文档库 最新最全的文档下载
当前位置:文档库 › ICE1PCS01控制原理

ICE1PCS01控制原理

ICE1PCS01控制原理
ICE1PCS01控制原理

新型低成本CCM PFC控制器原理与测试

上网时间: 2003年05月30日

摘要:一种新的连续导通模式(CCM)的功率因数校正(PFC)控制器,被命名为ICE1PCS01, 是基于一种新的控制方案开发出来的。与传统的PFC解决方案比较,这种新的集成芯片(IC)无需直接来自交流电源的正弦波参考信号。该芯片采用了电流平均值控制方法,使得功率因数可以达到1。通过增强动态响应的方法使得负载突然波动时的动态特性得到改善。独特的软启动方式防止了启动时过高的浪涌电流。为了确保系统的安全运行,也提供了各种保护措施。本文将介绍该芯片工作过程,同时提供了测试结果。此芯片采用双列直插8管脚的封装形式,适用于低成本的PFC设计。

一、简介

传统的用于电子设备前端的二极管整流器,因为导致电源线的脉冲电流,干扰电网线电压,产生向四周辐射和沿导线传播的电磁干扰,导致电源的利用效率下降。近几年来,为了符合国际电工委员会61000-3-2的谐波准则,有源PFC电路正越来越引起人们的注意。对于小于200瓦的小功率装置,不连续调制模式(DCM)因其低廉的价格受到普遍欢迎。另外,它的控制电路块中只有一个电压控制环,因而采用DCM的PFC设计简单易行。然而,由于它固有的电流纹波较大,DCM很少应用于大功率场合。在大功率场合,CCM的PFC更具有吸引力。在CCM 的拓扑结构中,它的传输函数存在电压环和电流环两个控制环路。因而CCM的控制电路设计复杂,CCM PFC控制器的管脚数目也较多。ICE1PCS01这种新的PFC控制器,是为了降低设计费用和难度而开发的。它仅有8个管脚。此外,根据故障模式影响分析(FMEA),很多的保护电路被集成在这块芯片中。本文将对此IC的功能进行详细地介绍,并通过测试结果验证了它的性能。

二、芯片功能

1. 无直接参考正弦波传感信号的均值电流控制

传统的CCM PFC结构电路如图1所示。图1:传统的CCM有源PFC电路和它的波形

可以看出,在传统的PFC电路存在两个控制环。一个是电压环,它被用来调整输出电压;另外一个是电流环,它被用来控制输入电流。误差放大器的输出Verr决定了输入电流Iin的幅值大小。Verr乘以正弦波参考信号|Vin|得到正弦输入电流。在传统的CCM PFC中,|Vin|是必不可少的,它用于产生电流控制环中的正弦波输入电压。

这个被称为ICE1PCS01新的PFC控制器的一个典型应用如图2所示。它仅有8个管脚,也没有直接馈入芯片的正弦波传感信号。

该芯片的基本原理如下所述。假设电压环正处于工作状态,输出电压保持恒定,则一个CCM 升压型PFC控制系统的MOSFET关断占空比DOFF可以由下面的公式得到:

从上面的公式可知,DOFF正比于VIN。电流环的目的在于调整电感电流的平均值,使得它正比于关断占空比DOFF,从而正比于输入电压VIN。这个关系式可以通过前边沿调制方式实现,如图3所示。

图3:电流平均值控制

斜坡信号由内部的振荡器产生,斜坡信号的幅值一方面受内部的控制信号控制,但另一方面却可以影响线输入平均值电流的幅值。

2. 增强动态响应

由于PFC 的固有属性,PFC 动态环路总

是用低带宽进行补偿,目的是不对频率为

2×fL 波纹响应。这里fL 指的是交流电源

线的频率。所以当负载突变时,调整电路

不能作出快速响应,从而引起输出电压起

落过大。为了解决这个PFC 应用中的问

题,在芯片中采用了增强动态响应。一旦

输出电压超出正常值的5%,IC 将跳过慢

补偿运算放大器,直接作用于内部非线性

增益块而影响占空比。输出电压能够在一

个短时间内回复到正常值。图4所示为实

现增强动态响应的控制模块。载荷突变的

测试波形如图5和图6所示。

额定输出电压是400V 直流。在图5中,

可以看出,当输出电压达到420V ,开关立

刻截止。输出电压的过冲被限制在额定电

压的5%以下。输出过冲电压保护也采用

同样的控制策略。在图6中,可以看出,

当Vsense 下降到4.75V ,也就是比额定

电压低5%,IC 立刻响应,门驱动的占空

比立刻增加。电压降被控制在40V 以内。

3. 软启动 该IC 具有高效的软启动功能,如图7所示,

该功能可以控制启动电流,使其输入电流幅度连续而渐进地上升到较高的值,直至输出电压达到额定电压的80%,然后进入正常的控制模式。这一启动过程中的电流波形如图8所示。相对于一般的的软启动系统,该系统仅控制占空比,输入电流保持正弦,不激活峰值电流限幅。因此升压二极管不会受到因高占空比而形成的大电流的冲击。这个高的浪涌电流将会危及升压二极管,特别对碳化硅升压二极管,因为相对硅二极管来说,碳化硅二极管的峰值电流能力更小。

4. 保护

根据故障模式影响分析(FMEA),许多保护功能被集成在芯片中,例如开环保护、输出过压保护、交流电源欠压保护、IC电源欠压保护、峰值电流限幅、软过电流限幅等。下面将详细介绍开环保护和输出电压保护这两种独特的保护功能。

