次方程得通解成分,这时存在使,从而由得:。从上述分析可知,就是否存在逆算符还与算符所作用得函数有关。 (4)转置算符 令,则称与得转置算符,就是一个向左作用得算符。若算符表示一般函数(或常数),由于函数得左乘等于右乘,所以函数得转置就等于它本身。 定义波函数与得标积为: (3、1-2) 与得标积以及与得标积为:

若上两式中得与都就是任意波函数,则称上两式中得与为任意标积中得算符。下面考虑在任意标积中得性质。 波函数与在无限远点也应满足连续性条件: [可都等于零],,所以得: 可见在任意标积中,。 (5)转置共轭算符(也称为厄密共轭算符)与厄密算符 转置共轭算符通常也就是向左作用得算符,同时算符本身要取共轭。以标记得转置共轭算符,则若在任意标积中,,则称为厄密算符。即厄密算符得定义为: 或写为(3、1-3) 可以证明,位置算符与动量算符都就是厄密算符。因x就是实数,而,所以。在任意标积中,因,所以。也可以直接从定义式(3、1-3)出发,来证明就是厄密算符。 ,所以就是厄密算符。 (6)幺正算符 若在任意标积中,,则称为幺正算符。设,若为厄密算符,则必为幺正算符。 (7)算符得函数 设函数F(A)得各阶导数都存在,则定义算符得函数F()为: (3、1-4) 其中表示n个得乘幂,即。例如 3、2 算符得对易关系 定义算符得泊松(Poisson)括号为: (3、2-1) 一般说来,例如,这样得关系或称为对易关系式。就是对易关系式中得特例,这时,称与就是对易得。 1.量子力学中基本对易关系 在位置表象中,,即,此式对任意得都成立,所以得: 在动量表象中 ,即,此式对任意得都成立,所以得: 可见在位置表象中与动量表象中都得:

最新量子力学导论习题答案(曾谨言)(1)

第九章 力学量本征值问题的代数解法 9—1) 在8.2节式(21)中给出了自旋(2 1)与轨迹角动量(l )耦合成总角动量j 的波函数j ljm φ,这相当于2 1,21===s j l j 的耦合。试由8.2节中式(21)写出表9.1(a )中的CG 系数 jm m m j 21121 解:8.2节式(21a )(21b ): ()21),0( 21+=≠-=m m l l j j j ljm φ???? ??-+++=+11121 lm lm Y m l Y m l l () ????? ??-++---+=+=21,2121,212121,21j j m j j m j j Y m j Y m j j m j m l j (21a ) ()21-= j l j ljm φ???? ??++---=+11121 lm lm Y m l Y m l l () ????? ??+++--+++-++=≠-=21,2121,211122121),0( 21j j m j j m j j Y m j Y m j j m j m l l j (21b ) ()21++j l 此二式中的l 相当于CG 系数中的1j ,而2 12==s j ,21,~,,~21±=m m m m j 。 因此,(21a )式可重写为 jm ∑=222112 211m jm m j m j m j m j 2 12121212121212111111111--+=m j jm m j m j jm m j ??????? ? ??-???? ??++-???? ??++++=+=212112212121122111211111211121121),21(m j j m j m j j m j j l j a (21a ’) 对照CG 系数表,可知:当21121+=+=j j j j ,212=m 时 , 21111112212121??? ? ??++=+j m j jm m j 而2 12-=m 时,

量子力学导论习题答案(曾谨言)

