文档库 最新最全的文档下载
当前位置:文档库 › 注射成型工艺

注射成型工艺

注射成型工艺
注射成型工艺

1注射成型的原理、特点、应用

原理:将粒状或粉状的塑料从注射机的料斗送入配有加热装置的机筒中进行加热熔融塑化,使之成为粘流态的熔体,然后再注射机柱塞的压推作用下,以很高的流速通过机筒前端的喷嘴注入温度较低的闭合型腔中,经过一点时间的保压冷却定型后,开模分型即可从型腔中脱出具有一定形状和尺寸的塑料制件。

特点:

应用:

2注射成型的工艺过程

答:注射成型工艺过程包括成型前的准备,注射过程和塑件的后处理三部分。

(1)成型前的准备:原料外观的检查和工艺性能测定;原材料的染色及对料粉的造粒;对易吸湿的塑料进行充分的预热和干燥,防止产生斑纹、气泡和降解等缺陷;生产中需要改变产品、更换原料、调换颜色或发现塑料中有分解现象时的料筒清洗;对带有嵌件塑料制件的嵌加进行预热及对脱模困难的塑料制件选择脱模剂等。

(2)注射过程:加料、塑化、注射、冷却和脱模。注射过程又分为充模、保压、倒流、交口冻结后的冷却和脱模。

(3)塑件的后处理:退火处理、调湿处理。

3注射成型工艺参数:温度、压力、作用时间

温度控制包括料筒温度、喷嘴温度和模具温度。

料筒温度分布一般采用前高后低的原则,即料筒的加料口(后段)处温度最低,喷嘴处的温度最高。料筒后段温度应比中段、前段温度低5~10°C。对于吸湿性偏高的塑料,料筒后段温度偏高一些;对于螺杆式注射机,料筒前段温度略低于中段。螺杆式注射机料筒温度比柱塞式注射机料筒温度低10~20°C。

压力分为塑化压力和注射压力。

作用时间(只完成一次注射成型过程所需的时间)亦称成型周期。

4注射成型周期包括哪几部分?

答:注射成型周期包括(1)合模时间(2)注射时间(3)保压时间(4)模内冷却时间(5)其他时间(开模、脱模、喷涂脱模剂、安放嵌件的时间)。

合模时间是指注射之前模具闭合的时间,注射时间是指注射开始到充满模具型腔的时间,保压时间是制型腔充满后继续加压的时间,模内冷却时间是制塑件保压结束至开模以前所需要的时间,其他是是指开模,脱模,涂脱磨剂,安放嵌件的时间。

塑件的结构工艺性设计

注射模设计概论

1注射模的组成及作用

a成型零件(构成模具型腔,直接接触和容纳塑料熔体并成型制品的模具零件)通常由凹模、镶件、型芯、型环等组成,直接决定塑件形状和尺寸。

B浇注系统(用于将熔体平稳而均衡的引入型腔,并使腔内气体及时顺利排出)由主流道、分流道、浇口、冷料穴及排气结构主城

C导向机构(用于确定动模与定模合模时的相对位置)导套导柱或导向孔

D脱模机构(开模时将塑件从模具中脱出的装置)

E侧向分型或侧向抽芯机构(对带有侧凹或测孔的塑件,在被脱出模具之前,必须先进行侧向分型或侧向抽芯。

f温度调节系统(为满足注射成型工艺对模具温度的要求,注射模应设有冷却或加热系统)

g支撑零件(用来安装和固定模具中的各种功能零件)

2选择分型面的基本原则

A应使塑件从模具中取出,b不影响制品的外观c应利于制品脱模。D应确保制品的质量

E应使模具结构与注射剂相适应f应尽量与最后冲天熔体的型腔表壁重合g应尽量减小脱模斜度给制品大小端尺寸带来的差异h应尽量避免形成测孔、侧凹,以简化模具结构i分型面的位置赢有利于模具加工。

第七章

浇注系统的类型、组成及作用

答:类型分为直浇口浇注系统和横交口浇注系统;浇注系统一般由主流道、分流道,浇口和冷料穴四部分组成;作用:

1、主流道:主流道是与注射机喷嘴接触,将塑料熔体引入模具的第一段熔料通道

2、分流道:分流道是多腔注射模中主流道与浇口之间的一段流道是熔体由主流道进入型腔的过渡段,能使塑料的流向得到平稳的转换,还起着向各型腔分配塑料的作用

3、浇口:是熔融塑料经分流道注入型腔的进料口,是流道中最狭小的部分

4、冷料穴:一般开设在主流道末端,当分流道较长时,其末端应该也开设冷料穴,其主要作用是储存熔融塑料的前锋冷料,以防止其进入型腔造成塑件溶解不劳,影响塑件质量,甚至发生冷料头堵塞住浇口,造成无法冲模的现象

浇口种类:分为非限制性交口和限制性浇口

常用的浇口形式:直接交口、点交口、侧交口、扇形浇口、平缝型浇口潜伏式浇口、环形浇口、轮辐式浇口、抓型浇口、护耳浇口等

排气结构的作用:

1.防止气体阻碍塑料熔体正常快速冲模

2.防止气体被压缩产生热量使塑件局部烧焦和碳化

3.防止气体侵入塑件内造成缺陷

注射模的排气方式:

1.利用分型面排气

2.利用配合间隙排气

3.开设排气槽或排气塞排气

4.强制性排气

1成型零件包括凹模、凸模、型腔、型芯、螺纹型芯、螺纹型环、镶件等

2塑料模表面处理的方法主要有淬火、表面淬火、正火、退火、回火等,还有调质和氮化等表面处理新技术。

3塑料模成型零件的制造公差约为塑件总公差的△/3,成型零件的最大磨损量,对于中小型塑件取△/6;对于大型塑件则取△/6以下。

4塑料模的型腔刚度计算从以下三方面考虑:(1)成型过程不发生飞边(2)保证塑件精度(3)保证塑件顺利脱模。

5塑料模失效的形式在变形、断裂、腐蚀和磨损等。

6影响塑件尺寸公差的因素有成型零件的制造误差、成型零件的磨损、成型收缩率的偏差和波动、模具的安装配合误差、水平飞边厚度的波动。

7影响塑件收缩的因素可归纳为塑料的品种、塑件的特点、模具结构、成型方法及工艺条件。8塑料模的凹模结构形式有哪些?

答:凹模的结构形式有:

a.整体式凹模

b.整体嵌入式凹模

c.局部镶嵌入式凹模

d.拼块式组合凹模

定位是指保证动、定模按正确的位置闭合,以形成所要求的型腔。

为了实现合模方向唯一性原则,导柱布置通常采用两种方法:对称分布、非对称分布。

1.导向机构的作用:

A导向作用((合模时,引导动定模或模内其他零件之间准确对合,避免膜内的各种零件发生喷桩和干涉)

B定位作用(模具闭合后,保证动定模的位置的正确,确保型腔的形状和尺寸的精度,在装配过程中也起定位作用,便与装配和调整)

C承重作用(导柱课承受中间版、退料板、推件板等活动版的重力作用。

D承侧压作用(当模具存在写分型面或阶梯分型面试,在冲模过程中将产生侧压力时动定模间产生错移,影响制品的精度,承受侧压力,保证模具的正常工作。

4导柱导套的设计原则:

A注射模一般取2-4个导柱,b为确保动模和定模在装配时或合模式不致将方位弄错,导柱的布置方式常采用等直径导柱的不对称布置或不等直径导柱的对称布置方式.

C 导柱设在动模一侧(正装)可以保护型芯不受损伤,设在定模一侧(反装)便于塑料制品脱模取出,且可以防止导柱上的油污弄脏塑件。

D为保证导柱能顺利的进入导套,到主的前端应做成追星并圆弧过渡,导套配合孔的前端也应圆弧过渡。

E导套导柱的尺寸不能影响模具的合模,为此导套和导柱头部应与固定板等高,定位段前端均应凹入固定板端面1mm以上;闭合状态时,导柱的导向端面凹入它所穿过的最终模板孔端面2mm以上

F导柱导套间的配合一般采用H7/f6间隙配合,导柱和导套固定部分与模板之间一般采用H7/m6过渡配合

G用于中间板、退料板、推件板等活动板导向的导柱,除强度要求外,还要有足够的长度,以保证活动板在整个工作行程中的不脱离导柱.

H用于脱模机构的导向推板导柱和推板导套,导套由推板和推杆固定板固定,导柱可固定在支撑或动模座上,可防止型芯受力时的弯曲或折断。

5合模导向装置的作用是什么?