(1)开环保护(OLP)/输入欠压保护

开环意味着反馈环被断开,没有反馈信号

进入IC。在这种情况下,如果没有保护措

施,内部的控制电压将会被调节到最大值,

IC将提高占空比以传送最大功率。在这种

故障情况下,输出电压仅仅取决于输出电

流。在负载较小的情况下,将会产生很高

的电压过冲,这将危及到后面的用电设备。

该IC具有开环保护以对输出电压进行监

控,如图9所示。一旦VSENSE电压低

于0.8V,也就是VOUT低于额定电压16%

的时候,就意味着进入了开环状态

(VSENSE管脚没有连接)或者输入电压小

于额定值。在这种情况下,芯片中绝大多

数模块将停止工作。该保护功能是通过阈值电压为0.8V的比较器C3实现的。图10是在高交流电源输入电压和小负载情况下的测试波形。

如图所示,一旦出现开环故障,MOSFET门开关立即停止工作,输出电压没有过冲。

该保护也可用于在某些情况下关闭PFC,例如待机模式等。

(2)输出过压保护(OVP)

增强动态响应模块也具有输出过压保护功能。一旦VOUT超过额定电压5%,输出过压保护OVP功能就被激活,如图5所示。通过判断VSENSE管脚的电压是否大于参考电压5.25V就可以实现这一功能。VSENSE 电压高于5.25V时,IC会跳过正常的电压环控制而直接控制占空比使其立刻下降到0。这将导致输入功率下降,从而使得输出电压VOUT下降。

三、测试结果

一个350W的测试板被用来检验其性能。测试电路如图11,测试数据如下所示。开关频率设定为200kHz。

在1/4满载的情况下,功率因数仍超过90%。另外,PFC变换器也可以在空载的情况下提供稳定的输出电压。

四、结论

本文介绍了一种新型的CCM PFC控制器。根据测试结果,功率因数可以满足要求。该PFC 可以在从空载到满载这样一个很大的载荷范围内工作。此外,为了提高系统的可靠性,该IC 还具有很多保护措施,比如开环保护、输出过压保护、交流电源欠压保护、IC电源欠压保护、峰值电流限幅、软过电流限幅等。这个新的8管脚的PFC控制器很适应低成本的CCM PFC 设计。

参考文献:1. Infineon Technologies: ICE1PCS01 - Standalone Power Factor Correction Controller in Continuous Conduction Mode; Preliminary datasheet; Infineon Technologies; Munich; Germany; Sept. 2002.

飞行控制原理大作业

综合设计1: 针对所给出的飞机纵向简化运动模型,设计纵向增稳控制系统,给出系统原理结构,并对增加控制系统前后的纵向品质特性进行对比分析,并通过仿真验证阶跃和脉冲操纵输入响应。 1纵向方程 [?V ?α??θ q?][?0.020244?0.8761?2.5373E ?4?1.0189?0.32169?0.650200.90484007.9472E ?11?2.4982010?1.3861][?V ?α?θq ]+[0 1.22 ?4.132060?0.14325000 ][δe δT ] 2纵向模态分析 2.1 飞行品质要求 根据品质规范GJB 185-86 有人驾驶飞机(固定翼)飞行品质的要求: 根据飞行品质要求对短周期的指标进行限定,要求如表2.2:

表2.1 长短周期模态参数范围 表2.1 纵向特征值 由特征值可以看到,不论是短周期还是长周期,都是具有负实部的特征根,因而短周期和长周期都是稳定收敛的,并且满足前述飞行品质要求。 2.3 稳定性分析 根据所得到的4个具有负实部的特征值知,该系统为稳定的。现根据系统根轨迹来判断其稳定性。以速度—升降舵传递函数为例:

上图为其开环传递函数根轨迹图。由图可以看出,所有四个极点均位于纵轴的左侧区域,说明该系统确实稳定。 2.3系统原理结构图 图示为方向舵变化脉冲输入、油门变化零输入时的仿真系统结构。

3仿真验证 3.1升降舵阶跃响应曲线 状态及输出量相对于升降舵通道的阶跃宽度为1s,幅值1°的响应曲线如下。 从图中可以看出在阶跃信号作用下,各输出变量一开始均有一个阶跃

值,随着时间的增加,各个输出量逐渐趋于稳定状态。飞机纵向运动短周期和长周期均是稳定的。 3.2升降舵脉冲响应曲线 状态及输出量相对于升降舵通道的脉冲宽度为1s,幅值1的响应曲线如下。

现代控制理论大作业

现代控制理论 (主汽温对象模型) 班级: 学号: 姓名:

目录 一. 背景及模型建立 1.火电厂主汽温研究背景及意义 2.主汽温对象的特性 3.主汽温对象的数学模型 二.分析 1.状态空间表达 2.化为约当标准型状态空间表达式并进行分析 3.系统状态空间表达式的求解 4.系统的能控性和能观性 5.系统的输入输出传递函数 6.分析系统的开环稳定性 7.闭环系统的极点配置 8.全维状态观测器的设计 9.带状态观测器的状态反馈控制系统的状态变量图 10.带状态观测器的闭环状态反馈控制系统的分析 三.结束语 1.主要内容 2.问题及分析 3.评价