第三章一维定态问题 3.1)设粒子处在二维无限深势阱中, ?? ?∞<<<<=其余区域 ,0,0 ,0),(b y a x y x V 求粒子的能量本征值和本征波函数。如b a = ,能级的简并度如何? 解:能量的本征值和本征函数为 m E y x n n 222π = )(2 22 2b n a n y x + ,2,1, ,sin sin 2== y x y x n n n n b y n a x n ab y x ππψ 若b a =,则 )(22 22 22y x n n n n ma E y x +=π a y n a x n a y x n n y x ππψsin sin 2= 这时,若y x n n =,则能级不简并;若y x n n ≠,则能级一般是二度简并的(有偶然简并情况,如5,10==y x n n 与2,11' ' ==y x n n ) 3.2)设粒子限制在矩形匣子中运动,即 ? ??∞<<<<<<=其余区域 ,0,0,0 ,0),,(c z b y a x z y x V 求粒子的能量本征值和本征波函数。如c b a ==,讨论能级的简并度。 解:能量本征值和本征波函数为 )(222 2 222 22c n b n a n m n n n E z y x z y x + +=π , ,3,2,1,, , sin sin sin 8 == z y x z y x n n n c z n b y n a x n abc n n n z y x πππψ 当c b a ==时, )(2222222z y x n n n ma n n n E z y x ++=π a y n a y n a x n a n n n z y x z y x πππψsin sin sin 22 3 ??? ??= z y x n n n ==时,能级不简并; z y x n n n ,,三者中有二者相等,而第三者不等时,能级一般为三重简并的。

曾谨言《量子力学导论》习题解答

曾谨言《量子力学导论》习题解答第三章一维定态问题 3.1)设粒子处在二维无限深势阱中, ,,,,0, 0xa,0yb,V(x,y), ,,, 其余区域, a,b求粒子的能量本征值和本征波函数。如,能级的简并度如何, 解:能量的本征值和本征函数为 2222nn,,yx(,)E, nn22xy2mab ny,nx,2yx,sinsin, n,n,1,2,? ,nnxyxyabab 22,,22a,bE,(n,n)若,则 nnxy2xy2ma ny,nx,2yx,sinsin ,nnxyaaa n,10,n,5这时,若n,n,则能级不简并;若n,n,则能级一般是二度简并的(有偶然简并情况,如xyxyxy ''n,11,n,2与) xy 3.2)设粒子限制在矩形匣子中运动,即 ,,,,,,0, 0xa,0yb,0zc,,V(x,y,z) ,,, 其余区域, a,b,c求粒子的能量本征值和本征波函数。如,讨论能级的简并度。 解:能量本征值和本征波函数为 22222nnn,,yxzE, ,(,,)222nnnm2abcxyz ny,nxnz,,8yxz,sinsinsin,,nnn abcabcxyz n,n,n,1,2,3,?xyz a,b,c当时, 22,,222 E,(n,n,n)xyz2nnn2maxyz 32ny,nxny,,2,,yxz ,sinsinsin,,,nnnaaaaxyz,,

n,n,n时,能级不简并; xyz n,n,n三者中有二者相等,而第三者不等时,能级一般为三重简并的。 xyz 三者皆不相等时,能级一般为6度简并的。 n,n,nxyz 222222,5,6,8,3,4,10(1,7,9),(1,3,11)如 ,22222210,12,16,6,8,20(1,5,10),(3,6,9), 3.3)设粒子处在一维无限深方势阱中, 0, 0,x,a,V(x,y), ,,, x,0,x,a, 证明处于定态的粒子 ,(x)n 2aa62x,,,, (x-x)(1) 22212n,讨论的情况,并于经典力学计算结果相比较。n , , 证:设粒子处于第n个本征态,其本征函数 ,2n(x),sinx. ,naa 2aa2n,a分部2 (1) ,,sin xxdxxxdx,n,,002aa 2a2a2222(,),,,,, xxxxxdxn,04 2a212n,xa2,,(1,cos), xdx ,024aa 2a6,,(1) (2) 22n,12 在经典情况下,在区间粒子除与阱壁碰撞(设碰撞时间不计,且为弹性碰撞,即粒子碰撞后仅运动方向改,,0, a dxxxdx,,变,但动能、速度不变)外,来回作匀速运动,因此粒子处于范围的几率为,故 a adxa , (3) ,,,xx,02a 2adxa22,,,xx, ,03a 222aa22() (4) x,x,x,x,,34 当时,量子力学的结果与经典力学结果一致。 n,,