答案:合模导向装置的作用是:

a.导向当动模和定模或上模和下模合模时,首先是导向零件导入,引导动、定模或上、下模准确合模,避免型芯先进入凹模可能造成型芯或凹模的损坏。在推出机构中,导向零件保证推杆定向运动(尤其是细长杆),避免推杆在推出过程中折断、变形或磨损擦伤。

b.定位保证动定模或上下模合模位置的正确性,保证模具型腔的形状和尺寸的精确性,从而保证塑件的精度。

c.承受一定的侧向压力保证模具正常工作。

第十章

脱模机构的组成:推出零件、固定装置、导向机构、复位装置组成,其中推出零件由推杆、拉料杆组成,复位装置为复位杆,推出零件和复位装置由推杆固定板,推板和紧固螺钉组成,推板导柱和推板导套组成导向机构

脱模机构的分类:

按照推出动作特点分为:一次脱模、定模脱模、双脱模、顺序脱模、二次脱模,以及流道凝料的脱模机构等不同类型

按零件的类别可分为:推杆推出、推管推出、推件板推出、推块推出、利用成型零件推出和多元件综合推出

按动力来源可分为:手动脱模、机动脱模、液压或气压脱模

推出机构的设计原则:

1.6保证塑件不变形损坏

2.塑件应滞留于动模

3.保证良好的塑件外观

4.脱模机构应动作灵活可靠、制造维修更换方便

5.推出零件应有足够的强度、刚度和硬度

6.合模时应正确复位

7.脱模行程应恰当

第11章侧向分型与抽芯机构设计

斜销分型与抽芯机构具有结构简单、制造方便、安全可靠等特点。

1.注射模侧向分型与抽芯时,抽芯距一般应大于侧孔的深度或凸台高度的2~3mm。

2.在实际生产中斜导柱斜角a一般取15°~20°,最大不超过25°。

3.为了保证斜导柱伸出端准确可靠地进入滑块斜孔,则滑块在完成抽芯后必须停留在一定

位置上,为此滑块需有定位装置。

4.在塑件注射成型过程中,侧型芯在抽芯方向受到型腔内塑料熔体较大的推力作用,为了

保护斜导柱和保证塑件精度而使用楔紧块,楔紧块的斜角a′一般为a+(2~3)°。

5.在斜导柱分型及抽芯机构中,可能会产生干涉现象,为了避免这一现象发生,应尽量避

免推杆的位置与侧型芯在闭模状态下在水平方向上的投影重合或推杆或推管推出距离大于侧型芯底面。

6.斜导柱分型及抽芯机构按斜导柱大型芯设置在动、定模的位置不同有(1)斜导柱在定模,

滑块在动模(2)斜导柱在动模,滑块在定模(3)斜导柱、滑块在定模(4)斜导柱、滑块在动模四种结构形式。

7.斜导柱在定模,滑块在动模,设计这种结构时,必须避免干涉现象。

8.斜导柱与滑块都设置在定模上,为完成抽芯和脱模工作,需采用定距分型拉紧机构。

9.斜导柱与滑块都设置在动模上,这种结构可通过推出机构或

定距分型机构来实现斜导柱与滑块的相对运动,由于滑块可以不脱离斜导柱,所以可以不设置滑块定位装置。

设计注射模的推出机构时,推杆要尽量短,一般应将塑件推至高于型芯10ms左右。注射成型时,推杆端端面一般高出所在型芯或型腔表面0.05~0.1mm.

12章

模具温度调节对系统的作用

1模具温度调节对塑件质量的影响:无论用何种塑料进行注射成型,均需有一个比较适宜的成型温度范围,在此温度范围内,塑料熔体的流动性和充型性好,塑件脱模后收缩和翘曲变形小,形状与尺寸稳定,力学性能与之质量比较高。如果温度为能控制在合理的范围内,塑料熔体的充模流动和脱模后的制品质量就可能发生问题。此外由于制品几何形状和壁厚不均的影响,冲模时型腔表面与熔体接触时间不一致以及磨具各处散热条件不同,都会造成型腔表壁各处的温度不一致,从而导致各处的冷却速度有所差异,进而导致制品手说不均并产生不一定应力,对制品成型质量产生不利影响,解决这一问题,也需要采用温度调节系统来保证模具温度的均匀程度。

2模具温度调节对生产料率的影响:显然,如果不对模具温度进行调节,膜内的热量就会随着注射次数的增加而逐渐积累,使模温逐渐升高,导致减小,塑件在模内停留时间和成型周期延长,生产率下降。

2冷却系统的设计原则与常见结构:冷却水道应尽量多,截面尺寸应尽量大。合理设计冷却水道德之境,间距以及与型腔表面距离。交口处加强冷却。冷却水道出入口温差应尽量小。冷却水应沿着熟料收缩的方向设置。

3常见的冷却系统的结构:浅型腔扁平熟件,中等深度的熟件,深型腔熟件,特大型深型腔塑件,细长塑件。

4模具电加热方式:电阻丝直接加热,电热圈加热,电热棒加热。

第16章

压缩成型又称模压成型、压塑成型或压制成型。

压缩成型的基本方法:先将压缩模加热至成型温度,再将松散的塑料原料或预压锭加到敞开的模具型腔和加料腔中,然后闭合模具,对物料加热和加压使其熔融流动并充满型腔,经过化学或物理变化固化定型后脱模,既得所需形状和尺寸的塑件。

压缩成型主要用于成型热固性塑料,也可成型热塑性塑料。

压缩成型基本原理:首先将粉状、粒状、碎屑状、纤维状或预压锭的塑料原料加入高温的凹模型腔或加料腔内,然后以一定速度合模,在压力作用下通过模具对塑料加热,使其逐渐软化成熔融态,并充满整个型腔,同时塑料中的树脂与固化剂发生交联反应,熔融塑料逐渐转

变成硬化定型塑件,经过保压使制品完全定型并达到最佳性能时开模、脱模、取出塑件。压缩成型的优缺点是什么?

答:优点:1、压缩成型所用的设备和模具简单,可以使用普通压力机进行生产;

2、塑件取向组织少、取向度低,各向性能比较均匀

3、成型收缩小,变形小,且工艺成熟可靠,适合大型塑件的成型。

缺点:1、生产周期长、效率低

2、生产操作多依赖手工,不易实现自动化

3、劳动强度大,生产环境差

4、塑件经常带起飞边,高度方向尺寸精度不高

5、模具受高温高压的作用易磨损

常用于压缩成型热固性塑料有:酚醛树脂、氨基塑料、不饱和聚酯塑料、环氧塑脂等,其中酚醛树脂、氨基塑料最广泛,制品主要用于机械、电器、交通运输和日常生活等方面

压缩成型的生产工艺过程:1物料的准备 2压缩成型过程 3压后处理

物料准备:1预热和干燥 2预压

压缩成型过程:1嵌件的安防 2加料 3合模 4排气 5固化 6脱模 7模具清理压缩成型工艺参数包括:1压缩成型压力 2压缩成型温度 3压缩成型时间

压缩模的结构大部分与注射模相同,包括成型零件、加料室、导向机构、侧向分型与抽芯机构、脱模机构、加热系统六大部分组成。不同的是:1由于压缩成型直接加料,不需要浇注系统 2因为成型热固性塑料时,模具温度必须高于塑料交联温度,需要对模具加热。

压缩模的分类:按模具在压力机上的固定方法分类(1)移动式压缩模(2)半固定式压缩模

(3)固定式压缩模

按模具加料腔的形式分类:(1)溢式压缩模(2)不溢式压缩模(3)

半溢式压缩模

模具设计时,对所设计模具应对注射机的最大注射量、注射压力、锁模力进行校核以及对装模部分相关尺寸、开模行程、顶出装置等进行校核。

第17章

压注成型原理:先将固态成型物料加入到装在压注模具上的加料腔内,使其受热软化变为粘流态,然后在压力机柱塞的压力作用下,以一定的速度通过浇注系统进入闭合的模具型腔内,经保温保压一段时间后,使塑料产生交联反应而固化定型,最后开模取出塑件。

压注成型的优点有:1塑料的加热塑化在加料腔内进行,压注过程中在熔体经过狭窄分流道和浇口进入型腔时,由于摩擦作用而很快均匀地热透和硬化,因此塑料制品密度较高且较均匀 2可以生产深度较大的薄壁制品或带有深孔的制品,也可以生产形状比较复杂以及带有精细或易碎嵌件、难于使用压缩成型的制品 3溢料较压缩成型少,且飞边厚度很薄,容易去除,故容易控制制品的尺寸精度 4由于物流已经融熔融,所以需用的交联固化时间较短,致使成型周期短,生产效率高

压注成型的缺点:模具结构比较复杂,成型压力比压缩成型大,每次压注成型之后,加料器内会有一定余料,这些余料在高温下很容易交联固化,从而对下一次压注成型产生不良影响。另外压注成型与普通注射成型相似,也存在流道凝料而增加原料消耗和因取向而产生各向异性等问题。

压注成型工艺参数:1成型温度 2成型压力 3压注时间和保压时间

压注模的类型:按照压注模是否与压力机固定,分为固定式压注模和移动式压注模。按照加

料腔的特征可分为罐式压注模(移动式和固定式)和柱塞式压注模(上加料器和下加料器柱塞式压注模),罐式压注模用普通压机即可成型,柱塞式压注模通常用专用压机成型。

压注模的结构组成:1成型零件 2加料装置 3浇注系统 4加热系统 5导向机构 6侧向分型抽芯机构 7脱模机构

压注模加料室的高度是如何计算的?