一.背景及模型建立 1.火电厂主汽温研究背景及意义 火电厂锅炉主汽温控制决定着机组生产的经济性和安全性。由于锅炉的蒸汽容量非常大、过热汽管道很长,主汽温调节对象往往具有大惯性和大延迟,导致锅炉主汽温控制存在很多方面的问题,影响机组的整个工作效率。主汽温系统是表征锅炉特性的重要指标之一,主汽温的稳定对于机组的安全运行至关重要。其重要性主要表现在以下几个方面: (1) 汽温过高会加速锅炉受热面以及蒸汽管道金属的蠕变,缩短其使用寿命。例如,12CrMoV 钢在585℃环境下可保证其应用强度的时间约为10万小时,而在 595℃时,其保证应用强度的时间可能仅仅是 3 万小时。而且一旦受热面严重超温,管道材料的强度将会急剧下降,最终可能会导致爆管。再者,汽温过高也会严重影响汽轮机的汽缸、汽门、前几级喷嘴和叶片、高压缸前轴承等部件的机械强度,从而导致设备损坏或者使用年限缩短。 (2) 汽温过低,会使得机组循环热效率降低,增大煤耗。根据理论估计可知:过热汽温每降低10℃,会使得煤耗平均增加0.2%。同时,汽温降低还会造成汽轮机尾部的蒸汽湿度增大,其后果是,不仅汽轮机内部热效率降低,而且会加速汽轮机末几级叶片的侵蚀。此外,汽温过低会增大汽轮机所受的轴向推力,不利于汽轮机的安全运行。 (3) 汽温变化过大会使得管材及有关部件产生疲劳,此外还将引起汽轮机汽缸的转子与汽缸的胀差变化,甚至产生剧烈振动,危及机组安全运行。 据以上所述,工艺上对汽温控制系统的质量要求非常严格,一般控制误差范围在±5℃。主汽温太高会缩短管道的使用寿命,太低又会降低机组效率。所以必须实现汽温系统的良好控制。而汽温被控对象往往具有大惯性、大延时、非线性,时变一系列的特性,造成对象的复杂性,增加了控制的难度。现代控制系统中有很多关于主汽温的控制方案,本文我们着重研究带状态观测器的状态反馈控制对主汽温的控制[1] 。 2.主汽温对象的特性 2.1主汽温对象的静态特性 主汽温被控对象的静态特性是指汽温随锅炉负荷变化的静态关系。过热器的传热形式、结构和布置将直接影响过热器的静态特性。现代大容量锅炉多采用对流过热器、辐射过热器和屏式过热器。对流过热器布置在450℃~1000℃烟气温度的烟道中,受烟气的横向和纵向冲刷,烟气以对流方式将热量传给管道。而辐射过热器则是直接吸收火焰和高温烟气的辐射能。屏式过热器布置在炉膛内上部

自动控制原理实验

自动控制原理实验 实验报告 实验三闭环电压控制系统研究 学号姓名 时间2014年10月21日 评定成绩审阅教师

实验三闭环电压控制系统研究 一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、预习与回答: (1)在实际控制系统调试时,如何正确实现负反馈闭环? 答:负反馈闭环,不是单纯的加减问题,它是通过增量法实现的,具体如下: 1.系统开环; 2.输入一个增或减的变化量; 3.相应的,反馈变化量会有增减; 4.若增大,也增大,则需用减法器; 5.若增大,减小,则需用加法器,即。 (2)你认为表格中加1KΩ载后,开环的电压值与闭环的电压值,哪个更接近2V? 答:闭环更接近。因为在开环系统下出现扰动时,系统前部分不会产生变化。故而系统不具有调节能力,对扰动的反应很大,也就会与2V相去甚远。 但在闭环系统下出现扰动时,由于有反馈的存在,扰动产生的影响会被反馈到输入端,系统就从输入部分产生了调整,经过调整后的电压值会与2V相差更小些。 因此,闭环的电压值更接近2V。 (3)学自动控制原理课程,在控制系统设计中主要设计哪一部份? 答:应当是系统的整体框架及误差调节部分。对于一个系统,功能部分是“被控对象”部分,这部分可由对应专业设计,反馈部分大多是传感器,因此可由传感器的专业设计,而自控原理关注的是系统整体的稳定性,因此,控制系统设计中心就要集中在整个系统的协调和误差调节环节。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。

《自动控制理论II》课程教学大纲(精)

《自动控制理论II》课程教学大纲 【课程代码】:22315168 【英文译名】:Automatic Control Theory II 【适用专业】:自动化 【学分数】:2.5 【总学时数】:40 【实践学时】:0 一、本课程教学目的和课程性质 《自动控制理论II》是自动控制理论I的后续课程,是自动化专业的专业基础课。学生通过本门课程学习,在离散系统分析、单输入单输出线性定常系统的状态空间模型的建立、线性变换及规范化、状态方程的求解、系统可控性与可观测性的研究以及状态反馈与状态观测器的设计等方面具备必要的知识,为学生深入研究线性系统及其他有关现代控制理论的后续课程和从事工业控制系统的设计与改造打好基础。 二、本课程的基本要求 (一) 基本原理 1.熟悉离散系统的基本概念;掌握离散控制系统的理论和分析方法; 2.熟悉状态空间的基本概念及相关术语; 3.会建立系统的状态空间表达式,了解通过线性变换变成标准型法; 4.掌握状态转移矩阵法,会求解线性系统状态方程的解; 5.掌握系统能控性和能观性的概念及判据; 6.掌握状态反馈方法,了解状态观测器; 7.理解控制系统的李雅普诺夫稳定性概念。 (二) 获得以下基本技能 1.初步掌握计算机控制系统设计的理论方法; 2.掌握线性控制系统的状态空间分析法; 3.能用状态空间法进行控制系统的综合设计; 4.基本学会用MATLAB对控制系统进行典型分析。 三、本课程与其他课程的关系(前修课程要求,后继课程等) 前修课程:自动控制理论I,微分方程,线性代数,复变函数