量子力学第三章算符

第三章 算符和力学量算符 算符概述 设某种运算把函数u 变为函数v ,用算符表示为: ?Fu v = () ? F 称为算符。u 与v 中的变量可能相同,也可能不同。例如,11du v dx =,22xu v =3 v =, (,) x t ?∞ -∞ ,(,)x i p x h x e dx C p t -=,则d dx ,x dx ∞ -∞ ,x i p x h e -?都是算符。 1.算符的一般运算 (1)算符的相等:对于任意函数u ,若??Fu Gu =,则??G F =。 (2)算符的相加:对于任意函数u ,若???Fu Gu Mu +=,则???M F G =+。算符的相加满足交换律。 (3)算符的相乘:对于任意函数u ,若???FFu Mu =,则???M GF =。算符的相乘一般不满足交换律。如果????FG GF =,则称?F 与?G 对易。 2.几种特殊算符 (1)单位算符 对于任意涵数u ,若?I u=u ,则称?I 为单位算符。?I 与1是等价的。 (2)线性算符 对于任意函数u 与v ,若**1212 ???()F C u C v C Fu C Fv +=+,则称?F 为反线性算符。 (3)逆算符 对于任意函数u ,若????FGu GFu u ==则称?F 与?G 互为逆算符。即1??G F -=,111??????,1F G FF F F ---===。 并非所有的算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。 对于非齐次线性微分方程:?()()Fu x af x =,其中?F 为d dx 与函数构成的线性算符,a 为常数。

量子力学教程高等教育出版社周世勋课后答案-第三章

第三章 量子力学中的力学量 3.1 一维谐振子处在基态t i x e x ωαπ αψ2 2 22)(-- = ,求: (1)势能的平均值222 1 x U μω= ; (2)动能的平均值μ22 p T =; (3)动量的几率分布函数。 解:(1) ? ∞ ∞ --== dx e x x U x 2 2 22222121α π αμωμω μωμωαμωα παπαμω ?==?= 2 2 222241212121221 ω 4 1 = (2) ?∞∞-==dx x p x p T )(?)(2122* 2ψψμμ ?∞∞----=dx e dx d e x x 2 22 221 2 22 21 )(21αα μπ α ?∞ ∞ ---=dx e x x 2 2)1(22222αααμ πα ][22 22 222 22??∞∞ --∞∞---= dx e x dx e x x ααααμ πα ]2[23222απ ααπαμ πα?-= μωμαμαπαμ πα? ===442222222ω 41 = 或 ωωω 4 14121 =-=-=U E T

(3)*(,)() ()p c p t x x dx ψψ=? 222 2 x i i t px e dx αωαπ π ∞ - ---∞ = ? 2212 2 i i x px t e e dxe αωαπ π ∞ ----∞ = ? 22222 2 1()222 ip p i x t e dxe αωαααππ - +-∞ --∞ = ? 22222 21()222 p ip i x t e e dxe αωα α αππ- - +∞ --∞ = ? 22 2 22 2 p i t e ωααα π π - -= 22 2 22 p i t e e ωααπ - -= 动量几率分布函数为 2 2 2 2 ()(,)p p c p t e αωαπ - == 3.2.氢原子处在基态0/30 1 ),,(a r e a r -=π?θψ,求: (1)r 的平均值; (2)势能r e 2 -的平均值; (3)最可几半径; (4)动能的平均值; (5)动量的几率分布函数。 解:(1) ?θθπτ?θψππd rd d r re a d r r r a r sin 1),,(0 220 /230 2 0??? ?∞ -== ? ∞ -= /2330 04dr a r a a r 04 03023 2!34a a a =??? ? ??=