答:加料室的高度按下式计算:H=V/A+(10~15)式中:H—加料室的高度,mm.

成型零件的设计包括:加料器设计、柱塞设计、浇注系统设计(主流道设计、分流道设计、浇口设计、反料槽设计)、溢流槽和排气槽设计。

常用的柱塞结构:移动式模具用柱塞、固定式模具用柱塞、专用压机的柱塞

第18章

挤出成型:又叫挤塑成型,是将塑料在旋转螺杆和机筒之间进行输送、压缩、熔融融化,定量地通过挤出机头部的口模定和型装置,生产出连续型材的一种工艺方法

挤出成型原理:塑料从料斗加入挤出成型机机筒后,在旋转螺杆的摩擦力和推动力作用下向前运动,在此过程中,塑料收到机筒的外部加热、螺杆的剪切和压缩以及塑料之间的相互摩擦作用,逐渐塑化,并通过具有一定形状的挤出磨具的口模及定型、冷却、牵引、切断等一系列辅助装置,从而获得截面形状一定的连续型材。

挤出成型工艺过程:可分为原材料的准备、塑化、挤出成型、定型冷却几个步骤

挤出成型的工艺参数:包括温度、压力、挤出速度和螺杆转速、牵引速度等

管材成型机头的结构类型:1直通式机头 2直角式机头 3旁侧式机头 4微孔流道挤管机头

管材挤出机头的组成与各部分的作用是什么?

答:管材机头是由口棒、芯棒、过滤网和过滤板、分流器和分流器支架、机头体、温度调节系统、调节螺钉组成。口棒的作用是成型塑件外表面的零件,芯棒的作用是成型塑件的内表面的饿零件,口棒和芯棒决定了塑件的截面行状。过滤网的作用是改变料流的运动方向和速度,将塑件熔体的螺旋运动转变为直线运动、过滤杂质、造成一定的压力。过滤板又称多孔板,起支承过滤网的作用。分流器的作用是使通过它的塑料熔体分流变成薄环状以平稳的进入成型区,同时进一步加热和塑化,分流器支架的作用是支承分流器及芯棒,同时也能为、分流后的塑料熔体起加强剪切混合作用。机头的作用是用来组装并支承机头的各零部件,并且与挤出机筒连接,温度调节器的作用是保证塑料熔体在适当的饿温度下流动及挤出成型的质量。调节螺钉的作用是用来调节口模与芯棒间的环隙及同轴度,以保证挤出塑件壁厚均匀。管材挤出机头有哪两种定径方法?叙述其工作原理。

答:管材挤出机头的种定径方法有外定径法和内定径法两种。其中内定径内压法外径定径,工作时,在塑料管内同入压缩空气,形成一定的内压使热的塑料管在压缩空气的作用下贴紧径套的内壁而定型,真空吸附法外径定径,工作时,将管胚与定径套间抽成真空,造成塑料管在负压作用下紧贴定径套的内壁而定型。内定径法适用于直角式机头和旁侧式机头,管材与定径套直接接触而冷却定型。

片材挤出机头有哪几种基本类型?

答案:片材挤出成型机头有鱼尾式机头、支管式机头、螺杆式机头、和衣架式机头等四种类型

第19章

气动成型:是通过气体的压力,使高弹状态的塑料坯料在模具中产生塑性变形而成为制品的成型方法。按动力源分为压缩空气吹塑成型和真空吸塑成型;按坯料和制品的形状特点分为中空容器吹塑成型和盒形制品气动成型。前者将挤出成型的管坯或注射成型的带底管坯吹胀成中空容器,后者将挤出成型的板、片坯胀成盒形制品。

吹塑成型原理:制造所需要的型坯,把型坯夹持固定到模具中,通入压缩空气吹胀型坯,使其紧贴型腔成为塑件,在压力下使塑件在模内充分冷却,然后放出制品内的压缩空气,开启模具,取出塑件。

中空吹塑成型有哪几种形式?分别叙述其成型工艺过程。

答案:1)挤吹成型首先挤出机挤出管状型坯,然后趁热将型坯夹入吹塑模具的瓣合模中,通入一定压力的压缩空气进行吹胀,使管状型坯扩张紧贴模腔,在压力下充分冷却定型,开模取出塑件。2)注吹塑型注射机将熔融塑料注入注射模内型成型坯,型坯成型后用的芯棒是壁部带微孔的空心零件,趁热将型坯连同芯棒转位至吹塑模内;向芯棒的内孔通入压缩空气,压缩空气经过芯棒微孔进入型坯内,使型坯吹胀并贴于吹塑模的性腔壁上,经保压\冷缩定型后放出空气,开模取出制件。 3)注拉吹成型把熔融塑料注入模具,快速冷却,成型出有底型坯;将型坯和瓣合螺纹型环一起移入加热装置进行加热;再将型坯移至拉伸吹塑位置。进行拉伸;进行吹塑、冷却定型成制品;将成型制件移到下一位置,瓣合螺纹型环打开,取出制品。

中空吹塑成型工艺参数:包括坯料温度、模具温度、吹塑压力和吹塑速度、吹胀比、延伸比、锁模力

在吹塑成型工艺参数中,何谓吹胀比与延伸比?

答:吹胀比是塑料制件直径与型坯直径之比,即型坯吹胀倍数。拉伸比就是指在注射拉伸吹塑中,受到拉伸部分的塑料制件长度与型坯长度之比。

吹塑模具设计时需要考虑的要点:1夹坯口 2余料槽 3排气孔槽 4模具的冷却 5模具分型面 6,模具型腔。

真空成型原理:用真空泵将封闭空腔抽成真空,借助大气压力使加热到高弹状态的板材发生塑性胀型,并贴紧模具成型面而成为塑料制品的加工方法叫真空成型。优点:设备简单,成本低,生产率高,能加工大型薄壁塑件等;缺点不宜成型不同厚壁及带嵌件的塑件。

真空成型的工艺过程:将热塑性塑料板固定在成型模具上,用辐射加热器将坯料加热至软化温度,然后在模具内抽真空,使软化的坯料紧贴在模具型面而成型,并在模中充分冷却、定型,最后脱出塑件。

真空成型设计时要考虑:脱模斜度,最小圆角半径,表面粗糙度,密封,抽气孔,模具材料压缩空气成型:通过压缩空气的压力迫使已加热软化的塑料板材在凹模中成型的加工方法。特点:可成型较厚的板材,其制品精度、表面质量也比真空成型好。