后继课程:运动控制,过程控制,计算机控制系统等 四、课程内容 1.离散控制系统 知识点:计算机控制系统组成;采样过程;采样定理;零阶保持器;Z变换定义及计算方法;Z变换基本定理;Z反变换及计算方法;线性差分方程及求解;环节的脉冲传递函数;闭环脉冲传递函数;(纯)离散系统方框图及其简化;Z平面的稳定性分析;朱利稳定判据;数字控制系统的暂态、稳态、误差分析。 重点:采样定理、零阶保持器;带有零阶保持器环节的脉冲传递函数计算;闭环脉冲传递函数计算;系统性能分析。 难点:绘制(纯)离散系统方框图;典型计算机控制系统设计方法。 2.线性系统的状态空间模型 知识点:状态空间描述的基本概念;线性时不变系统状态空间模型;输入输出描述转换为状态空间模型;状态方程的标准形。 重点:系统状态空间描述;状态空间的标准形。 难点:状态空间的概念及状态方程的建立;状态转移阵和系统性能的关系。 3.线性系统的运动分析 知识点:状态空间描述的传递函数矩阵计算;特征多项式和特征值;线性定常系统的运动分析、状态转移阵、脉冲响应阵;线性连续系统的离散化;离散状态空间分析。 重点:状态转移矩阵及其计算。 难点:状态转移矩阵和系统性能的关系。 4.线性系统的能控性和能观测性 知识点:能控性和能观性的定义;能控标准形和能观标准形;能控性和能观性的判据。 重点:能控性和能观性标准形,能控和能观判据。 难点:能控性和能观性与系统性能之间的关系。 5.线性系统的状态空间综合 知识点:状态反馈和输出反馈;极点配置;状态观测器;引入状态观测器的状态反馈系统特性。 重点:状态反馈、极点配置法设计线性控制系统。 难点:极点配置与系统性能的关系。 6.李雅普诺夫稳定性分析 知识点:李亚普诺夫意义下运动稳定性的基本概念;李亚普诺夫第二法主要定理;系统运动稳定性判据。

哈工大自动控制原理 大作业

自动控制原理 大作业 (设计任务书) 姓名: 院系: 班级: 学号: 5. 参考图5 所示的系统。试设计一个滞后-超前校正装置,使得稳态速度误差常数为20 秒-1,相位裕度为60

度,幅值裕度不小于8 分贝。利用MATLAB 画出 已校正系统的单位阶跃和单位斜坡响应曲线。 + 一.人工设计过程 1.计算数据确定校正装置传递函数 为满足设计要求,这里将超前滞后装置的形式选为 ) 1)(() 1)(1()(2 12 1T s T s T s T s K s G c c ββ++++= 于是,校正后系统的开环传递函数为)()(s G s G c 。这样就有 )5)(1()(lim )()(lim 00++==→→s s s K s sG s G s sG K c c s c s v 205 ==c K 所以 100=c K 这里我们令100=K ,1=c K ,则为校正系统开环传函) 5)(1(100 )(++= s s s s G

首先绘制未校正系统的Bode 图 由图1可知,增益已调整但尚校正的系统的相角裕度为? 23.6504-,这表明系统是不稳定的。超前滞后校正装置设计的下一步是选择一个新的增益穿越频率。由)(ωj G 的相角曲线可知,相角穿越频率为2rad/s ,将新的增益穿越频率仍选为2rad/s ,但要求2=ωrad/s 处的超前相角为? 60。单个超前滞后装置能够轻易提供这一超前角。 一旦选定增益频率为2rad/s ,就可以确定超前滞后校正装置中的相角滞后部分的转角频率。将转角频率2/1T =ω选得低于新的增益穿越频率1个十倍频程,即选择2.0=ωrad/s 。要获得另一个转角频率)/(12T βω=,需要知道β的数值, 对于超前校正,最大的超前相角m φ由下式确定 1 1 sin +-= ββφm 因此选)79.64(20 ==m φβ,那么,对应校正装置相角滞后部分的极点的转角频率为 )/(12T βω=就是01.0=ω,于是,超前滞后校正装置的相角滞后部分的传函为 1 1001 520 01.02.0++=++s s s s 相角超前部分:由图1知dB j G 10|)4.2(|=。因此,如果超前滞后校正装置在2=ωrad/s 处提供-10dB 的增益,新的增益穿越频率就是所期望的增益穿越频率。从这一要求出发,可 以画一条斜率为-20dB 且穿过(2rad/s ,-10dB )的直线。这条直线与0dB 和-26dB 线的交点就确定了转角频率。因此,超前部分的转角频率被确定为s rad s rad /10/5.021==ωω和。 因此,超前校正装置的超前部分传函为 )1 1.01 2(201105.0++=++s s s s 综合校正装置的超前与之后部分的传函,可以得到校正装置的传递函数)(S G c 。 即) 1100)(11.0() 15)(12(01.02.0105.0)(++++=++++= s s s s s s s s s G c 校正后系统的开环传递函数为