量子力学导论第8章答案

第八章 自旋 8.1) 在z σ表象中,求x σ的本征态。 解:在z σ表象中,x σ的矩阵表示为:x σ ??? ? ? ?=0110 设x σ的本征矢(在z σ表象中)为??? ? ??b a ,则有??? ? ??=???? ?????? ??b a b a λ0110 可得a b λ=及b a λ= 1,12±==∴λλ 。 ,1=λ 则; b a = ,1-=λ 则b a -= 利用归一化条件,可求出x σ的两个本征态为 ,1=λ ;1121???? ?? ,1-=λ ??? ? ??-1121 。 8.2) 在z σ表象中,求n ?σ的本征态,()??θ?θcos ,sin sin ,cos sin n 是()?θ,方向的单位矢. 解:在z δ表象中,δ的矩阵表示为 x σ ??? ? ? ?=0110, y σ??? ? ? ?-=00 i i , z σ??? ? ? ?-=1001 (1) 因此, z z y y x x n n n n n σσσσσ++=?= ??? ? ??-=???? ?? -+-=-θθθθ ?? cos sin sin cos i i z y x y x z e e n in n in n n (2) 设n σ的本征函数表示为Φ??? ? ??=b a ,本征值为λ,则本征方程为 ()0=-φλσn ,即 0cos sin sin cos =? ??? ?????? ??----b a e e i i λθθθλ θ? ? (3) 由(3)式的系数行列式0=,可解得1±=λ。 对于1=λ,代回(3)式,可得 x y x y x x i i n in n in n n e e b a --=++==-=--112sin 2cos cos 1sin ?? θθ θθ 归一化本征函数用()?θ,表示,通常取为 ()???? ? ?=? θθ ?θφi e 2sin 2cos ,1或??? ? ? ? ?-222sin 2cos ? ? θθi i e e (4)

第三章 量子力学导论

闽江学院 教案 课程名称:原子物理 课程代码: 21100430 授课专业班级: 2010级物理学(师范类)授课教师:翁铭华 系别:电子系 2012年8 月30 日

第三章量子力学导论 教学目的和要求: 1.了解量子化物质波粒二象性的概念。 2.理解测不准原理; 3.掌握波函数及物理意义; 4.了解薛定谔方程;了解量子力学问题的几个简例; 5.了解氢原子的薛定谔方程;了解量子力学对氢原子的描述。 教学重点和难点: 1. 教学重点:波函数及统计解释 2.教学难点:波函数及统计解释 教学内容: 1. 玻尔理论的困难 2. 波粒二象性 3. 不确定关系 4. 波函数及其统计解释 5. 薛定谔方程及应用 19世纪末的三大发现(1896年发现放射性,1897年发现电子,1900年提出量子化概念)为近代物理学的序幕。1905年爱因斯坦在解释光电效应时提出光量子概念,1913年玻尔将普朗克-爱因斯坦量子概念用于卢瑟福模型,提出量子态观念,成功地解释了氢光谱。此外,利用泡利1925年提出的不相容原理和同年乌仑贝克、古兹米特提出的电子自旋假说,可很好地解释元素周期性、塞曼效应的一系列实验事实。至此形成的量子论称为旧量子论,有严重的缺陷。 在“物质粒子的波粒二象性”思想的基础上,于1925-1928年间由海森堡、玻恩、薛定谔、狄拉克等人建立了量子力学,它与相对论成了近代物理学的两大理论支柱。 量子力学的本质特征在1927年海森堡提出的不确定关系中得到明确的反映,它是微观客体波粒二象性的必然结果。量子力学的主要内容:1)相关的几个重要实验;2)有别于经典物理的新思想; 3)解决具体问题的方法。 §3-1玻尔理论的困难 玻尔理论将微观粒子视为经典力学中的质点,把经典力学的规律用于微观粒子,使其理论中有难以解决的内在矛盾,故有重大缺陷。如:为什么核与电子间的相互作用存在,但处于定态的加速电子不辐射电磁波?电子跃迁时辐射(或吸收)电磁波的根本原因何在?……(薛定谔的非难“糟透的跃迁”:在两能级间跃迁的电子处于什么状态?) 玻尔理论在处理实际问题时也“力不从心”,如无法解释氢光谱的强度及精细结构,无法解释简单程度仅次于氢原子的氦光谱,无法说明原子是如何组成分子及构成液体和固体。…… §3-2波粒二象性 1.经典物理中的波和粒子 经典物理学中,波和粒子各自独立,在逻辑上不允许同时用这两个概念描写同一现象。粒子可视为质点,具有定域性,有确定的质量、动量、速度和电荷等,波可以在空间无限扩展,波有确定