真空成型方法:凹模、凸模、双向真空成型三种方法

压缩空气成型方法:凹模成型、凸模成型

热塑性弹性体的注塑成型工艺

TPR/TPE热塑性弹性体的注塑成型工艺

TPR的干燥 根据材料的特性和供料情况,一般在成型前应对材料的外观和工艺性能进行检测。供应的粒料往往含有不同程度的水分、熔剂及其它易挥发的低分子物,特别是具有吸湿倾向的TPR含水量总是超过加工所允许的限度。因此,在加工前必须进行干燥处理,并测定含水量。在高温下TPR的水分含量要求在5%以下,甚至2%~3%,因此常用真空干燥箱在75℃~90℃干燥2小时。已经干燥的材料必须妥善密封保存,以防材料从空气中再吸湿而丧失干燥效果,为此采用干燥室料斗可连续地为注塑机提供干燥的热料,对简化作业、保持清洁、提高质量、增加注射速率均为有利。干燥料斗的装料量一般取注塑机每小时用料量的2.5倍。 TPR染色 以SBC为基础的TPE在颜色上优于大多数其它TPR材料。所以,它们只需要较少量的色母料就可达到某种特定的颜色效果,而且所产生的颜色比其它TPR更为纯净。一般说来,色母料的粘度应该比TPR的粘度低,这是因为TPR的熔融指数比色母料高,这将有利于分散过程,使得颜色分布更加均匀。 对于以SBS为基础的TPE,推荐采用聚苯乙烯类载色剂。 对于以较硬的SEBS为基础的TPR,推荐采用聚丙烯(PP)载色剂。 对于以较软的SEBS为基础的TPR,可采用低密度聚乙烯或乙烯醋酸乙烯共聚物。对于较软的品种,不推荐采用PP载色剂,因为复合材料的硬度将受到影响。 对于某些包胶注塑的应用,使用聚乙烯(PE)载色剂可能会对与基体的粘接力产生不利的影响。 注塑前需要清洗料筒 新购进的注塑机初用之前,或者在生产中需要改变产品、更换原料、调换颜色或发现塑料中有分解现象时,都需要对注塑机机筒进行清洗或拆洗。 清洗机筒一般采用加热机筒清洗法。清洗料一般用塑料原料(或塑料回收料)。对于TPR材料,可用所加工的新料置换出过渡清洗料。TPR的成型温度 在加工注塑过程中,温度的设定是否准确是制品外观和性能好坏的关键。下面是进行TPR加工注塑时温度设定的一些建议。 进料区域的温度应设定得相当低,以避免进料口堵塞并让夹带的空气逸出。当使用色母料时为了改善混合状态,应将过渡区域的温度设定

注射成型工艺

1注射成型的原理、特点、应用 原理:将粒状或粉状的塑料从注射机的料斗送入配有加热装置的机筒中进行加热熔融塑化,使之成为粘流态的熔体,然后再注射机柱塞的压推作用下,以很高的流速通过机筒前端的喷嘴注入温度较低的闭合型腔中,经过一点时间的保压冷却定型后,开模分型即可从型腔中脱出具有一定形状和尺寸的塑料制件。 特点: 应用: 2注射成型的工艺过程 答:注射成型工艺过程包括成型前的准备,注射过程和塑件的后处理三部分。 (1)成型前的准备:原料外观的检查和工艺性能测定;原材料的染色及对料粉的造粒;对易吸湿的塑料进行充分的预热和干燥,防止产生斑纹、气泡和降解等缺陷;生产中需要改变产品、更换原料、调换颜色或发现塑料中有分解现象时的料筒清洗;对带有嵌件塑料制件的嵌加进行预热及对脱模困难的塑料制件选择脱模剂等。 (2)注射过程:加料、塑化、注射、冷却和脱模。注射过程又分为充模、保压、倒流、交口冻结后的冷却和脱模。 (3)塑件的后处理:退火处理、调湿处理。 3注射成型工艺参数:温度、压力、作用时间 温度控制包括料筒温度、喷嘴温度和模具温度。 料筒温度分布一般采用前高后低的原则,即料筒的加料口(后段)处温度最低,喷嘴处的温度最高。料筒后段温度应比中段、前段温度低5~10°C。对于吸湿性偏高的塑料,料筒后段温度偏高一些;对于螺杆式注射机,料筒前段温度略低于中段。螺杆式注射机料筒温度比柱塞式注射机料筒温度低10~20°C。 压力分为塑化压力和注射压力。 作用时间(只完成一次注射成型过程所需的时间)亦称成型周期。 4注射成型周期包括哪几部分? 答:注射成型周期包括(1)合模时间(2)注射时间(3)保压时间(4)模内冷却时间(5)其他时间(开模、脱模、喷涂脱模剂、安放嵌件的时间)。 合模时间是指注射之前模具闭合的时间,注射时间是指注射开始到充满模具型腔的时间,保压时间是制型腔充满后继续加压的时间,模内冷却时间是制塑件保压结束至开模以前所需要的时间,其他是是指开模,脱模,涂脱磨剂,安放嵌件的时间。 塑件的结构工艺性设计

金属粉末注射成型工艺讲解

新疆农业大学机械交通学院 2015-2016 学年一学期 《金属工艺学》课程论文 2015 年 12 月 班级机制136 学号220150038 姓名侯文娜 开课学院机械交通学院任课教师高泽斌成绩__________

金属粉末注射成型工艺概论 作者:侯文娜指导老师:高泽斌 摘要:金属注射成形时一种从塑料注射成形行业中引申出来的新型粉末冶金近净成型技术,这种新的粉末冶金成型方法称作金属注射成型。 关键词:金属粉末注射成型 一:金属粉末注射成型的概念和原理、 粉末冶金不仅是一种材料制造技术,而且其本身包含着材料的加工和处理,它以少无切削的特点越来越受到重视,并逐步形成了自身的材料制备工艺理论和材料性能理论的完整体系。现代粉末冶金技术不仅保持和大大发展了其原有的传统特点(如少无切削、少无偏析、均匀细晶、低耗、节能、节材、金属非金属及金属高分子复合等),而且已发展成为支取各种高性能结构材料、特种功能材料和极限条件工作材料、各种形状复异型件的有效途径。近年来,粉末冶金技术最引人注目的发展,莫过于粉末注射成型(MIN)迅速实现产业化,并取得突破性进展。 金属注射成型(Metal injection Molding),简称MIM,是传统的粉末冶金工艺与塑料成型工艺相结合的新工艺,是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科交叉的产物,是粉末冶金和精密陶瓷成型加工领域中的新技术,利用磨具可注射成型,快速制造高密度、高精度、复杂形状的结构零件,能够快速准确的将设计思想转变为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。 其注射机理为:通过注射将金属粉末与粘结剂的混合物以一定的温度,速度和压力注入充满模腔,经冷却定型出模得到一定形状、尺寸的预制件,再脱出预制件中的粘结剂并进行烧结,可得到具有一定机械性能的制件。其成型工艺工艺流程如下:金属粉末,有机粘接剂—混料—成型—脱脂—烧结—后处理—成品。 二:金属粉末注射成型工艺流程 2.1金属粉末的选择:首先根据产品的技术要求和使用条件选择粉末的种类,然后决定粉末颗粒尺寸。金属粉末注射成型所用的粉末颗粒尺寸一般在 0.5-20μm;从理论上讲,粉末颗粒越细,比表面积也越大,颗粒之间的内聚力也越大,易于成型和烧结。而传统的粉末冶金工艺则采用大于40μm的较粗粉末。粉末的选择要有利于混炼、注射形成、脱脂和烧结,而这往往是互相矛盾的,对于MIM的原料粉末要求很细,MIM原料粉末价格一般较高,有的升值达到传统PM 粉末价格的10倍,这是目前限制MIM技术广泛应用的一个关键因素,目前生产MIM用原料粉末的方法主要有超高压水雾化法、高压气体雾化法等。 2.2粘接剂;粘接剂是MIM技术的核心,在MIM中粘接剂具有增强流动性

注塑成型工艺条件调试规定

注塑成型工艺条件调试规定 1.0目的 制定本规定的目的,是对注塑工艺参数在设置、变更和记录、监督过程中可以标准化操作的部分进行规范,提高工艺参数的稳定性和再现性,减少注塑车间在换模、换料的生产切换过程中材料的损耗与工时的浪费,达到提高生产效率、稳定产品品质的目的。 2.0范围 适用注塑车间注塑机工艺参数的设置与管理 3.0职责 3.1调机员:正确的使用标准成型工艺,并对存在的问题及时向领班反馈,配合领班完成对异常情 况的处理。 3.2领班:正确的使用标准成型工艺,当因机器、模具、材料、运水等原因原标准成型工艺参数 不适用时,根据实际情况作出相应改变以保证生产的进行并配合在工艺改变后IPQC的品质确 认工作。并将工艺变更情况向主管汇报。 3.3主管:发布和认可标准成型工艺,确认工艺变更的正确性并完成相应记录。对不正确的工艺进 行修改并将原因告示领班和技术员,确保生产是在正常和经济的状态下进行。 4.0标准成型工艺参数的设置和调整的一般原理和注意事项 4.1设置成型参数的一般原理和注意事项。 4.1.1合模参数的设定。合模一般分为四段。 4.1.1.1慢速开始:为使机器平稳启动、合模应以慢速开始。 4.1.1.2快速到位:动模板在合模油缸推动下快速运动,以缩短工作周期。 4.1.1.3低压保护:油缸低压低速运动,以保护模具安全。对于三板模或有斜顶、铲机 结构的模具,动、定模接触时应适当降低速度和压力。 4.1.1.4高压合模:以所需的合模力锁紧模具。应选用最低而又不使成品产生毛边的合 模力,既能提高效率又能延长机器模具寿命。 4.1.2开模参数的设定。开模一般分为三段。 4.1.2.1慢速开模:为不使产品撕裂、变形,应以慢速开模开始。 4.1.2.2快速到位:模具一经打开,应转为快速开模到位,以缩短工作周期。但对于三 板模具、有斜顶滑块的模具,在动、定模分离时应适当设定速度和压力,减轻 对模具和机器的冲击和降低噪音。 4.1.2.3慢速终止:将到终点时,为防止惯性产生冲击,应由中速转为慢速终止。 4.1.3顶出和顶退参数的设置。要注意提高生产效率、保护模具和降低噪音。 4.1.3.1顶出应选用能使模具顶出机构正稳运动的最高速度。必须保证产品不能出现变 形、白化、撕裂等顶出动作导致的缺陷。 4.1.3.2顶退应选用能使顶出机构平稳复位的较低压力和较高速度。