自动控制原理实验报告

自动控制原理 实验报告 姓名学号 时间地点实验楼B 院系专业 实验一系统的数学模 实验二控制系统的时域分析 实验三控制系统的频域分析

实验一系统的数学模 一、实验目的和任务 1、学会使用MATLAB的命令; 2、掌握MATLAB有关传递函数求取及其零、极点计算的函数。 3、掌握用MATLAB 求取系统的数学模型 二、实验仪器、设备及材料 1、计算机 2、MATLAB软件 三、实验原理 1、MATLAB软件的使用 2、使用MATLAB软件在计算机上求取系统的传递函数 四、实验内容 1、特征多项式的建立与特征根的求取 在命令窗口依次运行下面命令,并记录各命令运行后结果 >>p=[1,3,0,4]; p = 1 3 0 4 >>r=roots(p) r = -3.3553 + 0.0000i 0.1777 + 1.0773i 0.1777 - 1.0773i >>p=poly(r) p = 1.0000 3.0000 -0.0000 4.0000 2、求单位反馈系统的传递函数: 在命令窗口依次运行下面命令,并记录各命令运行后结果 >>numg=[1];deng=[500,0,0]; >>numc=[1,1];denc=[1,2]; >>[num1,den1]=series(numg,deng,numc,denc); >>[num,den]=cloop(num1,den1,-1) num = 0 0 1 1

den = 500 1000 1 1 >>printsys(num,den) num/den = s + 1 --------------------------- 500 s^3 + 1000 s^2 + s + 1 3、传递函数零、极点的求取 在命令窗口依次运行下面命令,并记录各命令运行后结果>>num1=[6,0,1];den1=[1,3,3,1]; >>z=roots(num1) ; >>p=roots(den1) ; >>n1=[1,1];n2=[1,2];d1=[1,2*i];d2=[1,-2*i];d3=[1,3]; >>num2=conv(n1,n2) num2 = 1 3 2 >>den2=conv(d1,conv(d2,d3)) den2 = 1 3 4 12 >>printsys(num2,den2) s^2 + 3 s + 2 ---------------------- s^3 + 3 s^2 + 4 s + 12 >>num=conv(num1,den2);den=conv(den1,num2); >>printsys(num,den) 6 s^5 + 18 s^4 + 25 s^3 + 75 s^2 + 4 s + 12 ------------------------------------------- s^5 + 6 s^4 + 14 s^3 + 16 s^2 + 9 s + 2 >>pzmap(num,den),title(‘极点-零点图’)

《自动控制理论》课程教学大纲

《自动控制理论》课程教学大纲 执笔人:王艳编写日期:2012年12月 一、课程基本信息 1.课程编号:94L119Q 2.课程体系/类别:专业类/专业基础课,专业主干课 3.学时/学分:64/4 4.先修课程:微积分、复变函数与积分变换、电路、模拟电子技术、数字电子技术、信号与系统。 5.适用专业:电气工程及其自动化 二、课程教学目标及学生应达到的能力 本课程是为电气工程及其自动化专业本科生开设的一门专业基础课,也是专业主干课。学生学习完本课程后应该在自动控制系统的基本概念基础上,能够建立控制系统数学模型,掌握并灵活运用时域法、根轨迹法和频率法进行系统分析和系统综合与校正,掌握三种方法各自的特点及其内在联系;掌握线性离散系统的分析与校正方法及非线性控制系统的分析。本课程分理论与实践教学两部分,并融合一体,突出基于控制理论的模拟电路仿真实验和综合知识应用,对学生实施动手实践能力训练与综合解决控制类问题的素质培养。 (一)通过理论教学应掌握的知识与方法 1.了解自动控制与系统的基本概念、基本要求;建立控制问题的系统观,学会用控制系统的思想理解工程问题; 2.掌握控制系统建模与传递函数求取的基本方法; 3.掌握系统时域分析与设计方法; 4.掌握系统根轨迹分析与设计方法; 5.掌握系统频域分析与设计方法; 6.掌握线性离散系统的分析与校正方法; 7.掌握非线性控制系统的分析与系统改善方法。 (二)通过实验教学进行动手实践能力培养 1.通过数字仿真软件解算实际控制问题,学会掌握控制系统的计算机仿真分析 通过对MATLAB软件的学习,掌握基本的模型变换、典型系统的响应分析等语言,提高解决控制问题的计算与分析能力。 2.通过模拟电路仿真实验,提高学生控制电路调试与实现的能力 通过控制理论实验装置,学生根据自行设计的控制理论教学实验电路

现代控制理论大作业 北科

现代控制理论大作业分析对象:汽车悬架系统 指导老师:周晓敏 专业:机械工程 姓名:白国星 学号:S2*******

1.建模 悬架是车轮或车桥与汽车承载部分之间具有弹性的连接装置的总称,具有传递载荷、缓和冲击、衰减振动以及调节汽车行驶中的车身位置等作用。传统汽车悬驾系统是被动悬驾,其参数不能改变,无法控制其对不同路面激励的响应,因此对不同路面的适应性较差。为提高汽车的行驶平顺性、操纵稳定性和制动性等性能,人们开始用主动悬架系统来代替传统的被动悬架系统。主动悬架系统能根据路面的情况通过一个动力装置改变悬挂架的参数,改善汽车的各方面性能。 对悬驾系统进行仿真计算首先要建立悬驾系统动力学模型,随后对所建立的模型进行仿真分析。为了简化模型,取汽车的一个车轮的悬驾系统进行研究,该模型可简化为一维二自由度的弹簧阻尼质量系统,图1所示为该模型的模拟图。 图1 悬架系统模型的模拟图 其中u为动力装置的作用力,w为路面位移,x1为车身位移,x2为悬驾位移,用车身位移来度量车身的振动情况,并视为系统的输出。路面状况以w为尺度,并视为系统的一个干扰输入。当汽车从平面落入坑时,w可用一个阶跃信