量子力学 第三章习题与解答

第三章习题解答 3.1 一维谐振子处在基态t i x e x ωαπ αψ2 2 22)(-- =,求: (1)势能的平均值222 1 x U μω= ; (2)动能的平均值μ 22 p T =; (3)动量的几率分布函数。 解:(1) ?∞∞--==dx e x x U x 2 222222121απ αμωμω μωμωππαμω ?==?=2 2 22221111221 ω 41= (2) ?∞∞-==dx x p x p T )(?)(2122 *2ψψμμ ?∞∞ ----=dx e dx d e x x 2 22 221 22 221)(21ααμπα ?∞ ∞ ---=dx e x x 2 2)1(22222αααμ πα ][22 2222222??∞∞ --∞∞---=dx e x dx e x x ααααμ πα ]2[23222απ ααπαμ πα?-= μω μαμαπαμ πα? ===442222222 ω 4 1 = 或 ωωω 414121=-= -=U E T (3) ?=dx x x p c p )() ()(*ψψ 21 2 221 ?∞ ∞ ---=dx e e Px i x απ απ ? ∞ ∞ ---= dx e e Px i x 222 1 21απ απ

? ∞ ∞--+-=dx e p ip x 2222)(21 21 αααπ απ ? ∞ ∞ -+-- =dx e e ip x p 2222 22)(212 21 αααπαπ πα π απα2 2122 p e - = 2 2221 απ αp e - = 动量几率分布函数为 2 22 1 )()(2 απ αωp e p c p - == # 3.2.氢原子处在基态0/30 1 ),,(a r e a r -=π?θψ,求: (1)r 的平均值; (2)势能r e 2 -的平均值; (3)最可几半径; (4)动能的平均值; (5)动量的几率分布函数。 解:(1)?θθπτ?θψππd rd d r re a d r r r a r sin 1),,(0 220 /230 2 0??? ?∞ -= = ?∞-=0 /233004dr a r a a r 04 03 023 2!34a a a =??? ? ??= 22 03020 /23 20 20 /23 2 20 2/23 2 2214 4 sin sin 1)()2(0 00a e a a e dr r e a e d drd r e a e d drd r e r a e r e U a r a r a r -=??? ? ??-=-=-=-=-=? ??? ??? ∞ -∞ -∞ -ππππ?θθπ?θθπ

《量子力学导论》习题答案(曾谨言版-北京大学)1

第一章 量子力学的诞生 1.1设质量为m 的粒子在一维无限深势阱中运动, ???<<><∞=a x a x x x V 0,0,0,)( 试用de Broglie 的驻波条件,求粒子能量的可能取值。 解:据驻波条件,有 ),3,2,1(2 =? =n n a λ n a /2=∴λ (1) 又据de Broglie 关系 λ/h p = (2) 而能量 () ,3,2,12422/2/2 2222 222 22==?===n ma n a m n h m m p E πλ (3) 1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。 解:除了与箱壁碰撞外,粒子在箱内作自由运动。假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。利用量子化条件,对于x 方向,有 ()?==? ,3,2,1, x x x n h n dx p 即 h n a p x x =?2 (a 2:一来一回为一个周期) a h n p x x 2/=∴, 同理可得, b h n p y y 2/=, c h n p z z 2/=, ,3,2,1,,=z y x n n n 粒子能量 ??? ? ??++=++=222222222 222)(21c n b n a n m p p p m E z y x z y x n n n z y x π ,3,2,1,,=z y x n n n 1.3设质量为m 的粒子在谐振子势222 1 )(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。 提示:利用 )]([2,,2,1, x V E m p n nh x d p -===?? )(x V 解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:221 ()2 x a E V x m a ω=== 。 a - 0 a x