MIM金属粉末注射成形工艺介绍与对比

1 一、MIM 概念及工艺流程 金属粉末注射成形是传统粉末冶金技术与塑料注射成形技术相结合的高新技术,是小型复杂零部件成形工艺的一场革命。它将适用的技术粉末与粘合剂均匀混合成具有流变性的喂料,在注射机上注射成形,获得的毛坯经脱脂处理后烧结致密化为成品,必要时还可以进行后处理 生产工艺流程如下 配料→混炼→造粒→注射成形→化学萃取→高温脱粘→烧结→后处理→成品 二、MIM 技术特点 金属粉末注射成形结合了粉末冶金与塑料注射成形两大技术的优点,突破了传统金属粉末模压成形工艺在产品形状上的限制,同时利用塑料注射成形技术能大批量、高效率生产具有复杂形状的零件:如各种外部切槽、外螺纹、锥形外表面、交叉通孔、盲孔、凹台、键销、加强筋板,表面滚花等 ·MIM 技术的优点 a.直接成形几何形状复杂的零件,通常重量0.1~200g b.表面光洁度好、精度高,典型公差为±0.05mm c.合金化灵活性好,材料适用范围广,制品致密度达95%~99%,内部组织均匀,无内应力和偏析 d.生产自动化程度高,无污染,可实现连续大批量清洁生产 ·MIM 与精密铸造成形能力的比较 ·MIM 与其他成形工艺的比较

三、MIM常用材质 四、几种MIM材料的基本性能 五、MIM产品典型应用领域 航空航天业:机翼铰链、火箭喷嘴、导弹尾翼、涡轮叶片芯子等 汽车业:安全气囊组件、点火控制锁部件、涡轮增压器转子、座椅部件、刹车装置部件等 电子业:磁盘驱动器部件、电缆连接器、电子封装件、手机振子、计算机打印头等 军工业:地雷转子、枪扳机、穿甲弹心、准星座、集束箭弹小弹等 日用品:表壳、表带、表扣、高尔夫球头和球座、缝纫机零件、电动玩具零件等 机械行业:异形铣刀、切削工具、电动工具部件、微型齿轮、铰链等 医疗器械:牙矫形架、剪刀、镊子、手术刀等 六、适合材质 不锈钢Fe合金Fe-Ni-Co合金钨钛合金工具钢高速钢硬质合金氧化铝氧化锆 2

(新)新型注射成型技术_

新型注射成型技术 1. 共注射成型(芯层注射成型) 采用共注射成型有助于观察到制件中独特的结构。塑料“甲”先注射充入部分型腔,然后塑料:“乙”紧跟着“甲”注射进入型腔并保持初始推动流动压力场。根据表皮区和芯层的尺寸大小,按正确的比例关系计量出“甲”和“乙”的用料量,可制得1个内芯层为“甲”外表完全由“乙”包裹的制件。 另外,在化妆品应用方面,有小部分的表皮“甲”料放在“乙”料之后注射,以使浇口部分的表皮能完全闭合。用2种不同颜色的树脂进行共注射成型的制件,形成一个容易区分的表皮和芯层区间(认识到所有的注射成型件中存在有类似的表皮和芯层这一点非常重要。)如果没有先进的检测技术,通常难以区分表皮—芯层的区域及其分界面。共注射成型并非一门新的工艺技术。英国ici公司早在70年代就开始应用这一技术,并取得了包括基础理论,生产产品及机器设备等几项专利。现普遍采用的ici生产工艺类似“三明治模塑”,由于模塑外层表皮的材料与中间或芯层的材料不同,因此两种材料必须有一定的相容性,并且芯层材料要求具有可高度辐射、发泡成型和100%回收利用等性能。选用材料应经多种选择比较而定。共注射成型工艺问世15年后,才真正得以普及推广。一种采用共注射成型的厚齿输制

作横截面。 表皮材料是非填充尼龙,而芯层材料是玻璃-珠料-填充尼龙。芯层中玻璃珠粒料收缩率极低,具有良好的尺寸稳定性。尼龙表皮赋予齿轮齿牙良好的润滑性并避免了珠粒料容易产生的磨蚀问题。 基于共注射成型的基础理论目前已开发出几种新型加工改进方法。例如,模内“上漆”和气体辅助模塑成型扩大了采用这种工艺的范围。模内上漆加工方法是采用低分子量聚合物作为外层材料,而气体辅助模塑成型是采用氮气或另一种气体作为芯层(或部分芯层)材料。随着产品设计与生产加工设备的不断完善改进,将满足各种新应用和新技术的需求,共注射技术必将成为富有潜力的工业化大规模生产工艺方法。 2. 气体辅助注射成型 气体辅助注射成型技术主要是为了减轻重量和(或)节省循环时间等而逐渐发展起来的。 通常的共注射成型中,首先注射外层材料,并只部分填充型腔。然后气体通过喷嘴注射或直接进入模腔内,模腔制件的芯层部位。液化气体也可注射到待成型制件的芯层部分。一般而言,在芯层内气体压力推动熔料向前流动,直至完全充满型腔,并防止制件表层在固化阶段从模腔壁凹下,相连的表皮层紧贴着模腔壁,气体则保存在模塑制件的芯层区间。由于注入气体的压力高于大气压力,故此该气体的压力必须在制件顶出之前降低,以避免当起限位作用的模腔壁移动时,

金属陶瓷粉末注射成型技术MIM

金属(陶瓷)粉末注射成型技术 (Metal Powder Injection Molding,简称MIM) 是一项新的制造技术,美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并得到迅速推广。特别是八十年代中期,这项技术实现产业化以来更获得突飞猛进的发展,每年都以惊人的速度递增。到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工业的推广,这些公司包括有太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工--爱普生、大同特殊钢等。目前日本有四十多家专业从事MIM产业的公司,其MIM工业产品的销售总值早已超过欧洲并直追美国。日本未来3至5年MIM产业的市场预计达20亿美元。据不完全统计,1995年全世界MIM技术制作的销售额已突破4亿美元,预计2010年MIM 潜在市场为30亿美元。到目前为止,全球已有百余家公司从事该项技术的产品开发、研制与销售工作,MIM技术也因此成为新型制造业中最为活跃的前沿技术领域,被世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向。 中国MIM技术的研究始于1985年,由中国兵器工业五三研究所承担该课题,当时列入国家[七五]军用新材料重点预研计划,经十余年的探索,技术已基本成熟,并于1996年与上海金珠东方雪域企业有限公司合作成立了山东金珠粉末注射制造有限公司。经过几年的发展,山东金珠公司完成了MIM技术由试验室水平向产业化发展的过程,应用技术更加成熟,能够大批量生产高精尖的军用、民用产品,制品水平已接近世界同期水平,并连续三年实现产值翻番,企业的发展呈现出良好的态势。 近年来,国内努力平衡对日贸易逆差大,掌握关键性零部件的制造技术和提升制造能力,一直是政府协助业者的重要工作之一。本文对MIM技术、生产工艺过程、工艺特点、制品

材料成型加工与工艺学-习题解答(9-10-11)备课讲稿

材料成型加工与工艺学-习题解答(9-10- 11)