号来模拟。u 为主动悬架的作用力,它是系统的控制量。 进行受力分析,由牛顿第二规律可得车身悬架系统的动力学方程为: ()()()()() 1121212212122s s t m x K x x b x x u m x K x x b x x u K w x ?=-+-+?? =-+--+-??& &&&&&&& 设系统状态变量为: []1 2 12x x x x x =&& 则上面系统动力学方程可改写为状态空间表达式: x Ax Bu y Cx Du =+?? =+?& 其中: ()1 1 1 1222 200 100001s s s t s K K b b A m m m m K K K b b m m m m ????????--=????-+??-??? ? 12 200 001 01t B m K m m ?? ??????=????-???? []1000C = []00D = u u w ??=???? Matlab 系统模型程序代码: m1=800;m2=320;ks=10000;b=30000; kt=10*ks;

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

控制工程基础论文(神经网络)有图完整版

神经网络文献综述 吴一凡 (西南交通大学峨眉校区,四川 峨眉 614202) 摘 要:本文着重介绍了神经网络的发展、优点及其应用、发展动向,文中着重论述了神经网络目前的几个研究热点,对神经网络有一个全面系统的概括。 关键词:神经网络 模糊控制 遗传算法 专家系统 小波分析 Abstract :Development,merits and application of neural network are introduced in this paper. Then,the trends are presented.And its several main research directs.This paper can give you a comprehensive and systematic exposition of the neural network. Keywords :Neural network Fuzzy control Genetic algorithm Expert system Wavelet analysis 0 绪论 神经网络最早的研究是20世纪40年代心理学家Mcculloch 和数学家Pitts 合作提出的,他们提出的MP 模型拉开了神经网络研究的序幕,其结构如图1所示。 图1 人工神经元示意图 图1中,n I I I ,,,21 表示其他n 个神经元的突触输出,n W W W ,,,21 为其他n 个神经元的突触连接,其值可正可负,分别表示兴奋性突触和抑制性突触。∑θ为阀值,神经元的输出()θf 称为变换函数,一般采用的形式有线性函数、阶跃函数、Sigmoid 函数及双曲正切函数等。 神经网络的发展大致经三个阶段:

控制原理大作业

控制理论与应用 大作业 学部:运载工程与力学学部学院:汽车工程学院 班级:运英1301 学生姓名:盛鑫 学号:201373028

大连理工大学 Dalian University of Technology 作业题目: 某直流电机转速控制系统如下图所示,其中电机电枢传递函数中的参数K为你学号的最后两位数字。试按以下要求完成设计与分析,可团队完成,亦可单独完成,团队成员不超过三人。 直流电机转速控制系统 1. 写出被控对象的传递函数。

2. 设计PID控制器,分析控制器参数调节对单位阶跃响应的影响。 3. 在实际工程应用中,常常需要对控制器的输出进行限幅,请对限幅前后的系统性能进行对比分析,并举例分析限幅的必要性。 4. 目前有多种改进的PID控制算法,请调研其中一种,并介绍其特点。 5. 请结合自动控制系统的基本性能要求、各性能要求之间的关系或自动控制的基本原理,从以下几个方面中选取一个主题谈谈本门课程学习对你的影响:(1)自动控制理念对社会、健康、安全、法律或文化的影响;(2)对你未来的研究、实践、应遵守的工程职业道德和规范、或应履行的责任的影响。

1. 写出被控对象的传递函数。 我的学号是201373028,K=28; 被控对象的主要环节由G1~G4组成,其传递函数为: 通过matlab编写: s=tf('s'); K=28; G1=K/(s+K); G2=13.33/s; G12=feedback(G1*G2,1); G3=26347/(s+599); G4=5.2; G=G12*G3*G4 G = 5.114e07 ------------------------------------- s^3 + 627 s^2 + 1.715e04 s + 2.236e05 2. 设计PID控制器,分析控制器参数调节对单位阶跃响应的影响。

现代控制理论大作业

现代控制理论 直流电动机模型的分析 姓名:李志鑫 班级:测控1003 学号:201002030309

2 1直流电动机的介绍 1.1研究的意义 直流电机是现今工业上应用最广的电机之一,直流电机具有良好的调速特性、较大的启动转矩、功率大及响应快等优点。在伺服系统中应用的直流电机称为直流伺服电机,小功率的直流伺服电机往往应用在磁盘驱动器的驱动及打印机等计算机相关的设备中,大功率的伺服电机则往往应用在工业机器人系统和CNC铣床等大型工具上。[1] 1.2直流电动机的基本结构 直流电动机具有良好的启动、制动和调速特性,可以方便地在宽范围内实现无级调速,故多采用在对电动机的调速性能要求较高的生产设备中。 直流伺服电机的电枢控制:直流伺服电机一般包含3个组成部分: - 图1.1 ①磁极: 电机的定子部分,由磁极N—S级组成,可以是永久磁铁(此类称为永磁式直流伺服电机),也可以是绕在磁极上的激励线圈构成。 ②电枢: 电机的转子部分,为表面上绕有线圈的圆形铁芯,线圈与换向片焊接在一起。 ③电刷: 电机定子的一部分,当电枢转动时,电刷交替地与换向片接触在一起。 直流电动机的启动