量子力学导论第12章答案

第十二章 散射 12-1)对低能粒子散射,设只考虑s 波和p 波,写出散射截面的一般形式。 解: ()()()2 2 c o s s i n 121∑∞ =+= l l l i P e l k l θδθσδ 只考虑s 波和p 波,则只取1,0=l ,于是 ()()()2 11002 cos sin 3cos sin 11 θ δθδθσδδP e P e k i i += ()1cos 0=θP , (),c o s c o s 1θθ=P 代入上式,得 ()2 102 cos sin 3sin 11 θ δδθσδδi i e e k += ()2 2 12 101002 2cos sin 9cos cos cos sin 6sin 1θ δθδδδδδ+-+=k 2 2 2102 cos cos 1θ θA A A k ++= 其中 020sin δ=A ,()10101cos cos sin 6δδδδ-=A ,122sin 9δ=A 。 12-2)用波恩近似法计算如下势散射的微分截面: (a ) ()?? ?><-=. , 0;,0a r a r V r V (b ) ()2 0r e V r V α-= (c ) ()r e r V αγ κ-= (d ) ()().r r V γδ= 解:本题的势场皆为中心势场,故有 ()() ? ∞ - =0 ' '' ' 2 sin 2dr qr r V r q u f θ ,2 sin 2θ k q = (1) ()() () 2 ' ' ' ' 2 4 22sin 4? ∞ = =dr qr r V r q u f θθσ (1) (a )()()qa qa qa q V dr qr V r a cos sin sin 2 00 ' ' 0' -- =-? ()()2 6 4 2 02cos sin 4 qa qa qa q V u -= ∴ θσ (b )()? ? ∞ --∞ --= ??? ??0 ' '00 ''0' ' ' 2 '2'2sin dr e e e r i V dr qr e V r iqr iqr r r αα

量子力学第三章算符

第三章 算符与力学量算符 3、1 算符概述 设某种运算把函数u 变为函数v,用算符表示为: ?Fu v = (3、1-1) ?F 称为算符。u 与v 中的变量可能相同,也可能不同。例 如, 1 1du v dx =,22 xu v =, 3v =, (,)x t ?∞ -∞ ,(,) x i p x h x e dx C p t -=,则 d dx dx ∞ -∞ ? ,x i p x h e -?都就是算符。 1.算符的一般运算 (1)算符的相等:对于任意函数u,若??Fu Gu =,则??G F =。 (2)算符的相加:对于任意函数u,若???Fu Gu Mu +=,则???M F G =+。算符的相加满足交换律。 (3)算符的相乘:对于任意函数u,若???FFu Mu =,则???M GF =。算符的相乘一般不满足交换律。如果????FG GF =,则称?F 与?G 对易。 2.几种特殊算符 (1)单位算符 对于任意涵数u,若?I u=u,则称?I 为单位算符。?I 与1就是等价的。 (2)线性算符 对于任意函数u 与v,若**1212 ???()F C u C v C Fu C Fv +=+,则称?F 为反线性算符。 (3)逆算符 对于任意函数 u,若????FGu GFu u ==则称?F 与?G 互为逆算符。即1??G F -=,111??????,1F G FF F F ---===。 并非所有的算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。 对于非齐次线性微分方程:?()()Fu x af x =,其中?F 为d dx 与函数构成的线性算符,a 为常数。其解u 可表示为对应齐次方程的通解u 。与非齐次方程的特解υ之与,即0u u v =+。因0 ?0Fu =,所以不存

相关文档
相关文档 最新文档