第八章注射成型 2.塑料挤出机螺杆与移动螺杆式注射机的螺杆在结构特点和各自的成型作用上有何异同? (p278)注射螺杆与挤出螺杆在结构上有何区别: (a)注射螺杆长径比较小,约在10~15之间。 (b)注射螺杆压缩比较小,约在2~5之间。 (c) 注射螺杆均化段长度较短,但螺槽深度较深,以提高生产率。为了提高塑化量,加料段较长,约为螺杆长度的一半。 (d)注射螺杆的头部呈尖头形,与喷嘴能有很好的吻合,以防止物料残存在料筒端部而引起降解。 (p221)挤出机螺杆成型作用是对物料的输送、传热塑化塑料及混合均化物料。 移动螺杆式注射机的螺杆成型作用是对塑料输送、压实、塑化及传递注射压力。是间歇式操作过程,它对塑料的塑化能力、操作时的压力稳定以及操作连续性等要求没有挤出螺杆严格。 3.请从加热效率出发,分析柱塞是注射机上必须使用分流梭的原因? (p278)分流梭的作用是将料筒内流经该处的物料成为薄层,使塑料流体产生分流和收敛流动,以缩短传热导程。既加快了热传导,也有利于减少或避免塑料过热而引起热分解现象。同时塑料熔体分流后,在分流梭与料筒间隙中流速增加,剪切速度增大,从而产生较大的摩擦热,料温升高,黏度下降,使塑料进一步的混合塑化,有效提高柱塞式注射机的生产量及制品质量。

6.试分析注射成型中物料温度和注射压力之间的关系,并绘制成型区域示意图。 (p298) 料温高时注射压力减小;反之,所需的注射压力加大。 8.试述晶态聚合物注射成型时温度(包括料温和模温)对其结晶性能和力学性能的影响。 (p297)结晶性塑料注射入模具后,将发生向转变,冷却速率将影响塑料的结晶速率。缓冷,即模温高,结晶速率大,有利结晶,能提高制品的密度和结晶度,制品成型收缩性较大,刚度大,大多数力学性能较高,但伸长率和充及强度下降。反过来,骤冷所得制品的结晶度下降,韧性较好。但在骤冷的时不利大分子的松弛过程,分子取向作用和内应力较大。中速冷塑料的结晶和曲性较适中,是用得最多的条件。实际生产中用何种冷却速度,还应按具体的塑料性质和制品的使用性能要求来决定。例如对于结晶速率较小的PET塑料,要求提高其结晶度就应选用较高的模温。

成型工艺流程及条件介绍

成型工艺流程及条件介绍第一節成型工艺 1.成型工艺参数类型 (1). 注塑参数 a.注射量 b.计量行程 c.余料量 d.防诞量 e.螺杆转速 f.塑化量 g.预塑背压 h.注射压力和保压压力 i.注射速度 (2)合模参数 a.合模力 b.合模速度

c.合模行程. d.开模力 e.开模速度 f.开模行程 g.顶出压力 h.顶出速度 i.顶出行程 2.温控参数 a.烘料温度 b.料向与喷嘴温度 c.模具温度 d.油温 3.成型周期 a.循环周期 b.冷却时间 c.注射时间

d.保压时间 e.塑化时间 f.顶出及停留时间 g.低压保护时间 成型工艺参数的设定须根据产品的不同设置. 第二节成型条件设定 按成型步骤:可分为开锁模,加热,射出,顶出四个过程. 开锁模条件: 快速段中速度 低压高压速度 锁模条件设定: 1锁模一般分: 快速→中速→低压→高压 2.快锁模一般按模具情况分,如果是平面二板模具,快速锁模段可用较快速度,甚至于用到特快,当用到一般快速时,速度设到55-75%,完全平面模可设定到

80-90%,如果用到特快就只能设定在45-55%,压力则可设定 于50-75%,位置段视产品的深浅(或长短)不同,一般是开模 宽度的1/3. 3.中速段,在快速段结束后即转换成中速,中速的位置一般 是到模板(包括三板模,二板模)合在一块为止,具体长度应 视模板板间隔,速度一般设置在30%-50%间,压力则是 20%-45%间. 4.低压设定,低速设定一般是在模板接触的一瞬间,具体位 置就设在机台显示屏显示的一瞬间的数字为准,这个数字一般是以这点为标准,,即于此点则起不了高压,高于此点则大,轻易起高压.设定的速度一般是15%-25%,视乎不同机种而定,压力一般设定于1-2%,有些机则可设于5-15%,也是视乎不同机种不同. 5.高压设定,按一般机台而言,高压位置机台在出厂时都已 作了设定,相对来讲,是不可以随便更改的,比如震雄机在 50P.速度相对低压略高,大约在30-35%左右,而压力则视乎 模具而定,可在55-85%中取,比如完全平面之新模,模具排气良好,甚至于设在55%即可,如果是滑块较多,原来生产时毛 边也较多,甚至于可设在90%还略显不足. 加热工艺条件设定

国外高分子材料新型注射成型技术

国外高分子材料新型注射成型技术 发布时间:2004-3-21 14:51:09 浏览数:5引言 在21世纪已经到来的今天,高分子材料已经成为支持人类文明社会发展的科学进步的重要物质基础。众所周知,高分子材料技术是以合成技术、改性技术、形体设计技术、成型加工技术、应用技术和回收再利用技术为基础的综合技术,但由于高分子材料是为了制造各种制品而存在的,因此从应用的角度来讲,以对其进行形状赋予为主要目的的成型加工技术有着重要的意义。高分子材料的主要成型方法有挤出成型、注射成型、吹塑成型、压延成型、压制成型等等,其中注射成型因可以生产和制造形状较为复杂的制品,在高分子材料的成型加工方法中一直占有极其重要的位置。 本文主要参考近年来发表的日本有关成型加工方面的文献,着眼于高分子材料注射成型技术的最新发展动向,概要地介绍若干种用途较为广泛的注射成型新技术的原理。 气体辅助成型法(GAM,Cas Assist Molding) GAM法的要点是在树脂充填(不完全充填)完成后,利用型腔内树脂冷却前的时间差,将具有一定压力的惰性气体迅速地注入成型品内部,此时气体可在成品壁较厚的部分形成空腔,这样即能使成品壁厚变得均匀,防止产生表面缩痕或收缩翘曲,使制品表面平整光滑。 GAM法近年来发展较快,国外很多公司为了进行专利回避,相继开发了具有不同特征的新方法,如日本旭化成公司的AGI法(Asahi Gas Iniection)、三菱工程塑料公司的CINPRES法(Controlled Internal Pressure)及出光石油化学公司的GIM法(Gas Injection Molding)等等,但各方法原理完全相同,如AGI法是将惰性气体(一般为N2)喷嘴设在注射机料口喷嘴内部,而CINPRES法是将惰性气体喷嘴设置在模具上,且可以是1个也可以是几个。 注射压缩成型法(IPM,Injection Press Molding) IPM法技术由日本三菱重工业、名古屋机械制作所、出光石油化学等公司相继开发成功。有整体压缩法和部分压缩法之分。整体压缩法成型是首先在保持模具一定开度的状态下合模,将树脂充填(不完全充填)进去,而后利用油缸压缩使模具的动模移动至完全合模的情况下充填树脂(不完全充填),压缩不是靠整个动模移动,而是靠动模板上制品赋形面部分(可以是全体也可以是一部分)的移动而实现的。注射压缩成型法的优点是可以采用较低的注射压力成型薄形制品或需较大成型压力的制品,一般适用流动性较差且薄壁的制品,如高分子量PC或纤维填充工程塑料等。

金属粉末注射成型技术

编订:__________________ 单位:__________________ 时间:__________________ 金属粉末注射成型技术 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-3132-56 金属粉末注射成型技术 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是将现代塑料喷射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成形技术。其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃)用喷射成形机注入模腔内固化成形,然后用化学或热分解的方法将成形坯中的粘结剂脱除,最后经烧结致密化得到最终产品。与传统工艺相比,具有精度高、组织均匀、性能优异,生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。因此,国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21

注塑成型工艺流程及工艺参数

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 注塑成型工艺流程及工艺参数 塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。如图1-2所示,高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。λ 低速填充。如图1-3所示,热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。λ 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成