电动机从静止状态过渡到稳速的过程叫启动过程。电机的启动性能有以下几点要求: 1)启动时电磁转矩要大,以利于克服启动时的阻转矩。 2)启动时电枢电流要尽可能的小。 3)电动机有较小的转动惯量和在加速过程中保持足够大的电磁转矩,以利于缩短启动时间。 直流电动机调速可以有: (1)改变电枢电源电压; (2)在电枢回路中串调节电阻; (3)改变磁通,即改变励磁回路的调节电阻Rf以改变励磁电流。 本文章所介绍的直流伺服电机,其中励磁电流保持常数,而有电枢电流进行控制。这种利用电枢电流对直流伺服电机的输出速度的控制称为直流伺服电机的电枢控制。如图1.2 Bm 电枢线路图1.2 ——定义为电枢电压(伏特)。 ——定义为电枢电流(安培)。 ——定义为电枢电阻(欧姆)。 ——定义为电枢电感(亨利)。 ——定义为反电动势(伏特)。 ——定义为励磁电流(安培)。 ——定义为电机产生的转矩(牛顿?米) ——定义为电机和反射到电机轴上的负载的等效粘带摩擦系数(牛顿?米∕度?秒) —定义为电机和反射到电机轴上的负载的等效转动惯量(千克?米)。 1.3建立数学模型 电机所产生的转矩,正比于电枢电流I与气隙磁通Φ的乘积,即: Φ (1-1) 而气隙磁通Φ又正比于激励电流,故式(1-1)改写为 (1-2)

自动控制原理课程实验

上海电力学院实验报告 自动控制原理实验课程 题目:2.1.1(2.1.6课外)、2.1.4(2.1.5课内)班级:gagagagg 姓名:lalalal 学号:hahahahah 时间:zzzzzzzzzzz

实验内容一: 一、问题描述: 已知系统结构图,(1)用matlab编程计算系统的闭环传递函数;(2)用matlab转换函数表示系统状态空间模型;(3)计算其特征根。 二、理论方法分析 (1)根据系统结构图的串并联关系以及反馈关系,分别利用tf ()函数series()函数,parallel函数以及feedback函数构建系统传递函数;(2)已求出系统传递函数G,对于线性定常系统利用函数ss(G)课得到系统的状态空间模型。(3)利用线性定常系统模型数据还原函数[num,den]=tfdata(G,‘v’)可得到系统传递函数的分子多项式num与分母多项式den,利用roots(den)函数可得到系统的特征根。 三、实验设计与实现 新建M文件,编程程序如下文所示: G1=tf([0.2],[1,1,1]); G2=tf([0.3],[1,1]); G3=tf([0.14],[2,1]); G4=series(G2,G3);%G2与G3串联 G5=0.7*feedback(G4,-1,1); G6=0.4*feedback(G1,G5,1); G7=feedback(G6,0.6)

ss(G7)%将系统传递函数转化为状态空间模型 [num den]=tfdata(G7,'v');%还原系统传递函数分子、分母系数矩阵 roots(den)%求系统传递函数特征根 点击Run运行 四、实验结果与分析 M文件如下: 运行结果如下:

控制系统分析

控制系统分析

控制工程基础大作业MATLAB软件应用 2016年秋季学期 专业名称:机械设计制造及其自动化专业 班级:机设141 姓名:闫学佳 学号: 140273 授课教师:曲云霞 成绩:

控制工程基础大作业 一、教学目的: 使学生能够掌握现代工程工具MATLAB软件使用的基本方法,能够应用MATLAB软件对控制系统进行建模及性能分析。 二、内容要求: 1.控制系统建模 (1)确定所研究的闭环反馈控制系统,清晰表述系统的具体工作原理及参数条件;(同学们可以通过查阅相关的文献资料、生活或者工程实践中的实际案例确定自己所研究的闭环反馈控制系统) (2)绘制闭环反馈控制系统的职能方框图、函数方框图,并建立系统的传递函数形式的数学模型。 2.应用MATLAB软件进行控制系统性能分析 针对所选定的闭环控制系统,应用MATLAB软件完成以下工作: (1)控制系统频域特性分析 分别使用nyquist函数和bode函数绘制系统的开环奈奎斯特图和开环波德图,并附程序清单。 (2)控制系统稳定性分析 判定控制系统的稳定性,并进行控制系统相对稳定性分析,计算稳定性裕量,并附程序清单。 (3)控制系统时域特性分析 使用step函数绘制控制系统的单位阶跃响应曲线,分析控制系统响应的快速性指标,分析比较结构参数变化对系统性能的影响,并附程序清单。 三、作业书写注意事项: 1.封皮格式按照此模板内容,不必更改,完整填写相应的个人信息; 2.正文按照第二部分内容要求的顺序分项书写,给出运行结果并附上完整的编写程序清单(同时提交电子版程序); 3.本模板及要求保留,另起一页书写正文的内容成果,A4纸双面打印,左侧装订; 4.杜绝抄袭,如果雷同,按照零分计; 5.采用十分制记分,抽查答辩。

现代控制理论大作业

现代控制理论大作业-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

分类号:TH89 单位代码:10110 学号: 中北大学 综合调研报告题目: 磁盘驱动器读写磁头的定位控制 系别: 计算机科学与控制工程学院 专业年级: 电气工程与智能控制2014级 姓名: 何雨贾晨凌朱雨薇贾凯张钊中袁航 学号: 14070541 39/03/04/16/33/47 指导教师: 靳鸿教授崔建峰讲师 2017年5月7日