尼龙 注塑成型工艺

华侨大学 课程名称:增强增韧尼龙66汽车专用料姓名:彭儒 学号:9 专业:08高分子二班 任课教师:钱浩

前言: 尼龙是结晶型塑料,品种颇多,已达到130多种,应用于注塑加工的有尼龙6、尼龙66、尼龙610、尼龙1010以及共聚性尼龙、超韧性尼龙、玻璃纤维增强尼龙、矿物增强尼龙等等。世界市场中,应用量最大的是尼龙66。 尼龙最早在1889年首先由Gabriel和Maass 两人合成制得,但系统的研究并最终实现工业化实在1929年,由美国杜邦公司的Carothers着手进行的。1931年Carothers申请了第一篇尼龙专利,1935年首先制得尼龙66,1939年实现工业化。 尼龙66的应用领域一般在汽车、电子电器、化工设备、机械设备等方面。从最终用途看,汽车行业消耗的尼龙66占第一位,电子电器占第二位。大约有88%的尼龙66通过注射成型加工成各种制件,约12%的尼龙66则通过挤出、吹塑等成型加工成相应的制品。 由于尼龙66优良的耐热性、耐化学药品性、强度和加工方便等,因而在汽车工业得到了大量应用,目前几乎已能用于汽车的所有部位,如发动机部位,电器部位和车体部位。发动机部位包括进气系统和燃油系统,如发动机气缸盖罩、节气门、空气滤清器机器外壳,车用空气喇叭、车用空调软管、冷却风扇及其外壳、进水管、刹车油罐及灌盖,等等。车体部位零部件有:汽车挡泥板、后视镜架、保险杠、仪表盘、行李架、车门手柄、雨刷支架、安全带扣搭、车内各种装饰件等等。车内电器方面如电控门窗、连接器、保鲜盒、电缆扎线等。 工艺特点:

⑴吸水性尼龙66较易吸湿,如果长时间暴露在空气下,会吸收大气中的水分。吸水后会发生体积膨胀,影响制品的尺寸精度,如在注塑前吸收过量的水分时,其制作的外国外观和力学性质都会受损。 ⑵结晶性尼龙66为结晶性高聚物,一般在20%~30%之间。结晶度的高低与性能有关,结晶度高,拉伸强度、耐磨性、硬度、润滑性等性能有所提高,热膨胀系数和吸水性趋于下降。 ⑶热稳定性在熔点以上温度,约254℃,水分子会与尼龙66发生化学反应,使聚合物水解或裂解,使尼龙66变色,树脂分子量及其韧性相对减弱,流动性增大,不单带来加工上的困难,而且会对制品性能造成损害。注塑时喷嘴流涎,制件飞边严重。聚合物裂解产生的气体和从空气中吸收的水分,共同夹击制件,轻则在表面形成不光洁、银丝、斑纹、微孔、气泡,重则反生熔体膨胀无法成型或成型后机械强度下降。最后,经过这种水解裂解的尼龙,其性能完全不可还原,即使重新干燥也不能再次使用。 干燥好的原料如果随便在空气中露置,会迅速在空气中吸收水分而使干燥效果丧失殆尽。即使在加盖的机台料斗内,存放的时间也不宜太长,一般雨天不超过1h,晴天限制在3h之内。 尼龙66熔融温度虽然高,但当达到熔点后,其粘度远较一般热塑性塑料如聚苯乙烯等低很多,故成型时流动性不成问题,尼龙66的流变特性是剪切速率增加时其表观粘度下降不突出,加之熔融温度范围较窄,在3~5℃之间,所以高的料温无疑是顺利冲模的保证,而不在乎高的注射速度和压力。 ⑷流动性尼龙66熔体的粘度低,流动性大,容易冲模成型,对薄壁制品更是如此,而且制品在模内能迅速固化,模塑周期短。

金属成型新工艺:MIM(金属粉末注射成型)工艺详细介绍

金属成型新工艺:MIM(金属粉末注射成型)工艺详细介绍 小编备注:结合国内目前MIM现状补充了一些资料。转载请注明文章来源:金属注射成型网https://www.wendangku.net/doc/0d9336175.html, 1 MIM是一种近净成形金属加工成型工艺 MIM (Metal injection Molding )是金属注射成形的简称。是将金属粉末与其粘结剂的增塑混合料注射于模型中的成形方法。它是先将所选金属粉末与粘结剂进行混炼,然后将混合料进行制粒再注射成形所需要的形状胚料,然后通过高温烧结,得到具有强度的金属零件。 2 MIM工艺流程步骤 MIM流程结合了注塑成型设计的灵活性和精密金属的高强度和整体性,来实现极度复杂几何部件的低成本解决方案。MIM流程分为四个独特加工步骤(混合、成型、脱脂和烧结)来实现零部件的生产,针对产品特性决定是否需要进一步的机械加工或进行表面处理. 混合

精细金属粉末和热塑性塑料、石蜡粘结剂按照精确比例进行混合。混合过程在一个专门的混合设备中进行,加热到一定的温度使粘结剂熔化。大部分情况使用机械进行混合,直到金属粉末颗粒均匀地涂上粘结剂冷却后,形成颗粒状(称为原料),这些颗粒能够被注入模腔。 CNPIM备注:混炼是MIM工艺中非常重要的一道工序。目前混炼有几种体系,不同的添加剂,后面对应需要不同的脱脂方法将添加剂去除。最常用的蜡基和塑基,分别对应热脱脂和催化脱脂。 成型 注射成型的设备和技术与注塑成型是相似的。颗粒状的原料被送入机器加热并在高压下注入模腔。这个环节形成(green part)冷却后脱模,只有在大约200°c的条件下使粘结剂熔化(与金属粉末充分融合),上述整个过程才能进行,模具可以设计为多腔以提高生产率。模腔尺寸设计要考虑金属部件烧结过程中产生的收缩。每种材料的收缩变化是精确的、已知的。 脱脂

金属粉末注射成型技术.

金属粉末注射成型(Metal Powder Injection Molding,简称MIM技术是将现代塑料注射成型技术引入粉末冶金领域而形成的一门新型粉末冶金近净成形技术。其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃用注射成型机注入模腔内固化成型,然后用化学或热分解的方法将成型坯中的粘结剂脱除,最后经烧结致密化得到最终产品。与传统工艺相比,MIM具有精度高、组织均匀、性能优异、生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21世纪的成形技术”。 MIM技术由美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并使其得到迅速推广,特别是在八十年代中期该技术实现产业化以来,更获得了突飞猛进的发展,产量每年都以惊人速度递增。到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工艺的推广应用,这些公司包括太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工-爱普生、大同特殊钢等。目前日本有四十多家专业从事MIM产业的公司,其MIM产品的销售总值早已超过欧洲并直追美国。MIM技术已成为新型制造业中最为活跃的前沿技术领域,是世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向。 金属粉末注射成型技术是塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科渗透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速、准确地将设计思想物化为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。该工艺技术不仅具有常规粉末冶金工艺工序少、无切削或少切削、经济效益高等优点,而且克服了传统粉末冶金工艺制品材质不均匀、机械性能低、薄壁成型困难、结构复杂等缺点,特别适合于大批量生产小型、复杂以及具有特殊要求的金属零件。

注射成型工艺过程

注射成型工艺过程—注射成型过程 各种注塑机完成注射成型的动作程序可能不完全相同,但其成型的基本过程还就是相同的。现以螺杆式注塑机为例予以说明。从料斗落入料筒中的塑料,随着螺杆的转动沿着螺杆向前输送。在这一输送过程中,物料被逐渐压实,物料中的气体由加料口排除。 在料筒外加热与螺杆剪切热的作用下,物料实现其物理状态的变化,最后呈黏流态,并建立起一定的压力。当螺杆头部的熔料压力达到能克服注射油缸活塞退回时的阻力(所谓背压)时,螺杆便开始向后退,进行所谓计量。与此同时,料筒前端与螺杆头部熔料逐渐增多,当达到所需要的注射量时(即螺杆退回到一定位置时),计量装置撞击限位开关,螺杆即停止转动与后退。至此,预塑完毕。同时,合模油缸中的压力油推动合模机构动作,移动模板使模具闭合。继而,注射座前移,注射油缸充入压力油,使油缸活塞带动螺杆按要求的压力与速度将熔料注入到模腔内。当熔料充满模腔后,螺杆仍对熔料保持一定的压力,即所谓进行保压,以防止模腔中熔料的反流,并向模腔内补充因制品冷却收缩所需要的物料。模腔中的熔料经过冷却,由黏流态回复到玻璃态,从而定型,获得一定的尺寸精度与表面粗糙度。当完全冷却定型后,模具打开,在顶出机构的作用下,将制件脱出,从而完成一个注射成型过程,参瞧下图。

图注射成型过程 1—合模注射;2—保压;3—螺杆预塑、制品顶出 按照习惯,我们把一个注射成型过程称为一个工作循环,而该循环由合模算起,为了明了起见,我们用下面工艺流程图表示。 合模→注射→保压(螺杆预塑)→冷却→开模→顶出制品→合模 注射成型过程包括加料、加热塑化、闭模、加压注射、保压、冷却定型、启模、制件取出等工序。其中,加热塑化、加压射、冷却定型就是注射过程中三个基本步骤。 ①加料。每次加料量应尽量保持一定,以保证塑化均匀一致,减少注射成型压力传递的波动。 ②塑化。塑料在进入模腔之前要达到规定的成型温度,提供足够数量