摘要 硬盘驱动器作为当今信息时代不可缺少的存储设备,在人们日常生活中正扮演着越来越重要的角色,同时它也成为信息时代科学技术飞速发展的助推器。然而,随着信息量的日益增长,人们对硬盘驱动器存储容量的要求越来越高。但另一方面由于传统硬盘驱动器的低带宽、低定位精度,导致磁头很难准确地定位在目标磁道中心位置,从而限制了存储容量的持续增加。 自IBM公司于1956年向全球展示第一台磁盘存储系统R.AMAC以来,随着存储介质、磁头、电机及半导体芯片等相关技术的不断发展,硬盘的存储容量成倍增长、读写速度不断提高。要保证可靠的读写性能,盘片的转速控制和磁头的定位控制问题具有重要意义。其中磁头的定位控制主要包括寻道控制与定位跟踪控制两个问题,如PID控制、自适应控制、模态切换控制等,这些控制方法大大提高了硬盘磁头伺服系统的性能。为达到更高的精度,磁头双级驱动模型成近年的研究热点,多种控制策略已有相关报道,但目前仍处于实验水平。 关键词: 磁盘驱动器;磁头;定位;控制 Abstract Hard disk drive (HDD), acted as requisite storage equipment in current information age,plays a more and more vital role in people’s daily life, and it becomes a roll booster in rapid development of science and technology. However, with the increase of information capacity, we put forward a severe request for HDD data storage capacity. Unfortunately, due to the low bandwidth, low positioning accuracy in conventional HDD, magnetic head is hard to be positioned onto the destination track center, thus it limits the continuing increase in storage capacity. Since IBM brought the first disk-the random access memory accounting machine(RAMAC) to market in 1956, the storage capacity and read/write speed have continuously increased along with the development of the techniques of media,read/write head, actuators and semiconducting chips. The problems of R/W head's settling control is definitely important in order to ensure the reliability of read and write performance. Track seeking and track following are two main stages of the hard disk servo system. Researchers have developed kinds of control strategies to implement the servo control from PID control to advanced control methods.Dual-stage actuator has attracted many researchers and engineers for its broaderbandwidth compared with single-stage actuator. Key Words:Hard Disk Drive;Heads; Location; Control

自动控制原理实验1-6

实验一MATLAB 仿真基础 一、实验目的: (1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2)掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3)掌握使用MATLAB 命令化简模型基本连接的方法。 (4)学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1.计算机;2. MATLAB 软件 三、实验原理 函数tf ( ) 来建立控制系统的传递函数模型,用函数printsys ( ) 来输出控制系统的函数,用函数命令zpk ( ) 来建立系统的零极点增益模型,其函数调用格式为:sys = zpk ( z, p, k )零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用feedback ( ) 函数求得。 则feedback ()函数调用格式为: sys = feedback (sys1, sys2, sign ) 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign =-1;正反馈时,sign =1;单位反馈时,sys2=1,且不能省略。 四、实验内容: 1.已知系统传递函数,建立传递函数模型 2.已知系统传递函数,建立零极点增益模型 3.将多项式模型转化为零极点模型 1 2s 2s s 3s (s)23++++=G )12()1()76()2(5)(332 2++++++= s s s s s s s s G 12s 2s s 3s (s)23++++= G )12()1()76()2(5)(3322++++++=s s s s s s s s G

“控制工程基础”大作业

“控制工程基础”工程训练大作业 ————直流电机转速控制 直流电动机是一种将直流电能转换成机械能的装置。由于其带有机械换向器,较比交流电动机结构复杂,生产运行成本较高,并有逐步被交流电动机所取缔。但是由于直流电动机具有启动转矩大,调速范围宽等优势,在轧钢机、电力机车的等方面有一定的应用。 1. 直流电动机数学模型(以他激式直流电动机为例分析直流电动机数学模型): M Ld d U Rd +-E n T L i d ·电枢回路的微分方程式: d d d d d d u dt di L R i e =++ ·机械运动方程 e d m m d C u n dt dn T dt n d T T =++22 ·已知某直流电动机调速系统,控制系统主回路与直流电动机的主要参数如下: ·计算得到此直流电动机的相关参数: 电势常数: )/(185.01000 05 .07002201-?=?-=-= mim r V n R I U C nom a nom nom e 转矩常数: mA kg C C e M .18.003.1185.003.1=== 电磁时间常数: 电动机: 主回路: 负载及电动机转动惯量: kW P nom 150=min /1000r n nom =A I nom 700=Ω =05.0a R Ω =08.0d R mH L d 2=6 =m 2 2 120m kg GD ?=全控桥式整流

s R L T d d d 025.008.01023 =?==- 机电时间常数: s C C R GD T e m d m 77.0185.018.037508.01203752=???== 直流电动机数学模型的传递函数表达形式: 177.0019.041 .5177.077.0025.0185.0111)(222++= ++?=++== s s s s s T s T T C X X s W m m d e r c 6 .52417 .284177.0019.041.5)(22++=++== s s s s s W 2. 直流电动机转速控制系统分析 · 自学MATLAB 软件; · 在MATLAB 软件平台上,以单位阶跃信号为系统的参考信号,应用时域分析 法或频域分析法对直流电动机速度控制系统进行一系列分析,分析其动、稳态性能、稳定性等; · 直流电动机速度控制系统的动、稳态性能、稳定性等分析应该借助于MATLAB 软件平台用图形进行分析。 3. 提交电脑打印的说明书一份。 4. 最后成绩占期末总成绩的6%。 【组合方案】 ⑴ I nom =650、660A 、670A 、680A 、690A 、700A 、710A 、720A 、730A 、740A 、 750A 、760A 、770A ⑵ GD 2=105kg.m 2、110 kg.m 2、115 kg.m 2、120 kg.m 2、125 kg.m 2、130 kg.m 2、135 kg.m 2、140 kg.m 2、145 kg.m 2、150 kg.m 2 组合方案: A I nom 700= 22120m kg GD ?= 时域分析: 6 .52417 .284177.0019.041.5)(2 2++=++== s s s s s W 1.在单位阶跃信号下响应 num=[284.7]; den=[1 41 5 2.6]; step (num,den) grid

相关文档
相关文档 最新文档