反应注射成型技术

反应注射成型技术 反应注射成型起源于聚氨酯塑料。随着工艺技术的进步,该工艺也扩展到了多种材料的加工中。与此同时,为了拓宽RIM技术的应用领域,特别是在汽车行业中的应用,该工艺还引入了纤维增强技术。 RIM简介 反应注射成型(简称“RIM”)是指将具有高化学活性、相对分子质量低的双组分材料经撞击混合后,在常温低压下注入密闭的模具内,完成聚合、交联和固化等化学反应并形成制品的工艺过程。这种将聚合反应与注射成型相结合的新工艺,具有物料混合效率高、流动性好、原料配制灵活、生产周期短及成本低的特点,适用于大型厚壁制品生产,故而受到了世界各国的重视。 RIM最早仅用于聚氨酯材料,随着工艺技术的进步,RIM也可应用于多种材料(如环氧、尼龙、聚脲及聚环戊二烯等)的加工。用于橡胶与金属成型的RIM工艺是当前研究的热点。为了拓宽RIM的应用领域,提高RIM制品的刚性与强度,使之成为结构制品,RIM技术得到了进一步的发展,出现了专门用于增强型制品成型的增强反应注射成型(RRIM)和专门用于结构制件成型的结构反应注射成型(SRIM)技术等。RRIM和SRIM成型工艺原理与RIM 相同,不同之处主要在于纤维增强复合材料制品的制备。目前,典型的RIM制品有汽车保险杠、挡泥板、车体板、卡车货箱、卡车中门和后门组件等大型制品。它们的产品质量比SMC产品好,生产速度更快,所需二次加工量更小。 RIM成型工艺 1.工艺过程 RIM工艺过程为:单体或预聚物以液体状态经计量泵以一定的配比进入混合头进行混合。混合物注入模具后,在模具内快速反应并交联固化,脱模后即为RIM制品。这一过程可简化为:贮存→计量→混合→充模→固化→顶出→后处理。 2.工艺控制 (1)贮存。RIM工艺所用的两组分原液通常在一定温度下分别贮存在2个贮存器中,贮存器一般为压力容器。在不成型时,原液通常在0.2~0.3 MPa的低压下,在贮存器、换热器和混合头中不停地循环。对聚氨酯而言,原液温度一般为20~40℃,温度控制精度为±1℃。(2)计量。两组分原液的计量一般由液压系统来完成,液压系统由泵、阀及辅件(控制液体物料的管路系统与控制分配缸工作的油路系统)所组成。注射时还需经过高低压转换装置将压力转换为注射所需的压力。原液用液压定量泵进行计量输出,要求计量精度至少为±1.5%,最好控制在±1%。 (3)混合。在RIM制品成型中,产品质量的好坏很大程度上取决于混合头的混合质量,生产能力则完全取决于混合头的混合质量。一般采用的压力为10.34~20.68MPa,在此压力范围内能获得较佳的混合效果。 (4)充模。反应注射物料充模的特点是料流的速度很高。为此,要求原液的粘度不能过高,例如,聚氨酯混合料充模时的粘度为0.1Pa.s左右。 当物料体系及模具确定之后。重要的工艺参数只有2个,即充模时间和原料温度。聚氨酯物料的初始温度不得超过90℃,型腔内的平均流速一般不应超过0.5m/s。 (5)固化。聚氨酯双组分混合料在注入模腔后具有很高的反应性,可在很短的时间内完成固

粉末注射成型技术的特点

粉末注射成型技术的特点 MIM作为一种制造高质量精密零件的近净成形技术,具有常规和机加工方法比拟的优势。MIM能制造许多具有复杂形状特征的零件:如各种外部切槽,外螺纹,锥形外表面,交叉通孔、盲孔,四台与键销,加强筋板,表面滚花等等,具有以上特征的零件都是无法用常规粉末冶金方法得到的。由于通过MIM制造的零件几乎不需要再进行机加工,所以减少了材料的消耗,因此在所要求生产的复杂形状零件数量高于一定值时,MIM就会比机加工方法更为经济。 MIM和精密铸造成形能力的比较 粉末注射成型的优点: 能像生产塑料制品一样,一次成形生产形状复杂的金属、陶瓷等零件部件产品成本低、光洁度好、精度高(±0.3%~±0.1%),一般无需后续加工产品强度,硬度,延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀原材料利用率高,生产自动化程度高,工序简单,可连续大批量生产无污染,生产过程为清洁工艺生产 粉末注射成型 粉末注射成型材料应用 较新MIM材料体系应用

常用MIM产品应用 几种粉末注射成型材料的基本性能 粉末注射形成技术与其他成形工艺技术比较 粉末注射成型工艺与传统批量工业与自动化零件加工、冲压、锻造、精密铸造、粉末冶金相比,具有极其明显的优势。

零件薄壁能力高中中低高 零件复杂程度高低中高低 零件设计宽容度高中中中低 批量生产能力高高中中-高高 适应材质范围高高中-高高中 供货能力高高中低高 粉末注射成型工艺流程图 适用材料及性能 材料 密度硬度拉伸强度伸长率 g/cm 3 洛氏MPa % 铁基合金 MIM-2200(烧结态) 7.65 45HRB 290 40 MIM-2200(烧结态)50HRC 380 20 MIM-2700(烧结态) 7.65 69HRB 440 26 MIM-2700(碳氮共渗)55HRC 830 9 MIM-4650(烧结态)7.55 90HRB 700 11 MIM-4650(热处理态)7.55 48HRC 1655 2 MIM-8620(烧结态)7.5 85HRB 445 20 MIM-8620(热处理态)7.5 35HRC 800-1300 5-9 不锈钢 MIM - 316L (烧结态)7.8 67HRB 520 50 MIM-304L(烧结态)7.75 60HRB 500 70

塑料注射成型工艺中成型零部件

塑料注射成型工艺中成型零部件 摘要随着塑料制品在日常生活中的广泛利用,人们对塑料制品的质量与数量要求日趋提高,而国内塑料制造行业所掌握的技术普遍相对落后,要提高我国塑料行业的整体竞争力,对成型模具的研究与改进是必须的。实际上塑料注射所用的模具(简称注射模一一实现注射成型工艺的重要工艺装备)成型技术已成为衡量一个国家塑料制造水平的重要标志之一。本文介绍了几种塑料成型工艺中重要模具的特点,并对不同种类凹模凸模的结构和使用条件进行探究。 关键词塑料成型;注塑机;凹模;凸模 中图分类号TS91 文献标识码A 文章编号1674-6708 (2016 )162-0149-02 注射成型(注塑)是一种将已经在加热料筒中预先均匀塑化的热固性或热塑性材料,高速推挤到闭合模具的模腔中用以成型工业产品的生产方法。产品通常使用橡胶注塑和塑料注塑。注塑方法又可分注塑成型模压法和压铸法。注射成型机(简称注射机或注塑机)是一种常用的塑料成型设备,它利用塑料成型模具将热塑性塑料制成各种形状的塑料制品。近年来,注射成型也成功地用于成型某些热固性塑料。 我国的注塑机从无到有,从单一品种到多品种,已经有

了长足的发展。但相比于其他如德国等制造工艺技术发达的 国家,我国的塑料工业还处于初级发展阶段,所以注塑成型 在我国的高分子材料发展进程中有着广阔的前景。同时随着塑料制品在日常社会中得到广泛利用,塑料注射成型所用的模具(简称注射模,它是实现注射成型工艺的重要工艺装备)技术已成为衡量一个国家制造水平的重要标志之一。 注射模的基本组成: 1)成型零部件; 2)浇注系统:浇注系统是指注塑机喷嘴将塑料喷出后,流体到达模具型腔前所流经的通道; 3)导向机构:导向机构是用于保证动、定模合模时准确对合; 4)支承零部件:支承零部件是指起支持作用的零部件轴承,常与导向机构组合构成模架; 5)推出机构:推出机构是将模具中已经完成成型后的塑件及浇注系统中的凝料推出模具的装置; 6)侧向分型与抽芯机构:该机构将成型孔、凹穴或凸台的型芯或瓣合模块从塑件上脱开或抽出,合模时又将其复位; 7)温度调节系统:满足注射工艺对模温的要求; 8)排气系统:将型腔内的气体排出模外。 其中,成型零部件是指直接与塑料接触或部分接触,并决定塑件形状、尺寸、表面质量的零件,它们是模具的核心 零件。包括型腔、型芯、螺纹型芯、螺纹型环、镶件等。

相关文档